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TAKING INTO ACCOUNT DISSIPATION IN THE WAVE THEORY OF TWT 

OPERATING AT THE LIMIT OF THE TRANSMISSION BAND 

A. P. Kuznetsov and A. G. Rozhnev UDC 621.385.632 

A form of the equations of the wave theory of TWT, when the dissipation is de- 
scribed by a parameter that remains virtually unchanged when the limit of the 
transmission band is crossed, is proposed. The conditions for parasitic self- 
excitation of TWT are analyzed taking into account the effect of dissipation and 
terminal loads. The limits of applicability of some previously proposed models 
of TWT are discussed. 

0ne problem in the wave theory of TWT, operating near the limit of the transmission 
band, is taking into account correctly the dissipation of electromagnetic energy in the 
walls of the delay system. The traditional parameter of "cold" losses in the theory of 
TWT is proportional to the imaginary part of the propagation constant and increases rapidly 
as the frequency approaches the band limit. This fact has given rise to the widespread be- 
lief that the presence of dissipation qualitatively changes the characteristics of the de- 
vice, and dissipation must be in principle taken into account in the theory of TWT operating 
near the limit of the transmission band [i]. In reality, the excitation equation can be 
formulated so that the dissipation parameter appearing in it remains virtually unchanged 
when the limit of the transmission band is crossed. This enables a correct study of the 
conditions of parasitic self-excitation of TWT at the limit of the transmission band in 
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the presence of dissipation; and makes it possible to indicate the limit of applicability 
of some models, previously proposed for approximate calculations of TWT at the band limit. 

I. Equations of Excition of the Delay System at the Limit of the Transmission Band 

and ~2 = 2/L~C0 " 
external currents. 
obtain 

Taking into Account Energy Dissipation. We shall first study a model problem. Consider 
the transmission line shown in Fig. i. It is characterized by the dispersion equation 

~ - -  i o /RC0 = ~ + ~ (I - -  cos ~ d ) ,  ( 1 ) 

where ~ is the frequency, ~ is the wave number, d is the period of the system, ~ = I/LoC0, 
We shall derive the equation of excitation of the transmission line by 

According to the well-known rules of the theory of circuits we easily 

~--~'( l--cos~d) U~== ~o J ~. (2) 
Rco 

Here U~ = EUnei~ nd, J~ = ~Jnei~ nd, U n is the voltage at the n-th oscillatory loop, and Jn 
is the current exciting it. Let the frequency of the exciting current lie near the limit 
~0 of the transmission band (for definiteness we choose the low-frequency limit). We shall 
expand the coefficients in Eq. (2) in a Taylor series in ~ and ~ near the point (~0, 80 = 
2~/d): 

- -  ~o - -  i ~  2 .j 20- '7  

Here X = I/2CoR, ~"(~) = ~2d2/2~0. Transferring from the relation (3) to the wave equation 
with the help of the standard substitution i(8 - G0) § d/dx we obtain the excitation 
equation sought 

i ] .  (4) 
d,d ,U 0o) - "~ - u =  

The following equation of excitation of a periodic delay system without dissipation 
at the limit of the transmission band was presented in [2, 3]: 

d2*  + 2 ( ~ _ ~ o ) $  = iOo~o R(~o~J. (5)  

In the relation (5) R(~ 0) is the modified coupling resistance [2], ~ and J are the complex 
amplitudes of the field and current, and 

Here E is the high-frequency field synchronous with the electron beam and is the sum of 
two spatial harmonics; I is the high-frequency current. 

Comparing Eq. (5) with the excitation equation (h) makes it trivial to extend it to 
the case of systems with dissipation: 

d ~ 2 ( o - - % - - i ~ ) 8 =  ioo~o R(~o) J. (7)  
dX' + Oo-----Y 

Here ~ is the dissipation parameter. Equation (7) can be justified more rigorously on the 
basis of the electrodynamic theory of excitation of periodic waveguides [3, 4]. For this 
the calculations of [3, 4] must be repeated using the expansion of the dissipation equation 
in a Taylor series: 
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We gave  a phenomenological derivation of Eq. (7), which is clearer. 

We shall now explain the meaning of the dissipation parameter y. Consider a "cold" 
system and let it be short-circuited at the ends. In this case Eq. (7) without the right 
sideholds 

d ~$  + 2 ( ~ - - ~ 0 - - i 7 ) $  = 0  (9 )  

w i t h  t h e  bounda ry  c o n d i t i o n s  

( 0 ) = 0 ,  ~ ( L ) = 0 .  ( i 0 )  

Here L = Nd i s  t h e  g e o m e t r i c  l e n g t h  o f  t h e  s y s t e m  and N i s  t h e  number o f  p e r i o d s .  The boun-  
d a r y - v a l u e  p r o b l e m  (9)  and ( t 0 )  i s  c h a r a c t e r i z e d  by a c o l l e c t i o n  o f  modes w i t h  complex c h a r -  
a c t e r i s t i c  frequencies 

' n - -  2 

~n = ~o + 2 d  ~ 

The Q-factors of these modes are determined by the dissipation parameter u 

g~ = IRe ~on/iv. (12) 
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2. Study of the Conditions of Parasitic Self-Excitation of TWT. Using the equation 
of excitation (7) we can write down a system of self-consistent equations for the inter- 
action of the electron beam and the electromagnetic field at the limit of the transmission 
band in dimensionless form: 

~ ,--r~_ ~-(R--i~)F=il, - - iB /-~iF. (13) 

Here 6 = 2yN2d2/l~"(80)ls the rest of the notation is the same as that in [2]. 

We shall study the conditions for parasitic self-excitation of TWT at the limit of 
the transmission band in the presence of dissipation in the delay system. For this Eqs. 
(13) must be supplemented with boundary conditions [5]: 

d/ (14) /(0) = 0. ~[ (0) -- 0; 

d p  
. (0) = i~ (o), ~[ (0 = - i~p (0. (15) 

Here we employ the following dimensionless parameters and their combinations: s is the 
dimensionless length of the system and is proportional to the quartic root of the working 
current; Bs is the dimensionless detuning of the accelerating voltage from the value cor- 
responding to exact synchronization with the band limit (Fig. 2); ~s is the dimensionless 
detuning of the frequency from the limit; =s is a parameter characterizing the terminal 
nonuniformities (input-output devices). For the transmission line shown in Fig. i ~s is 

determined by the impedance R L on which the line is loaded: =s = • where N is the 
number of cells in the system. At the low-frequency limit of the transmission band =s > 0, 
and at the high-frequency limit =s < 0. For real TWT i0~ [=s 50 [5]. 

The quantity 6s 2 = 27N2d2/l~"(~0) I is the dissipation parameter. From (12) we find 
that in real devices 6s 2 ~ 0.i-I0. 

Figure 3 shows the curves, found by solving numerically the boundary-value problem 
(13)-(15), of the starting values of the dimensionless length s versus the dimensionless 
voltage Bs at the high- (Fig. 3a) and low-frequency (Fig. 3b) limits of the transmission 
band for different values of the parameters of the boundary conditions and dissipation. 
For the upper figures =s = • and for the lower figures =s = • The parameter of the 
curves is 6s 2, which assumes the values 0.172, 0.4~ 2 , and 72. The dots indicate the depen- 
dences corresponding to no dissipation (6s z = 0). 
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As the calculations show, at the high-frequency limit of the transmission band the 
value of the accelerating voltage corresponding to the minimum starting current corresponds 
to synchronization of the electron beam with the forward waves, while at the low-frequency 
limit the voltage corresponds to backward waves (Fig. 2, the case Bs > 0). Since for TWT 
the forward wave is the working wave this means that the danger of parasitic self-excitation 
is much higher at the high-frequency limit of the band than at the low-frequency limit. 
This fact is well known from experiments. Characteristically, the indicated features are 
observed for both low values of the dissipation parameter and with no dissipation. Increas- 
ing the dissipation parameter 6s 2 increases the starting currents, and also leads to a shift 
in the point at which the starting current is minimum. For large 6s 2 the curves become 
smooth, and the differences arising owing to the different magnitudes of the impedance of 
the load become less important. 

3. Two Models in the Theory of TWT Operating at the Limit of the Transmission Band 
of the Delay System. In the theory of self-excitation of TWT developed above both energy 
dissipation and reflection of electromagnetic waves from the terminal loads were taken into 
account in a concrete manner. This enables evaluating the usefulness of the two models of 
TWT, proposed in their time for describing processes at the limit of the transmission band. 

The first model, quite widely employed in both the wave theory of TWT and the theory 
of discrete interaction, is predicated on ideal matching of the system over the entire fre- 
quency band [i, 61. It is assumed that all of the specific phenomena at the limit of the 
transmission band are determined by the character of the dispersion of the delay system, 
i.e., by the smallness of the group velocity as well as by the effect of the beam on the 
properties of the system ("hot mismatch"). The role of "cold" reflections is assumed to 
be negligibly small. We calculated the conditions for parasitic self-excitation of TWT at 
the limit of the transmission band on the basis of this model. For this, in our notation, 
the following boundary conditions must be employed: 

(O)=ipV~l~-- ia)F(O),  ~ ( 1 ) = - - i ~ ] / - ~ ( ~ - - ~ 6 ) f ( l ) .  (16) 

Figure 4 shows the dependence of the starting values of the dimensionless length ~ on the 
dimensionless voltage Bs found by numerical solution of the boundary-value problem (13), 
(14), and (16). THe values of the dissipation parameters are 6s 2 = 0.i~ z, 0.4~ 2, ~2; Fig. 
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4a refers to the high-frequency limit of the transmission band, while Fig. 4b refers to 
the low-frequency limit. Figure 6b shows the dependence of the dimensionless starting fre- 
quency ~s on Bs at the high-frequency limit of the band; the dissipation parameter 6s 2 = 
0.i~ 2 . 

Comparison of Figs. 3 and 4 leads to the following conclusions. The model of ideal 
matching describes well the qualitative character of the dependence of the starting current 
on the accelerating voltage for ~ms ~ i0 and 6s > 0.1~ 2. At the high-frequency limit 
of the transmission band, in the region of synchronization with the backward wave (Bs < 
0), the quantitative agreement is also not bad. In the region of synchronization with the 
forward wave, however, where minimum starting currents are achieved, the calculation assum- 
ing ideal matching can lead to a significant error. For example, for 6s 2 = 0.i~ 2 and ~s = 
-I0 the minimum possible value of the dimensionless length s = 2.68, while the model of 
ideal matching gives s = 2.23. This corresponds to an error of more than a factor of 2 
in the determination of the starting current. (We recall that the dimensionless length 
s is proportional to the quartic root of the working current). Why are the minimum starting 
currents lower in the model of ideal matching? An ideally matched system has one resonance 
frequency, equal precisely to the band limit [7]. For this reason, in a definite range 
of accelerating voltages such a system exhibits the properties of a resonant self-excited 
generator - the self-excitation currents are low, "the dependence of the ss frequency 
on the accelerating voltage is weak, and the generation frequency is close to the resonance 
frequency (Fig. 6b). In a system with real terminal loads all characteristic frequencies 
lie in the transmission band; in addition, for I~s ~ I0 even at the mode closest to the 
band limit the energy losses through the ends of the system are quite significant. For 
this reason, the starting frequencies are shifted into the transmission band (Fig. 6a), 
and the system exhibits weak resonance properties in the entire range of accelerating volt- 
ages. We note that as the parameter 6s 2 increases the dissipative losses start to prevail 
over the energy losses through the ends of the system, and for 6s ~10 the model of ideal 
matching operates well for all accelerating voltages. Such high values of the dissipation 
parameter, however, are not characteristic for TWT. 

The second model of TWT which we shall examine was probably first proposed in [8] and 
relates the unique phenomena at the limit of the transmission band with the total reflection 
of the electromagnetic energy in the "cold" system from the terminal nonuniformities. This 
viewpoint is apparently based on definite experimental results and the well-known fact that 
precisely at the limit of the transmission band the modulus of the coefficient of reflection 
from any, arbitrarily small nonuniformity equals unity. To calculate the conditions of self- 
excitation on the basis of this model we must set 

F(O)=O, F(I)=O. (17) 
The corresponding curves of the starting values of the dimensionless length s on the dimen- 
sionless voltage have an entire series of minima with approximately the same depth (Fig. 
5). Their origin is explained as follows. The system with total reflection of electromag- 
netic energy from terminal nonuniformities is characterized by a collection of high-Q modes, 
whose characteristic frequencies lie in the transmission band. For any mode there exist 
values of the accelerating voltage for which the conditions of energy exchange with the beam 
are most favorable and it is excited. At some optimal value of the voltage the extraction 
of energy from the beam into the given mode has a maximum efficiency - a minimum start 
current is realized. As the voltage is further changed the mode gradually becomes desyn- 
chronized and a different mode starts. The generation frequency, in this case, jumps from 
one characteristic frequency to another (Fig. 6d). 

This model permits explaining the existence of local minima in the dependence of the 
start current on the accelerating voltage for I~s 30. ~It has the important drawback, 
however, that it predicts approximately identical values of start currents on both the for- 
ward and backward waves and therefore does not explain the tendency of TWT to become self- 
excitedat the high-frequency limit of the band on forward waves. This happens because 
in this model the actual energy losses through the terminal loads are neglected, and these 
losses strongly affect the mode number. They are lowest for the fundamental mode closest 
to the limit of the transmission band. It is precisely this mode that is excited in TWT 
at the high-frequency limit of the transmission band on the foward branch of the dispersion 
magnetic field of the delay system (Fig. 6c). 
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Thus the wave theory of TWT admits a formulation in which the dissipation of electro- 
magnetic energy is described by a parameter that is weakly frequency dependent at the limit 
of the transmission band and outside it. Analysis of the conditions for self-excitation 
of TWT at the limit of the transmission band showed that it is incorrect to regard the energy 
dissipation as the only factor limiting the resonance effects in real TWT at the limit of 
the transmission band. The complete qualitative and quantitative picture of the processes 
occurring in TWT can be understood only if the terminal loads are taken into account correctly. 
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CARRIER REDISTRIBUTION AND NONLINEAR SHF PROPERTIES OF INHOMOGENEOUS 

SEMICONDUCTOR FILMS 

A. M. Belyantsev, V. A. Valov, 
M. N. Drozdov, A. L. Zheleznyak, 
V. A. Kozlov, and M. L. Yakovlev 

UDC 621.315.592 

An experimental study is performed of detection of impulsive radiation at a fre- 
quency of 75 GHz in inhomogeneous n-GaAs films. It is shown that a distributed 
nonlinearity mechanism exists, caused by carrier redistribution between regions 
with differing mobility under the action of the Lorentz force; it is established 
that at a frequency of 75 GHz this mechanism manifests no inertia. The studies 
performed indicate the suitability of this nonlinearity mechanism for detection 
of impulsive radiation in the 4 mm range at power levels incident on the detec- 
tor of up to 1 kW. 

Spatial redistribution of charge carriers and conductivity anisotropy in semiconductor 
films in crossed electric and magnetic fields parallel to the film surface were studied 
in [1-3]. Interest has developed in this phenomenon because it provides information on 
physical processes and parameters in inhomogeneous structures. On the other hand, with 
intensely nonequilibrium charge carrier redistribution under the action of a Lorentz force 
within a film clearly expressed nonlinear galvanomagnetic properties develop, which have 
found various applications in semiconductor devices [4, 5]. Thus, use of the dependence 
of integral conductivity on magnetic field in intrinsic semiconductors, in which the non- 
equilibrium spatial redistribution is expressed most intensely, has permitted development 
of a new type of magnetoresistive element, having record magnetic sensitivity [4]. However 
use of these devices is limited to the relatively low frequency range f ~i0~-i0 ? Hz, since 
in intrinsic semiconductors the inertia of redistribution is determined either by the char- 
acteristic recombination time T r or the transverse diffusion time ~D" 
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