Statistical Theory of Transient Processes in a Backward-Wave

Oscillator with Crossed Fields
S. P. KUZNETSOV

A previously developed nonstationary theory is used to investigate the
transient process which leads to establishment of oscillations in a2 magnetron-
type backward-wave tube (MBWT) oscillator from its beginning to its end, in-
cluding the generation of a regular signal by shot noise and the final nonlinear
stage. It is shown that weak nonlinear effects play the principal role in self-
excitation of the oscillator when the beam current is close to its starting value.
In particular, the fluctuations can switch the system from a non-excited state
to an oscillatory state when the beam current is smaller than its starting value.
A method for calculation of the mean value and the variance of the length of
transient process is proposed and illustrated by examples.

* % %
INTRODUCTION

The purpose of this article is to investigate the process of beginning of oscillation and of appear-
ance of a regular signal from noise in a backward-wave oscillator with crossed fields (MBWT), using
the previously developed nonstationary, nonlinear theory [1-3] as a base. This problem has some prac-
tical significance and is also of a theoretical interest as an example of the effect of fluctuations on a
specific, distributed, self-oscillatory system. This problem has been solved previously in the form
of estimates [4, 5], but the authors of these works did not consider a number-of important aspects (they
did not investigate the role of the nonlinear effects and of the method used to turn on the oscillator in the
transient process and they did not estimate the average dispersion of the length of the transient process),

In what follows below we use the physical model of the MBWT described in detail in references
1-3 . We shall only point out that we will use the adiabatic approximation, that the effects of space
charge field, of the distributed attenuation, of reflections from the ends of the tube and of the non-
constant group velocity in the spectral interval of the signal are neglected and that the gain parameter
D is assumed to be small (D« 1), It is also assumed that the fluctuations are caused by the shot effect
and that the electrons enter the interaction space independently from one another, being randomly dis-
tributed in terms of the time of entry and over the transverse cross section of the beam.

1. ESTABLISHMENT OF OSCILLATIONS FROM NOISE DURING A STATIONARY
ELECTRICAL OPERATING MODE OF THE TUBE

Let us consider the simplest way in which the oscillations in a MBWT can be generated by noise,
i.e., when the process takes place under constant values of electrode voltages and beam current. We
shall assume that the shot noise was "turned off" prior to the time t = 0 and that the oscillator was in an
unexcited state, *

1) If the electron beam current IO is larger than the so-called starting current Il then the unexcited

state of the oscillator is unstable with respect to infinitesimally small oscillations at a frequency w
which is determined by equating the phase velocity of the wave propagating in the transmission line to
the velocity of motion of the electrons [4-6]:

Voh () =v,. (1)

Since the spectrum of noise fluctuations always contains components at frequencies that are close
to @, these components will increase as the instability develops, causing the appearance of a regular
signal. The qualitative picture of this process corresponds to that given in reference 6, pages 340 and
185.

2) If the beam current is smaller than I1 but larger than some value I2, then the unexcited state

of the oscillator is unstable at the same frequency with respect to perturbations of finite amplitude

*Even though such a state is unrealistic, it can sometimes be considered as a wise idealization
of the physical process. Moreover, it will serve as a starting point for analysis of more complicated
cases (see Section 2),
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(which becomes smaller as the beam current approaches its starting value), see [7, 1-3]). This is
related to the specific character of the weak nonlinearity existing in the MBWT: the larger the ampli-
tude of the signal the more significantbecomesthe displacement of the electrons contained inthe deceler-
ating phase of the wave with respect to the retarding system. There they fall into an always stronger
and stronger high-frequency field and give uptheir potential energy to the wave more and more effectively.

In that case the fluctuations can also lead to self-excitation, but its mechanism is somewhat differ-
ent. Since the system amplifies predominantly the noise components at frequencies that are close to the
operating frequency, we can assign the frequency o to the output noise signal and assume that its ampli-
tude and phase are slowly varying functions of time. If at some instant of time the amplitude exceeds a
specified level, then it will start to increase fast, according to our discussion above. In a strongly non-
linear mode this growth of the amplitude is limited by the precipitation of electrons onto the retarding
system. The average time required for self-excitation of the oscillator will obviously become shorter
as I0 approaches closer to Il‘

3) If < 12 then the oscillator cannot become excited by itself in principle. For sufficiently long

values of t the noise at the output of the tube becomes a stationary random process. This is the so~
called pre-oscillatory mode of the tube.

1.1, Derivation of MBWT responses to an "'impulse" caused by a separate electron. Let us con-
sider an electron which gives rise to the current density

T=ev,8 (z—vat) 8 (y—Ay) 6(z), (2

and whose trajectory is depicted by the line AB on the space~time diagram (Fig. 1). Using the results
of reference 8, itis possible to show that its radiation field at a frequency o which satisfies condition
(1) occupies the region ABC (group velocity of the wave is negative) and is described by the expressions:

E=Re [C_E_le"*-0], (3)

. —_ 2ELBy) _ 2e[En(0)—BAYE,(0)]
- = N.(vo"‘*‘vg;‘) - N.(v.,"+vg,")

, 4)

where E . SO are the eigenfunctions of the waveguide at the frequency o, Ns is a norm, vgr is the absolute
value of the group velocity of the wave and § = ﬁ)/vo. We shall now change (4) to the following dimension-
less parameters:

1—iw

F= =
o i+u

F,, 6

where F = C-s/ D is the normalized field amplitude, u = vgr/VO is the normalized group velocity, w=
=pBAy and & = ewD/ I0 is a parameter which characterizes the discrete structure of the electron beam

and, consequently, the level of the shot noise,
In order to be able to consider the interaction between the electron beam andthe radiation described

75



by formulas (3)-(5), we shall use the linearized equations of the nonstationary MBWT theory [1-3]:

AOF o, 00 o0 o
u dv dq dtv  dgq
with boundary conditions
D gmo=0, F|oe=0 M
and the following initial condition on the curve AB
Flgmi=F.. (8)

Here = oDt and q = Dx and @ is an auxiliary grouping parameter. Solving this problem by using the
Laplace transform with respect to time variable, we obtain

( 2ut )

1+l EXPp §——

. 1+

FO,5)=L I S ds, 9
ni Y s+HV1-stetgV1—s2

x—fco

where X is selected in such a way that the contour of integration passes to the right of all singularities
of the integrand in the plane of complex variable s.
1.2, Establishment of oscillations when the electron beam current is significantly higher than

the starting current, < IO =>1. 01‘I1) .* In terms of our normalized parameters the condition I0 > I1 means

that />n/2. In that case the integrand of expression (9) has one or several poles in the right~hand half-
plane and it turns out that all these poles are located on the real axis [1-3]. Integrating (9) by taking
into account only the largest pole at s =x, we obtain the following asymptotic form of the response for
large values of t:

1—x?
F = QF, e at
0, 7)=2 e (10)
where a = 2ux /(1 + u).
During the time interval ranging from 0 to t an average of n= Iot/ e = 1/¢ will enter the interaction
space, so that the resultant response is a superposition of n terms of the type of (10), i.e.,

c 2ue 1—x*
FO,99= Y Fa(0m) =2 V) (i) emcr-survie
©9 0= o o 2 (A iw)e ' (11)

nemi n==1

where the random quantities Tn (time of entry), ?y (phase) and v (deviation from the beam axis) per-

tain to the n-th electron and are henceforth assumed to be uncorrelated.
Further derivation is analogous to the case of lumped-parameter self-oscillatory systems [9, 10]
and for this reason we shall present only the final results.

If we write the amplitude of the output signal in the form |F|=Ae* then the random variable A will
have the Rayleigh distribution

4
Ha)= e (12)

where the variance 02 is given by the following expression when e***>1:

n ) [1—xr
o’=—g—(lF..l’)z en (11w )( % )

2% (1+u) 1+xl (13)

The distribution function of the time TR’ required by the amplitude to reach a level |F| = R has

*The case I0 > I1 will be discussed in the next section. Let us point out that the ranges of applica-
bility of approaches developed in Sections 1.2 and 1.3 overlap partially.
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the following form
aR? R
()= ra exp[ —2aty — %;exp(-—Za'cR) ] . (14)

A graph of this function can be found in reference 10 .
Using (14), it is not difficult to find the average value of the time © R and its RMS deviation:

‘ 1/ R
olTad= !,arf(r)dr ~ < (o +0577), (15)
R ——— I
al <A = 2. (16)

It is wise to use the obtained results in the following way: 1) we select a value of the amplitude R
which is large in comparison to the noise level (R»¢) and at the same time sufficiently small for the
nonlinear effects to be inconsequential; 2) on the basis of the linear fluctuation theory described above
we determine the average time required by the amplitude to reach the level R and the average dispersion
of that time; 3) using a digital computer and the nonlinear, nonstationary theory, we determine the vari-
ation of amplitude beginning from the level R until the steady state is reached. Here we use the follow-
ing equations derived in references 1-3:

1 9F oF Db J0
u 9t Oq (@) dr dq (mn

with boundary conditions (7) and the following initial conditions:

sin¥1—x?gq

— 18
sin¥V1—x=?1 (18)

1—u
Ol q=Rexp ( xQ)
1+u

. . Q3 3 (] —
FI,E.,=Rexp(1 u_ﬂ ) sin_i‘(f q)
1+u sin¥1—x2]
The method for solution of these equations was also described in references 1-3 ; 4) using the formula
=17 /oD we convert the results to normal time.
Let us now give an example of calculation of the length of transient process in a specific oscillator
(tube parameters were taken from monograph [11]).

1) I)= 1.31, = 0.13 amperes, D=0.022, 0= 1.9 - 10 sec”"
a) We determine the parameter ¢ = emD/IO ~4.7 - 10710, ,

b) From formula (13) we obtain the quantity 02~ 3.4 - 10710,
c) Letting R = 0.2, we obtain <1z>~48 from (15) ¥{(At,)®»=~2 from (16).

Figure 2a shows the graph of the output signal amplitude as a function of time for the most prob-
able realization. It may be seen from the figure that the substantially nonlinear interval is not less than
20% of the entire transient time. I should also be noticed at the same time that an estimate obtained on

the basis of linear theory* gives a satisfactory result (see dashed curve in Fig. 2a).
2) I = 3.651, = 0.365 amperes, D=0.031, 0 = 1.9 - 10'% sec™, u=1, x = a= 0.65 and (wWH=0 1.

Completing the same sequence of calculations we find (7,>~19 and Y{(At:)»>=~0,6 for R= 0.2. The

,u=1 %=a= 0,194 and <w2>= 0.1,

corresponding graph of the transient process is shown in Fig. 2b. Its general shape is the same as in
the previous case, but now the time required to reach steady state is substantially shorter.

1.3. Transient process for 2 beam current which is almost equal to the starting current. In this
case one must expect that the effect of weak nonlinearity will become substantial during the initial stage
of the process. We let IO = Il(l +n), where n<1 is a dimensionless parameter. It is shown in Appen-

dix 1 that then the nonlinear system of MBWT Egs. (17), with appropriate boundary conditions, reduces
approximately to the following ordinary differential equation:
ac

T -—4(1+ ) (2utici®)c,

*In order to obtain such an estimate, it is necessary to use relationship (15), in which R is re-
placed by the steady-state amplitude, obtained from the nonlinear theory.
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Fig. 2. Curves of the output signal of a MBWT, plotted as
functions of time for the most probable realization with

By, g, =3 @) =18 b) ¢ = 3. Dashed curves correspond

to the linear theory. The arrow indicates the average dis-

persion of the transient time. For the tube selected [11] one

unit of normalized time corresponds to 2.4 nanoseconds in
the first case and to 1.7 nanoseconds in the second case.

where C= F(0, 1) is the complex amplitude of the signal at the output of the tube. Inthe absence of
fluctuations the solution of Eq. (19) is as follows

nut

_n,
p.m) — 1] ; arg C=const, (20)

— 21

lC[—V2p. [(1 +W) exp (—
where | Col is the signal amplitude at the time T = 0. It may be seen from formula (20) that the ampli-
tude will grow to infinity during the finite time interval

1+
2 I (1+2ulCl ) (21)
uau

Too =

provided that a)u> 0, b) p<<0 and |CO|2 > 2 (instability with respect to perturbations of finite ampli-

tude). In a physical tube the amplitude of oscillations is limited by precipitation of electrons onto the
retarding system which was not considered in derivation of (19). '

Since the problem is being solved under the approximation of a weak nonlinearity, we assume that
relationship (10), obtained from the linear theory, can be used in order to determine the result of per-
turbation of the system by an impulse caused by a single electron. Since IO o 11’ = 0 and the pole of the

integrand function has the largest real part, we have
F(0, 1)>2F, when 1—>. (22)

Since the time required by one impulse is small in comparison to the typical time of amplitude

variation [I(1 + u_l) <« (2/mp) (1 + u_l)], we can assume that the mapping point in'the complex plane,
whose motion is described by Eq. (19), experiences on the average 1/e jumps per unit of normalized

time in a random direction, the mean squared length of the jump being equal to [4e 2u2/ 1+ u2)] 1+

+ <w2 5). Then we can write a Fokker-Plank equation whose solution would allow us to investigate the
evolution of a statistical ensemble of oscillators in detail [12].- In this article, however, we shall limit
ourselves to the derivation of the average time of self-excitation of the oscillator. We shall assume tha
this time is the time required by the amplitude to grow to infinity.

Suppose that M(R) is the average time required by the mapping point to reach infinity when it was
originally located at a distance R from the origin of coordinates. This function satisfies the equation
[12]

b 1 111
— M”+—M')+ R(R+2p) M'=—
2 ( R LFa) TR M =~ (23)
with the boundary conditions
M(=)=0, M’ (0)=0, (24)
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Fig. 3. Graph of function f(v).
Dashed curves correspond to
approximations (A.7)-(A.9).

where
2en?
b= ——(1+<w®
Ty )
is the coefficient of diffusion.
Integrating Eq. (23), we obtain M(0):
_ 2(ut+1) 2nu (25)
M(O)_V b f(” b(u+1))’
where
L dx x .
im=| e—=*-v=Tj e dE, (26)
0 0

Approximate expressions for the function f (v) are derived in Appendix 2 and its graph is shown in
Fig. 3.

Let us now assess the obtained results, using the tube with the previously described parameters
as an illustrative example.

a)p<0. In this case the self-excitation of the oscillator can be treated as a "flipover' from one
state to another, caused by fluctuations., It may be seen from formula (A.7) (Appendix 2) that the waiting

time for the flipover depends very strongly on i (since e~ 10_9 and v~p/Ve appears as a square in the
exponent). A calculation based on (A.7) gives

B M(0)  M(0), séc
0,8-10-* ~8-10*  ~2,8-10"

10-* ~3-10° ~10
1,2-107* ~2.10* ~6-10°
1,4-10"° ~10* ~10%

i.e., the self-excitation of the oscillator by the above described mechanism becomes very unlikely al-
ready whenu= 1.2 - 10-3. Therefore, it is actually not necessary to investigate the case 12< Io< I1
on the basis of Eqs. (17).

b) 1= 0. A calculation based on formula (A.8) results in M(0) ~5 - 104 or~1.7 - 10-4 seconds.

¢) 1>u>¥e, In this case relationship (A.9) becomes valid, which agrees with the results obtained
in Section 1.2.

1.4. Pre-oscillatory mode.* Since in this case the noise signal at the tube output remains small
in principle, we shall use a linear approximation. The integrand function in formula (9) has now no

*The approach discussed below will also be used when I2< IO< I1 if the observation time interval

is small in comparison to the time required to excite the oscillator.
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Transient modes in a MBWT oscillator

Condition | Condition
imposedon| imposed

TO on I0

Character of the process Method of analysis

Transient process is started by the
radiation of the electron beam front;

We determine the spectral
component of the front radia-
tion at the frequency o. The
result is used as an initial
condition for Eq. (6) or (17)

11 > IO > 12 If the radiation of the front exceeds Same. When Ioz I1 one can
the level of instability, the oscillator

becomes self-excited due to a weak
nonlinearity.

use (20), where ICO|'is the
amplitude of front radiation.

“’TO >1 Signal appears from noise in the Formulas-{15)-and (16) are
linear mode when the tube bias volt- applicable.

T <T s

0 “tr ages are maintained constant.
=1 Same, but in a weakly nonlinear Formula (25) is applicable.
mode.
L>1,>L When the beam current is far from
the starting value, the probability of
excitation is very small.

Toz2T | 2L Signal appears from noise in the Linear theory must be modi-
linear mode. The increment varies fied by taking into account x(v).
substantially during the transient
process.

ILy=1 Same, but in'a weakly nonlinear
mode.

T, >T. | > L As one approaches the starting Nonstationary analysis of the
mode slowly, the device will even- Fokker-Planck equation is
tually flip over to oscillations. The required.

most important role is played by the
weak nonlinearity.

singularities in the right-hand half-plane of s and this expression can be changed from Laplace trans-
form to Fourier transform by letting s = i(DO. Evaluating the spectral density funetion of the response

and summing this function together over all electrons that have entered the interaction space per unit of .

time, we obtain the following normalized power spectral density of noise in the pre-oscillatory mode:
_ ben?(1+(w®)  sin*¥1+021

(14u)?  O+costTIF 01

(27

An analogous relationship was derived in reference 13 by another method.

2. ON THE RANGES OF APPLICABILITY OF THE DEVELOPED THEORY

Let us now discuss the processes which lead to stable generation when the methods used to turn
on the oscillator are more realistic. We shall assume that constant voltages are applied to the retard-
ing system and to the negative electrode and that the beam current increases from zero to some value
I0 during some typical time T0 according to the following function:

1<t)=10¢(7’:), 90 g1 (28)

tr—os -
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If the beam which enters the interaction space has a distinctive front (whose width is of the order
of the retarded wavelength), then the radiation from this front at the frequency © can be larger than the
noise level and will therefore start the transient process. In a frequency interval Ao~aoD (a is a
normalized increments increase of small oscillations) the energy of the radiation field will be propor-

tional to |I.|*(A0¥/4n*), where L.=ILT.¥ (oT,) and ¥ (§)= j p(E)e"™ dt . On the other hand, inthe same

frequency interval the energy of radiation field of the noise current is proportional to ¢ Inoise2> =

= eIO( Aw/n) according to Shottky's formula for the mean-squared current fluctuations. Thus the radi-
ation of the front will dominate above noise if

4mel, Vl.meo)
Ao or (DToIlF((l)To)lz aDIo y

lImI}

(29)

where the typical value of the quantity contained in the right-hand side is ~10-3. One can maintain with
certainty that this inequality will be satisfied when -coTo < 1. It is much more difficult to draw some

definite conclusions when o T0 >1. As a matter of fact, the formal asymptotic behavior of the function
¥ (o TO) at large values of @ TO is determined by the analytic properties of function ¢ which are difficult
to pinpoint (for example, when ¢ has a discontinuous derivative of n-th order than | ¥ l~(mT0)_n_1, when

¢ is differentiable an infinite number of times at any point then | ¥ [~e¢™*™ or approaches zero even
faster). The physical meaning of this difficulty amounts to answering the question: Does the function
ot/ T0 have "irregularities'" which are unrelated to noise* and have a time scale T« T0 or does it not?

_ If it does, then their radiation can dominate above noise even when mTO > 1. If we assume that such
irregularities do not exist and that |¥ (wT,)|<e™*™, then it follows from (29) that steady-state oscilla-
tions will be established from noise when @ T0> 5. When this inequality is satisfied, we can use the
methods developed in the last section in order to find the transient time Ttr under the conditions of con-
stant electric bias. This time will be a good approximation to the total transient time if T0<< Ttr'

Otherwise the theory requires modifications which are beyond the scope of this article. A summary of
basic possible transient modes in a MBWT is given in the table above together with brief explanations of
the essence of physical processes and of the methods of analysis.

CONCLUSIONS

1. Using a specific problem as an example and making some specific assumptions it was shown
that the methods developed in the classical theory of self-oscillators with lumped parameters are applica-
ble to investigation of distributed self-oscillatory systems.

2. The process of excitation of oscillations in a MBWT was examined for the first time from
beginning to the end, including its linear and nonlinear stages. It was shown that an estimate of the
time required to reach steady-state oscillations, based on methods of references 4, 5, is satisfactory
when the beam current is significantly higher than the starting current, i.e., < I =1, 0111>.

3. It was pointed out that the nonlinearities related to the rise of electrons toward the retarding
system have a principal effect on the process of self-excitation of a MBWT when the beam current value
is close to the starting current value. A method for calculation of the transient time for this case was
proposed.

4. Different possible transient modes of a MBWT were discussed qualitatively.

The author wish to thank D. I. Trubetskov for his attention to this work.

APPENDIX 1

If I0 = Il(l +u) then the normalized length of the tube is

*In a formal approach such irregularities would be discontinuities of derivatives, for example.
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because i~D~Yl,. We now change the variables in Eqs. (17) toq=q'(1 +1/2), T =1 W1+4/2)and F=
= F'(1 +# 2). Dropping the primes, we shall have

F O 00 a0 (A1
g PO TS e -
00,1=0, F (—2“— 1:)=O, (A.2)

where g(0)=(n®+p)G(0)-0=~1-%;03, This is true for small values of © and can be obtained by expanding
G(e) [7, 1-3] into a Taylor series. Neglecting the right-hand sides of (A.1), we obtain the following
zero-order approximation

FM=Ccosq, O®O=Csingq. (A.3)

We now substitute (A.3) into right-hand sides of (A.1), assume that C = C(x) and solve the obtained equa-
tions for F and . Insisting that the solution should satisfy boundary conditions (A.2), we arrive at the
equation

oc "I

e Jg(Csin ¢)sin ¢ dg. (A.4)

[]

From this we obtain Eq. (19) by using an explicit expression for g(v).

APPENDIX 2

We shall consider the function

oo X COS 2¢
&4
¥ (gv)= [ emxve = J' ettt g,
] z
¢ °

where it is obvious that ¥ (0, v)=f(v) and ¥ (n/4, v)=0. Then

Y (9, v) Yn

At _1-2':2 f ! A
™ > exp( P (p)erc (?vtgq)) ) (A.5)

Integrating formula (A.5), we obtain the expression
V;uli 1 . 1
f(v)=-2—-‘[exp (—4——\: tg q;)erfc(—;vtgq;)dcp, (A.6)
0

which is convenient to use for approximate representations of £(v).
1) v<0, |v/>»1. In the vicinity of the point » = /4, which makes the principal contribution to the
integral;-we have erfc(1/2 v tg¢) ~ 2. Therefore we obtain the following by the Laplace method [14]

}; v?
f(v)&?exp-z-. (A.7)

2) v=0. We integrate assuming that

vz v v
exp (—tgch)mi; erfc(———tgqa) o i tg @
4 2 i n

-2 (A.8)

3) v» 1. Inthis case it seems to be wise to use the asymptotic formula erfc x~ e_xz/x 7x for large
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values of x. When this expression is substituted into (A.6), however, the integral diverges. Therefore,

-x2 —
we let erfc x~e %2/ (x +A)7n, where A™>0 is an arbitrary number. Then the intaaration gives

) 1 ﬂA+l 1 . v )] Inv (A.9)
V) = — 1 nf{— = v .
v(1+4A% %) [ 2v (YZ 2Y2A v

where terms of the order of ~ and smaller have been neglected. Let us point out that a specific
choice of A is inconsequential because this quantity does appear in the final result.

REFERENCES

1. S. P. Kuznetsov and D. I. Trubetskov, Lektsii po elektronike (3-ya zimnyaya shkola-ceminar
inzhenerov) [Lectures in Electronics (3-rd Winter Seminar School for Engineers)], book 5,
Saratov University Press, 1974, pp. 88-142,
2. Elektronika lamp s obratnoy volnoy (Elektronics of Backward Wave Tubes), Saratov University
Press, 1975, Chapter IO,
3. S. P. Kuznetsov and D. 1. Trubetskov, Tzv. Vuzov MVSSO SSSR (Radiofizika), 1977, 20, No. 2,
p. 300.
4. Mourier, in the book: Elektronnyye cverkhvysokochastotnyye pribori so skreshchennymi polymi
(Electronic Microwave Devices with Crossed Fields), IL Press, 1961, I p. 347.
5. D. I. Trubetskov and V. P. Shakhin, in coll. volume: Voprosy elektroniki sverkhvysokikh-chastot
(Topics in Microwave Electronics), Saratov University Press, 1969, ed. 6, p. 10.
6. V. N. Shevchik and D, I. Trubet...ov, Analiticheskiye metody rascheta v elektronike SVCh (Analytic
Design Methods in Microwave Electronics), Sovetskoye Radio Press, 1970.
7. Feinstein, Kayno, inthe book: Elektronnyye sverkhvy sokochastotnyye pribory so skreshchennymi
polyami (Electronic Microwave Devices with Crossed Fields), IL Press, 1961, I p. 451,
8. V. A. Solntsev and A. S. Tager, Radiotekhnika i Elektronika, 1960, 5, No. 7, p. 1100 [Radio Eng.
and Electron. Phys., 5, No. 7 (1960)].
9. W. A, Edson, Proc, IRE, 1960, 8, 1454. .
10. I. S. Gonorovskiy, Trudy MAIL ed. 50, 1955, p. 125.
11. V. I. Gayduk, K. I. Palatov and D. M. Petrov, Fizicheskiye osnovy elektroniki SVCh (Physical
Fundamentals of Microwave Electronics), Sovetskoye Radio Press, 1971.
A. A. Andronov, A. A. Vitt and L. S. Pontryagin, ZhETF, 1933, 3, No. 3, p. 165; A, A. Andro-
nov, Sobraniye trudov (Collection of Works), AN SSSR Press, 1956, p. 142.
13. B. Epsztein and B. Glance, Etude du fonctionnement du carcinotron M en rigime de pre-oscillation,
Tubes hyperfrequences, Paris, 1965, 183-186.
E. Copson, Asymptotic Expansions (in Russian transl.), Mir Press, 1966.

X X X Jul

83



