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 ONE FORM OF EXCITATION EQUATIONS OF A PERIODIC WAVEGUIDE 

S.P. Kuznetsov 
Consider a problem on excitation of electromagnetic field in a periodic waveguide with ideally 
conducting walls by a given current density . Let us depart from the Maxwell equations ),( trj
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material equations HBED ),,(,),,( zyxzyx μ=ε= , where ε and μ are scalar d-periodic functions 
of x, and usual boundary conditions (also d-periodic) on the waveguide walls. 

Next, we will need a special form of discrete Fourier transform of a function Φ(x): 
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where β is some real-value parameter. The transform Φβ(x) definitely exists if the function Φ(x) 
approach zero sufficiently fast at ±∞→x . Evidently, 
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Integrating (2) over an interval of β from 0 to 2π/d we obtain a formula for the inverse 
transform: 
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Now, the transform (2) applied to the equations (1) yields 
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note that the material equations and the boundary conditions remain unchanged because of the 
periodicity of the waveguide. 

To solve equations (5) and (6) let us construct a set of solenoidal eigenfunctions  
(analogously for the other field vectors), which satisfy the conditions 
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inside the waveguide, the boundary conditions on the walls, and the equations 
 0)(rot,0)(rot ,,, =βΩ+=βΩ+ ββββ sssss DHBE . (8) 

At a given real β the eigenproblem (7)-(8) appears to be self-conjugate and possesses a 
spectrum of  eigenvalues , which all are real. It may be shown [1] (in the same way as it is 
done in the theory of excitation of resonators [2]) that without degeneracy under appropriate 
normalization of the eigenfunctions 
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where V0  is an arbitrary volume in the waveguide bounded by two transversal cross-sections 
separating a spatial period of the waveguide. In a case of degeneracy one can redefine the 
eigenfunctions in such way that the relations (9) remain valid (cf. [2]). 

Let us search a solution of Eqs. (5), (6) in the form 
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imposing a condition on Φβ 
 ββ ρ−=Φε )graddiv( . (11) 

Now, multiply the first equation (5) by , and the second by  , sum them and integrate 
the result over the volume V0. The term containing Φβ disappears, as ρβ and jβ obey the continuity 
equation. Accounting the orthogonality relation (9), we obtain the following equations for the 
coefficients : 
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where V designates the entire volume of the waveguide. Let us decompose both parts of the relation 
(12) to Fourier series over the argument β: 
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Undertaken the transform (4) we finally get from Eqs. (10) 
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where the coefficients Cs, n  has to be determined from equations (13) and Φ from the Poisson 
equation 
 ρ−=Φε )graddiv(  (11) 

obtained by transformation (4) of the relation (11). Quasi-static field of space charge is extracted in 
(15) explicitly, like in the theory of excitation of resonators [2]. 

To reveal physical sense of the quantities nsnsnsC ,,, ,, EΩ  consider a coupled resonator 
waveguide. If we decrease to zero a size of coupling holes, the surfaces where the conditions (7) 
must be valid disappear, and the eigenfrequences )(βΩ s and the functions  become 
independent on β. Then, the Fourier transforms of these quantities in respect to the argument β 
contain only constant terms 
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, and (13) becomes the set of uncoupled equations for 
separated resonators. The coefficient  characterizes then the complex amplitudes of the s-th 
mode of the n-th resonator.  



A weak coupling between the resonators will be characterized evidently by the terms  
(each resonator is coupled with the nearest neighbors). In this approximation, as follows, one can 
neglect by the values of  with all m except  

1, ±nsC

ms,Ω 1,0 ±=m . With 11 −Ω=Ω  the system (13) gives 
rise to a dispersion relation dβΩ+Ω= cos2 10ω  typical to a chain of weakly coupled oscillators 
[3]. Under increase of coupling, other terms will become relevant, with  etc., which 
correspond to coupling with the resonators of number 

3,2 ±±=m
3,2 ±± nn  etc. 

Next, accounting the sense of the coefficients , from the relation (15) one can conclude 
that the function  determines the field at the point r in the case  (

nsC ,

)(, rE nz 0,1 ,, == mpns CC ps ≠  or 
). The same (conjugate) function enters the integral expression in the right-hand part of (13), 

i.e. it characterizes the effect of the source placed at the point r onto the coefficient . 
nm ≠
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Thus, it is clear that the equations (13) and (15) are of simple form just in the cases when the 
so-called discrete approach is appropriate for description of the excitation of the transmission line 
[3]. So, they may be treated as electrodynamic foundation and generalization of this approach 
(including non-stationary processes). Consideration based on the equations (13) and (15) has some 
advantages over the usually used equivalent scheme approach, which are generally intrinsic to a 
consistent electrodynamic description [2]. Indeed, if we are given the dispersion relation and 
configuration of the electromagnetic field in the eigenmode at different β (for their computations 
many methods considered in literature may be used, see e.g. [4]), the excitation equations are 
determined completely and definitely in general form. Note that even accounting a restricted 
number of coupling coefficients  in (13) we get an approximate description of the waveguide 
properties in a wide frequency band in contrast to the method suggested in Ref. [5]. 
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For a ring geometry of the periodic structure, characteristic, say, to magnetrons, one has to set 
, where N is the number of the resonator cells. In the case of perfectly matched load at 

the ends of the waveguide one can think of the system as continued to infinity in both directions, 
and, solving the initial problem not deal with the end boundary conditions at all.  In other cases a 
rigorous definition of boundary conditions is more problematic and requires concretization of the 
situation. It may be recommended to apply a phenomenological approach accounting the above 
physical interpretation of the equations (13). For instance, suppose we account in the Fourier 
decomposition of 

nsNns CC ,, =+

)(βΩ s  only the terms of numbers 1,0,1 +− , and the waveguide is bounded to 
the left by the cell n=0. Then, excluding in the respective relation (13) the term  and adding the 
term  modeling the active load, we obtain the expression 
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which play the role of the boundary condition. The rest equations remain unchanged. In a similar 
way one can consider a case when larger number of the coefficients ms,Ω  is accounted.  

REFERENCES 
1. V.A. Solntsev, JTP, 1968, 38, 1, 100. (In Russian.) 
2. L.A. Vainstein, Electromagnetic waves, Sov. Radio, 1957; G.V. Kisun’ko, Electrodynamics of hollow 

systems, VKAS, 1949; L.A. Vainstein and V.A. Solntsev, Lectures on ultra-high-frequency electronics, Sov. 
Radio, 1973. (In Russian.) 

3. L.V. Bulgakova, D.I. Trubetskov, V.L. Fisher, and V.N. Shevchik, Lectures on electronics of UHF devices of 
O-type, Saratov Univ., 1974. (In Russian.) 

4. R.A. Silin and V.P. Sazonov, Slow-wave systems, Sov. Radio, 1966. (In Russian.) 
5. S.P. Kuznetsov and D.I. Trubetskov, Two lections on non-stationary theory of interaction of electronic beams 

with electromagnetic waves, Lectures on UHF electronics (3-d Winter School-Seminar of Engineers), book 5, 
Saratov Univ., 1974. (In Russian.) 

6. W.I. Kleen. Electronics of Microwave Tubes, Academic Press, 1958. 
Translated by the author 


