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1. A vast number of physical problems 

reduce to an interaction between two waves.   
Such interactions are widely used in 
amplifiers, if the instability is connective, 
and in oscillators, if it is absolute. The nature 
of the instability, however, is usually not a 
simple question. The purpose of the present 
study is twofold.   The first goal is to study 
the nature of the instability in a situation in 
which it is not clear whether we are dealing 
with an amplifier or an oscillator.  The 
second is to propose a method for studying 
the nature of the instability in multiparameter 
problems; this method radically shortens the 
formal mathematical aspect of the analysis. 

Let us assume that two branches of the 
spectrum of a dissipationless system, 

 and ω  intersect and are 
coupled with each other; the coupling region 
in the phase plane occupies a small interval 
of frequencies and wave numbers. The 
dispersion relation of the system in this case 
is 
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Here ε is a small parameter, equal in order of 
magnitude to the frequency dimension of the 
coupling region. We will treat the case in 
which the system is unstable, which 
corresponds to the minus sign on the right 
side of (1). 

Since the coupling region is small, we 
approximate the functions )(1 βω=ω  and 

 in this region by simply the first few 
terms of Taylor series. It is frequently 
sufficient to use only the linear terms: 
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If the group velocities of the waves )(1 βω′  

and  have different signs, the instability 
is absolute; if the signs are the same, the 
instability is convective. This result is at-
tributable to Sturrock 

)(2 βω′

2 and is a universal 
criterion for distinguishing the nature of the 
instability of two weakly coupled waves. If, 
however, the group velocity of one of the 
waves vanishes in the coupling region, this 
analysis of the nature of the instability is no 
longer valid.1) A situation of this sort arises 

in a problem characterized by some 
parameter В if, upon a change in B, the point 
at which the dispersion characteristics 
intersect jumps from the ascending part to 
the descending part of one of the 
characteristics, and the instability accordingly 
goes over from| convective to absolute 
(Fig.1). We will analyze this situation here. It 
might be noted that this question arises in 
several applied problems, e.g., in analysis of 
the operation of a traveling-wave tube near 
the transmission boundary of the waveguide 
system.3  

2. We assume that the critical point for the 
first wave falls in the coupling region, 

0)(1 =βω′ k . Then 
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For definiteness we assume 0)(1 <βω  and ′′ k

0)(2 >βω′ k . Figure 1 is drawn in accordance 
with this choice of signs. 

All the effects associated with the 
existence of a critical point occur in 
characteristic frequency and wave-number 
intervals determined by the relation 
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1 || ε∝β∆ω′′∝ω∆ . We therefore introduce the 
dimensionless frequency Ω and the 
dimensionless wave number К as follows: 
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Transforming to dimensionless variables 
in (3), and discarding the term containing the 
small parameter ε, we find 
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which is a measure of the separation of the 
dispersion characteristics of non-interacting 
waves; the value В = 0 corresponds to their 
intersection exactly at the critical point 
(Fig.1). For the scales chosen here the 
dispersion characteristic of the second wave 
appears as a vertical line, К = –В. We recall, 
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however, that this line is slightly inclined,2) as 
in Fig. 1. 

3. Let us find the boundary value of the 
parameter В at which the absolute instability 
disappears. This happens when the growth rate 
corresponding to the saddle point of the 
function Ω(K), which is responsible for the 
absolute instability vanishes 
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For dispersion law (5) there is a unique 
value of the parameter В (В = 1.5) at which 
both conditions in (6) hold. At larger values of 
B , the point at which the two branches 
intersect lies far from the critical point and 
we can use the Sturrock 2 criterion. At large 
negative values of В (Fig.1) the instability is 
absolute, while at large positive values it is 
convective. An absolute instability thus occurs 
for B<1.5. 

4. Let us assume that the system contains a 
source which is oscillating at a frequency Ω0. 
Let us find the boundaries of the amplification 
and transmission regions in the Ω0, В 
parameter plane. Waves with wave numbers 
determined by 

)(0 KΩ=Ω   (7) 
travel away from the source. At the boundary 
of the amplification region, the spatial 
growth rate of at least one if the waves 
vanishes: 
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Figure 2 shows all three of the lines which 
satisfy Eqs. (7) and (8) for В>1.5 and for 
dispersion law (5). At large positive values of 
B, according to Sturrock, an amplification 
band should exist near the dispersion 
characteristic for the second wave, while 
outside this band there should be a 
transmission region. These arguments, 
combined with a study of the asymptotic 
behavior of the lines determined by Eq. (7) 
and (8), lead to the assertion that the 
amplification region lies between the two 
solid curves, while the dashed line lies 
entirely in the transmission region. 

5. Figure 2 shows the regions in which the 
system exhibits different types of behavior in 
the plane of the parameters Ω0 and B. Here A 
represents an absolute instability, С 
represents a convective instability, and T 
represents transmission. Since we have not 
specified the physical nature of the interacting 
waves at any point, the results are universal. 

We note in conclusion that we have 
actually used the following method: The 
parameter space was partitioned into regions 
by the surfaces in (6) and (7)-(8). The nature 
of the solution within each region was 
determined from physical considerations, 

e.g., the asymptotic behavior. This method is 
convenient since a determination of the 
boundaries of the regions requires only the 
necessary instability conditions, which can be 
determined very simply. It is also simpler to 
study the behavior of the system within each 
region than to test the lengthy instability con-
ditions over the entire parameter space. 

 
1) We will call this point (ωk, βk) the “critical point.” 
2) This assertion is equivalent to a certain rule for 
circumventing the singularity in dispersion law (5) in an 
integration in the K plane. 
 
1 E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics 
[in Russian], Nauka, Moscow (1979).  
2 Р. A. Sturrock. Phys. Rev. 112, 1488 (1958).  
3 A. P. Kuznetsov and S. P. Kuznetsov,  Izv. Vyssh. 
Uchebn. Zaved., Radiofiz. 23, 1104 (1980). 

Translated by Dave Parsons 
 

 

Sov. Tech. Phys. Lett. 8 (8), August 1982 409


