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A wave approach is used to study total signal suppression regimes in a traveling 
wave tube near the limits of the passband. The possibility of several types of 
suppression regimes is proven. A regime termed reactive suppression is predicted, 
in which interaction between field and current is purely reactive. 

i. As is well known, when beam current and accelerating voltage are properly selected 
in a traveling wave tube (TWT), a regime producing complete suppression of an input signal 
of a certain frequency is realized [i]. It is convenient to use this regime for measurement 
of parameters, since it is totally defined by interaction of the beam and field and is inde- 
pendent of input and output matching conditions. (In this respect the suppression regime is 
unique among the possible operating regimes of a finite length system.) 

The present study will prove the possibility of realization of several types of suppres- 
sion regimes in a TWT operating close to the limit of the retarding system passband. Since 
several of these regimes correspond to parameter values at which an infinitely long system 
is absolutely unstable [2], it is natural to question the possibility of realization of such 
regimes, i.e., their stability. (We will note that at limiting parameter values the suppres- 
sion conditions found here may transform to either Kompfner breakoff conditions or reverse 
wave tube (RWT) start conditions without reflections j) The answer to this question is that 
for experimental observation of such regimes it may be necessary to choose conditions at the 
ends of the retarding system such that at the current level corresponding to the suppression 
regime the tube is still not self-excited. 

2. We will approximate the dispersion characteristic of the retarding system near the 
passband limit by the first terms of a Taylor series: 

,,, = % + ( b 2 ) ~ " ( i ~ o ) ( ~  - ~o)~-, ( 1 )  

where ~o is the cutoff frequency and 80 is the wave number corresponding thereto. 

We write the hf current and the longitudinal electric field component in synchronization 
with the beam within the TWT in the following manner: 

7---- Re [J(x, t)exp (i~t - i~0x)], ~" = Re [~ (x, l)exp (i%t- iBox)]. (2) 

Dispersion equation (1) corresponds to the following f ree  wave equat ion:  

[~t +i~ ' (~ ' )  OX ~0"2 ]~(x, t)=O, (3) 

As was shown in [2], the interaction of such a wave with the hf current is described by the 

equation 

[ O0_[ + ~i~" (~~ Ox ~" ] ~ ( x, t) %~oR (~,,)2 J (x, t), , (4) 

where R(~o) is the coefficient of proportionality between the square of the field amplitude 

and the stored energy density. 

In the case of a harmonic input signal the hf field and the current are proportional 
to e i~t. We then take .~(x,t)= ~(x)et$~ -~'~ and J(z, t) = J(x)e i(~-~Q)t, so that Eq. (4) takes 

on the form 
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d~,(x.______) + 2(~ - ~,o) ~(x)  mo~oR(~o) J(x) .  (5) 
ax~ or' (L) o~" (L) 

This is the steady-state equation for excitation of the complex amplitude of the syn- 
chronous field @(x) by a specified current J(x)e -iS~ 

In the kinematic equation the interaction of the current waves with the field waves is 

l d x d - i  - [3. J ( x ) = i  ~ ~(x).  (6) 
2u'v o 

described by Eq. (i) 

Further, we introduce dimensionless parameters 

2 ( ~  -- ~0) I = y F : ~ o x ,  9 = , , 
~,~ I,,," (L)I ,'o 2~o ."~ ' 

(7)  
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Assuming that the interaction parameter s is small (s <<i), we retain in Eqs. (5), (6) only 
the terms of first nondisappearing order in e: 

(d~Y/d~ 2) + ~ f  = if; (8) 

[dld~ - -  i B ] 2 Z  = i F ,  (9 )  

where B = (BoVo -- ~o)/eBovo is a parameter characterizing the desynchronization of the beam 
with a wave of critical frequency: p = sign~"(Bo). 

3. System (8), (9) is of fourth degree, so it must be supplemented by four boundary 
conditions. We will establish the form of these boundary conditions for the total signal 
suppression regime. 

The first two conditions are obvious -- at the input end of the device current waves 
are not excited in the beam: 

/(0) = o, i'(0) = 0 ( l O )  

The two remaining conditions refer to the field, so to clarify their form we will con- 
sider a system with no beam. The field distribution in such a system conforms to the equa- 
tion 

~ ( d ~ f / d { ~ )  ' ~ = 0 .  ~< ' (ii) 

since there are no sources at the output end of the device, and there is no external signal, 
second-order equation (ii) must be supplemented by a homogeneous boundary conditions, The 
general form of this condition is as follows: 

~,F(0 + ~F' (I) = 0, (12) 

where ~ is the dimensionless length of the device, ~i and ~2 are coefficients which are de- 
termined solely by the energy output construction and may be frequency dependent. 

Boundary condition (12) obviously retains its form for a system with a beam. Since the 
condition for total signal suppression is equality to zero of the field at the device output, 

F(1) := O, (13) 

then, according to Eq. (12) the derivative also vanishes: 

F'([) = 0 (14) 

In the language of propagating waves conditions (13), (14) indicate equality of zero of the 
amplitudes of incident and reflected waves.* 

As will be shown below, the boundary problem formulated has nontrivial solutions only 
for certain values of the parameters Z = l(~) and B = B(~). These suppression conditions as 
well as the corresponding field and current distributions over system length will not depend 
on power matching conditions at the input and output, since no parameter characterizing these 
conditions appears in the formulation of the problem. 

*A more detailed discussion of boundary conditions is presented in the appendix. 
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4. Upon imposition of the two boundary conditions (i0), Eq. (9) has two linearly inde- 
pendent solutions which we will denote by subscripts 1 and 2. It will be convenient to im- 
pose the following conditions on these solutions (and system (i0)): 

F , ( 0 ) ~ 0 ,  r [ ( 0 ) = l ,  F ~ ( 0 ) ~ I ,  P~ (0 ) - -0 .  (15) 

We will seek a solution of boundary problem (9), (i0), (13), (14) in the form 

F = C 1 P 1  + CY2. 

F'=CFI§ 
(16) 

The conditions for total signal suppression, Eqs.(13), (14), are satisfied if and only 
if the determinant of system (16) 

D (~) = F~ (D F~ (~) -- F~ (~) F~ (~) 

vanishes at ~ = 1. The solution of the boundary problem is then given by 

F (~) = C [~'~ if) F, (~) --  F, (tl P~ a)], (17) 

where C is an arbitrary constant. 

The determinant D is a function of the parameters l, ~ and B. For fixed l and ~ the 
equation D(/, ~, B) = 0 defines some closed line (hodograph) in the complex D-plane. This line 
begins (as B +-~) and ends (as B § ~) at the point (0,i) , since at IB[ >>i the beam and wave 
do not interact, and the quantities F~, F~ and F2, F~ are equal to their initial values Eq. 
(15). For I <<i the entire hodograph is located in the vicinity of the point (0,i). For 
this reason it can be said that if at some l = Io the hodograph encloses the origin, there 
must exist values of the parameters 1 = lp < lo and B = Bp which causes D to vanish. (We 
assume the parameter ~ = ~p fixed.) 

To construct the hodograph it is necessary to find solutions 1 and 2. The first can 
be found by numerical solution of the corresponding Cauchy problem for Eq. (9). Since as 
can easily be seen the second solution is obtainable from the first by differentiation, the 
latter can be reconstructed with the expressions 

F2=F;, F~---.~(--gF,+il,), I2=I;, I~----2iBII-i-B~I,+iF,, (18) 

which follow from Eq. (9). 

Figure 1 shows the configuration of the hodograph in the D-plane for ~ = i. (Since 
the hodograph is symmetric about the real axis, only the portion corresponding to B < 0 is 
presented.*) The hodograph has the form of a spiral which expands more rapidly the larger 
I. Selection of the parameter 1 for a given ~ will cause the hodograph to pass through the 
origin, thus defining the suppression condition. With increase in 1 the first, second, etc. 
turns of the spiral will pass through the origin, which corresponds to suppression regimes 
of first, second, etc. order. 

*Equations (8), (9) transform into each other if the sign of B is changed and values are re- 
placed by their complex conjugates. 
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The proposed method for solution of the boundary problem is definitive, although the 
technique is numerical. 

5. Figures 2 and 3 show the results of a calculation of total suppression conditions. 
The parameters used were not the quantities l, B, and ~, but rather their combinations 1 ~, 
Bl~ ~l 2. The latter are more convenient in that ~ is proportional to current, Bl, to voltage, 
measured with the value corresponding to exact synchronism of the beam with a wave of critical 
frequency as a reference (i.e., B1 = 0 corresponds to intersection of the dispersion character- 
istics of beam and retarding system exactly at the cutoff frequency)j and ~l 2 is proportional 
to the difference between the external signal frequency and the cutoff frequency (~l ~ = 0 
corresponds exactly to the cutoff frequency). Thus~ in fact Figs. 2 and 3 show the dependence 
of suppression current and voltage on frequency. Figure 2 presents the corresponding curves 
for the low-frequency limit, and Fig. 3, for the high. 

At IB/I >> 1 (large detuning of voltage from the critical point) the suppression condi- 
tions found correspond to conventional Kompfner breakoff (~B < 0) or start conditions of an 
RWT without reflections (pB > 0), the dashed lines of Figs. 2 and 3. Upon approach to the 
cutoff frequency these regimes change somewhat. The suppression regime realized near the 
high-frequency edge of the passband at B = 0 (Fig. 3b) is of special character. It has no 
analog in single wave theory and is caused solely by reactive interaction of beam and field 
(it is simple to show that at B = 0 the phase shift between current and field is exactly 
~/2), and corresponds to a zero net energy flux in the input section of the device. 

APPENDIX 

As is well known, the total electromagnetic field in a periodic waveguide can be repre- 
sented in the form (3): 

E(x)  = ~ C s (x) E~!(X) e -i~x + ~_j C-s (x) E l s  (x) e -~-sx , (A1) 
8 8 

0 where E• are the waveguide eigenfunctions, and 8is are the propagation constants for for- 
ward and reverse waves. We will limit ourselves to calculation of forward and returning waves 
of one type: 
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E (x) = C~ (x) E~ o (x) e -L~d: + C_~ (x) E~ (x) e -i~- ~ (A2) 

0 X The eigenfields E_+s( ) are periodic functions of coordinate x, which permits their expansion 
in a Fourier series~ i.e.~ transformation to representation of the field in the form of a 
set of spatial harmonics: 

e (x) C s (x) [Y,  -"~ ~ .___ Esne sn ] -Jr- C-s (x )  [ E  E-sne-'O-snX ] (A3) 
I I  t l  

Let a periodic waveguide be loaded by some output device, with the complex reflection 
coefficient from that device being F(m). 

where L is the length of the device. 

Then 

= r (~) Cs(L) Y, ~ --~3 ,,,t C-she '-  ], 
n 

(A4) 

For the case of signal suppression, at the output the incident wave must vanish: 

n 

Conditions (A4) and (A5) are compatible only if 

C, (L) = 0. C-s tL) = 0. (A6) 

This is then the condition for total signal suppression. We note that Eq. (A6) implies 
vanishing of not only the incident wave, but also the total electromagnetic field at the 
device output. 

We now separate from the total field E(x) the portion in synchronism with the electron 
flow Ec(x): 

E=E~(x)+E.~(x), (A7) 

where 

Er (x) = C, (x) Es. ~ e i:~s'~'~ q- C_~ (x) E_~p e-i~-sp ~ . (A8) 

Here m and p are the numbers of adjacent harmonics synchronous with the current; for example, 
for a system with negative dispersion of the zeroth harmonic near the low-frequency limit 
m=l, p=0. 

The synchronous field Es(x) is related to the complex amplitude ~'(x) of Eq. (5) by the 
expression 

where 8o = 8sm(Wo) = B-sp(~o) is the wave number at the critical frequency. Inasmuch as 
Ssm = 80 + AS, and 3-sp = Bo --A~, then 

(x) .... C~ (x) Es,,,.e .-u,[~x _jr_ C_~ (x) E s~,e ~x .  (A10) 

Eq. (AIO) divides the amplitude of the synchronous field into the amplitudes of two harmonics. 

We will return to Eq. (8). The latter can be divided into two excitation equations for 
the dimensionless amplitudes F+ and F_, the two synchronous harmonics: 

dF.+ld~ -- i l/-~-.) f"+ = -- I12 V f f  , (Al l )  

aF_ta~ - i V ( T F _  = l l 2  F T .  

(We cons ider  here the low- f requency edge of  the passband, ~ = 1 ) .  

The ampl i tudes F+ and F_ are r e l a t e d  to the corresponding dimensioned q u a n t i t i e s  (see 
Eqs. (2 ) ,  (7 ) ,  and [ 2 ] ) .  

F+ = C~4x) E;r~e-i~'~ F_ = C-s (x) E-sp e ~'z~ (A12) 

It is clear that condition (A6) requires vanishing of the dimensionless amplitudes F+ and F_ 
at the device output 
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F+(1)=0, F=(I)~-0 (AI3) 

where Z is the dimensionless device length. We now add Eq. (All), obtaining 

dF/d~-il/~o~(E+--F_)=O, (AI4) 

where F = F+ + F_. But then it follows from Eq. (AI3) that (dF/d~) (~) = O. Moreover, 
F(1) = F+(1) + F_(1) = 0. We have arrived at boundary conditions (13), (14). 

It should be noted that the derivation of boundary conditions presented herein relies 
on separation of the field into forward and returning waves and therefore is not applicable 
to the case of exact equality ~ = ~o. However, it is valid for frequencies as close as de- 
sired to the critical fmequency (both high and low critical frequencies). The formulation 
of boundary conditiQns (13), (14) itself has no singularities at the critical frequency and 
can thus be extended to the case ~ = ~o. The derivation of the boundary conditions presented 
in the main text is free of this shortcoming, but is somewhat formal. 

i. 
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FORMATION OF AN ION BEAM IN A MULTIAPERTURE ION SOURCE 

N. I. Danilovich UDC 621.382.002 

The basic rules of formation of a beam of Ar + ions I00 mm in diameter using a 
multiaperture ion source with electron oscillation are analyzed. It is established 
that the ion source, with spherical grids, forms a converging ion beam with an 
increased current density along the source axis. It is shown that the maximum ion- 
current density in the beam and the ion energy depend on the values of the poten- 
tials on the grids of the ion-optical system, the ratio of which determines the 
character of the ion-current density distribution over the area of the backing 
being treated. 

The method of plasma-chemical etching of surface microrelief is now used extensively 
in the technology of the fabrication of large integrated circuits (LIC). At the same time, 
the method of ion-beam etching (sputtering), based on the physical interaction of ions of 
an inert gas, such as Ar +, with the LIC surface or target being treated, is becoming ever 
more popular [I, 2]. The method is used in operations of cleaning an LIC surface (with an 
ion energy E i ~ i00 eV), for etching microreiief (E i ~ 0.5 - 1.0 keV, and for ionic deposition 
of metallic and dielectric films [3], and it has a number of advantages. First, it makes 
it possible to etch metals, dielectrics, and semiconductors at high speed without changing 
the working gas; second, it is characterized by a high process purity, assured by the absence 
of contact between the treated backing and the plasma zone and by running the process at a 
relatively low pressure in the vacuum chamber (~4.10 -2 - 2.4.10 -3 Pa) it also makes possible 
the precise control of the process through the use of fully detemmined and easily varied 
values of the ion-current density, the energy of the ions, and the angle of their incidence 
on the treated surface. 

Special multiaperture ion sources (M!S) with electron oscillation, used earlier as ion 
engines, have been developed to perform etching of microstructures on the surfaces of large- 
diameter semiconductor backings and deposit thin films of various materials on them. They 
can form a large-diameter, multibeam ion stream and make it possible to obtain a higher ion- 
current density than with one-aperture sources at equal voltages on the electrodes [4]. Ion 
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