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The present paper gives an account of a recent conception of renormalization
chaos in application to some scaling properties of period doubling systems (global
structure of the Feigenbaum attractor, ratios of spectral amplitudes, response
under periodical perturbation). :

1. INTRODUCTION. RENORMALIZATION DYNAMICS AND RENORMALIZATION CHAQS

Renormalization group approach is one of the powerful tools of modern theoretical
physics for analyzing systems with coexisting patterns with wide interval of space
and time scales. This approach arised in the quantum theory of field and was de-
veloped and applied later in the theory of phase transitions and critical pheno-
mena /1/. Recently, beginning from FEIGENBAUM's works /2-4/, the renormalization
group approach is actively used for investigating the behaviour of nonlinear dy-
namical systems near the onset of chaos.

What does the renormalization group analysis of problems of nenlimear dynamics
consist in? The first step is usually a discretization of time. Then the dynamics
is described by some evolution operator fy connecting the consequent states of the
system: Xnet © f[xn]. The mosi important is the next step. This is a transition
to some greater interval of time discretization accompanied by suitable rescaling
or, more general, by some change u* rlynanical variables. At this stage the new
evolution operator is introduced which evidently can be represented through the
old one: \'1 - R[fo]. where R is the operator of renormalization.

One can repeat the above procedure many times and so a sequence uf evolution
operators f,, fye... may be defined. The whole construction is similar to the known
picture of Kadanoff's blocks in phase transition theory /1/. It leads to rapid re-
sults in such situations, when the system is characterized by similar or approxi-
mately similar behaviour on different time scales including very large time scales.
This is just the situation which has taken place at the onset of chaos through
period doubling bifurcations or through quasiperiodica] regimes,

The equation which expresses the evolution operator through the previous one,
is the renormalization group equation. One can say that this equation defines some
kind of dynamics in space of operators called the renormalization dynamics. The
number of steps of renormalization may be determined as renorwmalization time.
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The traditional type of renormalization dynamics is a situation of a nonstable
fixed point in operator space. This is just the case considered earlier in sta-
tistical mechanics and in the first investigations on renormalization group analysis
of dynamical systems. However, the situations may exist in which the renormali-
zation group equation leads to more complicated dynamics, such as periodic or
chaotic dependence of evolution operators fn on the renormalization time n. As the
author knows, such a possibility was discussed first by OSTLUND ed al /5/ for a
problem of transition from quasiperiodicity to chaos and independently by CHIRIKOQV
and SHEPELYANSKY /6,7/ for the analogous problem in Hamiltonian systems. They also
introduced the terminology used here.
What are the structural peculiarities of the phase space and the parameter space
of dynamical systems which are connected with each type of renormalization dynamics?
The. transition to larger time scales during the described renormalization is as-
sociated with the consideration of more and more small objects in the phase space
and the parameter space. So the nontrivial renormalization dynamics corresponds to
structures similar to the Russian toy "matreshka". Such a toy consists of a se-
quence of hollow wooden puppets, the smaller one put inside the larger one. Three
different types of renormalization dynamics are illustrated in Fig.1. A situation,
“when all figures are similar to each other {scaling), is associated with a fixed

point (Fig.1a). The case of repeating through defined number of steps M corresponds
o a renormalization cycle of period M (Fig.1b). At last, in renormalization chaos
there is no full repeating excluding the repeating in approximate, mean or sta-
“tistical sense (Fig.ic).

It is clear that the connection must exist between characteristics of renormali-

' zation dynamics and scaling properties of structures of the "matreshka"-type in
- the phase space and the parameter space. For the case of a fixed point this con-
. nection is well known. Each nonstable direction of the fixed point is associated

Figure 1. Russian toy “matreshka" as an illustration
c) of three different types of renormalization dynamics.
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with a relevant parameter of the system. The factor of scaling connected with this
parameter is defined by the eigenvalue of linearized renofma]izétion transformation,
The case of renormalization cycle of some period M can be reduced to a case of
fixed point by introducing a new renormalization group transformation consisting
of M steps of the initial one. For renormalization chaos, however, a further in-
vestigation of a connection between its quantitative characteristics and scaling
properties is needed. ~

For understanding the generalization of renormalization chaos it is desirable,
of course, to have as many examples of it as possible. The situations of transition
from quasiperiodicity to chaos /5-7/ aréisufficient]y complicated. Simpler examples
can be presented by periodic-doubling systems and will be considered in this paper.
Section 2 is devoted to the discussion of global scaling properties of the Feigen-
baum attractor from the viewpoint of renormalization chaos. The approximate approacl
developed here casts a new light on some known results and is associated in some
aspects with thermodynamical formalism /5,7/. In Sect.3 the conception of renorma-
Tization chaos is applied to problems of periodical perturbation and spectral pro-
perties of period doubling systems. This material is based particularly on our
works with PIKOVSKY.

2. GLOBAL SCALING PROPERTIES OF.THE FEIGENBAUM ATTRACTOR
2.1. The Generalized Renormalization Scheme
Let us consider the yel)-knuwp one»ﬁimensi&na] map \
x' =1 - Ax? ' ' (1

and associated with it the geometrical image of the Feigenbaum tree or a graphical
representation of x versus A (Fig.2). Each road up to the tree may be coded by a
binary sequence. At each branching we use the following rule: the branch having
the greatest deflections from the parent one is denoted by symbol 1 and the other .
by.symbol 0. One can intreduce also a code of moving down from the tree obtained
by reading the previous code in backward order. For cycles of finite period 2"
each element has its own code consisting of n symbols. It is a remarkable obser-

0101=5
;68::;3 Figure 2. The Feigenbaum tree and a rule of

0001=1 coding of roads in it.




vation that the code of moving dewn from the tree correspondent to any element of

the cycle is at the same time the binary representation of the number of this element
in their natural time order. For the 1limit object formed by the infinite sequence

of period doublings (the Feigenbaum attractor), the elements are coded by infinite
binary sequences.

Let us remember the traditional Feigenbaum's renormalization group analysis.
Performing twice an initial map f(x), one obtains a map f(f(x)) having a charac-
teristic form with two humps (Fig.3a). For further details the consideration, the
central extremum of this map is selected. After rescaling of x by factor a < 0,
the new function is obtained: ft(x) = af(f(x/a)). The described procedure is re-
peated many times. Exactly in the critical point of period doubling accumulation,
the procedure leads to a fixed point of renormalization group equation, i.e. to
the universal function denoted by g{x). This function satisfies functional eauation
g(x) = ag(g(x/a)) solved by FEIGENBAUM.

S AR A | v R
A A= SUARIY S

Figure 3. An illustration of the traditional Feigenbaum's renormalization trans-
formation (a), and a generalized renormalization scheme (b).

It can be mentioned, however, that on each step of renormalization there are two
possibilities: both the central and the right extremums of function f(f(x)) may be
selected for further consideration. (The left extremum is not suitable because its
vicinity is not visited by a system during its dynamics on attractor.) For the
second variant the coordinate change must contain a shift of origin to a point of
a new extremum, not only rescaling. We shall mark the first variant of trans-
formation by symbol 1 and the second by symbol 0. Each binary sequence gives rise
to its own renormalization scheme. Using such a construction we can achieve a hit
of any element of 2" cycle into a vicinity of the selected for detail consideration
region of x in n-th time renormalized function. For this purpose the code of renor-
m#lization scheme must coincide with the code of the road up to the tree to the
the selected element.

Thus, with taking into account the whole set of possible binary sequences, one
receives information about global scaling properties of the Feigenbaum tree while
the traditional approach describes only a single branch coded by 11111... . This
is an example of the most simple renormalization dynamics of a fixed point or a
cycle of period 1. Other periodic codes give rise to more complicated renormali-
zatfon cycles. For instance, a code 01010... corresponds to a cycle of period 2,
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tode 011011... to a cycle of period 3 and so on. The stochastic binary sequences
are associated with renormalization chaos.

2.2. The Approximate Description of Renormalization Dynamics

Let us concentrate out attention on the consideration of global scaling pro-
perties of the Feigenbaum attractor. For this purpose we shall consider here only'
the critical value of parameter in Eq.(1), A = 1,401155... . Then the shape of

function fzn(x) near its central extremum is described by the Feigenbaum function
g{x} (for sufficiently large n). The key moment for further consideration is the
fact that the shapes of this function near the other extremums are obtained from
the central one by changes of the variable.

Aftér the transition of origin to a point of extremum and rescaling it, pro-

vided the function at this point equals to 1, the change of variable must be close
to identity. One can put

x + (1-u)x + ux® , : (2)

where u is a parameter dependent on selected extremum. This parameter is proposed
to be small and to be taken into account only in the first aorder. From the point
of view of renormalization dynamics, u is a dynamical variable.

Performing the change (2) in the map x' = g(x), one obtains

x' = g,(x) = g(x) + U(g'(x)x‘-(g(x))z) - uLg'(x)x-g(x)) . . (3)

Let us undertake a step of renormalization transformation for the map (3). We
perform it twice and transform the resulting map by an appropriate change of
variables to the primary form with a new value of u. This is accomplished by two
different ways: we can select the vicinity of the central (code 1) or side (code 0)
extremum for consideration. The result is the recurrent equation

{ ua (code 1)
u' =

(4)
p + su (code 0)
and the rule of rescaling of the variable:
a(1-u+u/a)ax (code 1)
Ax' = -1 (S)
(1+uc)(1-c) "ax  (code 0)

where 2 = -2,5029, p = 0.659, s = 0,155, ¢ = 0.8323. Constants in Eqs.(4), (5)
are defined through the function g(x) and its derivatives. The known polynomial
approximation of g found in /2/ was used for calculations.

Taking an arbitrary code of the road up to the tree consisting of n symbols,
we can find the representation of function 2 (x) in the normalized form in the
vicinity of the correspondent extremum. Starting from ug = 0 (for the initial map



(1}), we must iterate Eq.(4) selecting one or another formula debending on symbols
of code sequence. The shape of the function is given by (3) where parameter u is
a result of iterations. The ratio of scales af initial and renormalized variables
js obtained by the product of coefficients in (5).

Thus, in our approximation the renormalization dynamics is described by one-
dimensional map plotted in Fig.4. The points showing results of computations are
in good agreement with (4). Let us briefly explain the idea of the computation.
A1l interesting extrema of function fzn(x) may be numbered by m such as the
variable change k' = f"(x) transforms this extremum into a central one. Corres-
pondent codes are determined by binary representation of m reading from the right
to the left, Performing the computations for n and n+1, we find two values u' for
each u. One can see from Fig.4 that u is always smaller than 0.1; so the above
proposition is justified.

.
]
0.04 o
-0.04 0 0.04 0.087u
* Figure 4. The one-dimensional map
describing approximately the re-
- normalization dynamics of parameter
- u. The exact numerical data are
-0.04 shown by points,

It is clear frem (4) and Fig.4 that initial perturbations of u decrease under
snecessive iterations. In other words, a value of u and so a form of gu(x) near
some extremum are determined by the last symbols of the code. This is just a pro-
perty of universality in a renormalization chaos. The quantitative characteristic
of it is a negative Lyapunov exponent of the map (4). For the random code it is
equal to (1/2)1Inj{s/a)| = -1.39.

2.3. The Feigenbaum Scaling Function ¢

FEIGENBAUM /3/ has proposed a function o(t) for the description of giobal scal-
ing properties of the attractor in the critical point of onset of chaos. It is
determined through the elements of the large period cycles existing in a critical
point AO:
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(M2
(1) = M oll) = Vim T —m oy Lo (6)

n,Nee Mmoo T*meNs2

where the superscripts denote the period of the cycle and subscripts the number of
an element in time sequence. Let us show how to calculate this function from our
renormalization dynamics. ' _

Having some code moving down from the Feigenbaum tree a,b.c....'and reading it
from the right to the left, we find from £q.(4) the corresponding value of u. It
makes sense for infinite codes as well as for finite ones because the main con-
tribution is brought by several first symbols of the code a,b,c,... . Further we

can consider the map (3) for this u and determine the distance between two elements
of its cycle of period 2:

sx{u) = 1.146(4+0.293u) . (7)

Further, one can add symbol 1 or 0 to the code and find a next value of u' from

Eq.(4). Then, substituting (7) into (6], with taking into account (5), we obtain
the values of (t) for t = 0,0%abc... and t = 0.00abc... :

0(0.01abc....) = (Teu-u/a)xlic) . 1+0-98%u (8a)
0(0.00abc....) = (1-c)(1-uc)SRU) o 0 471(1-1.0800) . (8b)

The results of calculation of function ¢ are compared with Feigenbaum's numerical
data /3/ in Fig.5. The agreement is very good. Most important is the correct de-
scription of the fine (fractal) structure of the function. So the renormalization
dynamics given by Eq.(4) is just the mechanism that provides this fine structure.

EI

5

4 r

3

__r___r——l—rv

2
Figure 5. Feigenbaum's function o.
The dotted line corresponds to

1 exact numerical data and the solid

.0 0.25 t one to our approximate solution.



The most essential divergence takes place in the left part of the picture because
this is just the region where u is maximal while the theory is constructed in the
first order of accuracy in u.

2.4. Generalized Dimensions and Spectrum of Scaling Indices

The computations listed in the title of this section have recently been intro-
duced in /10,11/ and are used for the description of multifractals or complicated
sets which are imagined as interwoven variety of fractal {scaling invariant) sets.
The Feigenbaum attractor is one of popular examples of multifractals. Spectra of
generalized dimensions and scaling indices for this object are calculated in /11/.
These characteristics as well as function o give some form of a description of
global scaling properties of the Feigenbaun attractor but they are presented by
smooth functions.

Let us remember the algorithm of calculations proposed eariier /11/. Firstly,
the sequence is determined Xgs Xys Xp» o-e beginning from the point of extremum
Xg = 0 and consisting of iterations of this point by the map (1). One can consider
the Feigenbaum attractor as a limit object of construction shown in Fig.6. It is
similar to the construction of the Cantor set but the rule of decreasing of inter-
val length is more complicated. At the n-th level of resolution we have 2" inter-
vals of different length 1, with equal probability of visiting p; = 27", The sum
of values piqﬂiT is considered depending on two parameters q and t. Then the con-

= dition is adopted that this sum is equal to 1 and so an equation connecting q and
T is obtained in the limit of large n:

"

q = 1im-% 1092,§=11x‘-xi*2n; T (9)
Yalues Dq, f and o are determmined through q and «:

D = 3 - u=%;-, f=oag-1 . (10)

2 1

2 4 1

26 8 __4 3754

2.’ S g 4 3 264 Figure 6. The construction of
oW X)) s £% the Feigenbaum attractor.



f vs. o is determined as a spectrum of scaling indices of f{a)-spectrum. Below we
show how to obtain these spectra through our renormalization dynamics technique,

Let us consider the n-th level of resolution of attractor structure. It can be
proved that the lengths of intervals 1, are

n n ,n
t - 2 — t
n
where ii-1 is the point of extremum of a function fz » for which the code of

moving down from the Feigenbaum tree is just the binary representation of i-1.
By constructing two sums
2n
= -1 - -1
Zn = §=11i and Sn .=1u1-1_I N (12)

10D
p-

-

we can put a question: how do these sums change at the next leve] of resolution,
f.e. for n+1? Instead of each interval 11. we have now two intervals with Tengths

118(1+uui) . B = Ial-1 T (13a)
for an added symbol | in the code and
Ly(swu) 5 v = (1-p/a)(1-c) , v = -c + (1-s)/a (13b)

for an added symbol 0. These formulae are obtained using the representation of a
function fzn(x) near the correspondent extremua by Eq.(3) and scaling rules (5)

in the first order in u, Introducing (13) into (12) and neglecting the.-terms of the
second power of u, we obtain the following matrix equation:

Z B8 4y et (8 Ty T) ) z (19
= 14
S) el Py T (s-pyt)y T4g"T/2 S|,

0.7
0.8

0'5

0.4

&

-40 -20 0 20 q

Figure 7. The spectrum of generalized dimensions D_. The solid line corresponds to
the exact numerical solution /11/ and dots to our qappmxiaate approach.
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£ ' Figure 8. The spectrum of scaling indices.
The sclid line corresponds to the exact
numerical solution /11/ and dots to our
0.5} approximate approach,
0.3}
0.1(
0.3

For large n the sums Zn and Sn will change proportionally to (1) n’ where
A is the larger eigenvalue of the matrix. So it follows from (9) that q(1) =
= Togor{t). Values Dq, x and f are then obtained from Egs.(10).

Figures 7 and 8 show the spectra of generalized dimensions and scaling indices
of the Feigenbaum attractor. The solid lines correspond to calculations by method
described in /11/ and points - to our approximate solution. Some special values of
the generalized dimensions are compared in Table 1. The good agreement of data in
Figs.7 and 8 as well as in Table 1 means that the considered approximation for re-
normalization dynamics correctly reflects the principle of constructing the Feigen-
baum attractor as a multifractal set.

Table 1

Dimension Exact numerical /11/ Qur-approximation
Fractal DD 0.53804 ) 0.5375
Information 0, 0.51710 0.5161
Correlation D2 ) 0.49780 0.4964
Minimal D_ 0.3777¢6 0.3727
Maximal D__ ‘ 0.75551 0.7555

3. FURTHER EXAMPLES OF RENORMALIZATION CHAOS

For a wider understanding of the conception of renormalization chaos we shall
briefly consider its manifestations in two other problems also connected with
period doubling systems.
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3.1, Periodical External Perturbations of the System

Let us introduce an additional term into Eq.(1) corresponding to external
periodical perturbation

x'" =1 - AxZ + b cos 2mnw , (15)

where b is an amplitude, w is a frequency of the perturbation and n is the discrete
time.

The empirical computer investigation of scaling properties of model (15) was
undertaken in /13/. In /14/ the authors developed the renormalization group ap-
proach to the problem. An attempt of renormalization analysis was also undertaken
by ARNEODO /15/. However, he did not take into account the principal moment of-a
change of the frequency parameter under renormalization which just leads to re-
normalization chaos. According to /14/, the map describing a system evolution
through 2" units of time has for small amplitudes of perturbation the following
form

X' = fh(x) + %b ;m(x)exp(Zninwm) + c.c. , (16)

where fmfx) characterizes an evolution without external perturbation while the re-
normalization dynamics of function ¢(x) and parameter w is determined by equations

bmet (X) = 3 9" (924, (3) + o (9(Z))exp(2niug) K (17a)

et = 2 o mod 1, (17b)

m+1

The dynamics described by Eq.(17b) may be periodical (for frequencies w represented
by periodical binary fractions) and chaotical (for typical irrational w). Conse-
quently, the scaling properties of dynamical regimes on (A,b)-plane are also de-
termined by binary representation of w.

The first example of a picture of dynamical regimes on (A,b) -plane is shown in
Fig.9a. It corresponds to a case of rational w = 1/3 = 0.010101... and represents
a renomalization cycle of period 2. White regions denote periodical regimes while |
shaded ones are domains of chaos. A form of each second region repeats periodically
the previous form. Constants of scaling for A and b are correspondentiy 21.8 (the
Feigenbaum's constant & squared) and 58.96 which is found in /14/ by numerical sol-
ution of (17) as an eigenvalue of renormalization transformation (17b) through the
period of renormalization cycle for w = 1/3. For other rational w coded by period
periodical binary fractions the repeating of forms takes place through each p steps
where p is a period of binary fraction.

For typical irrational w the renormalization chaos is realized and there is no
exact repeating of forms (see Fig.9b taken from /16/). One can, however, under-
stand a special form of scaling in a statistical sense. It is determined by the

mean scaling index <]"i°m+1/°m|> » 1.83. The approximate repetition of forms must
be observed under condition
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Figure 9. The domains of different
dynamics in (A,b)-plane in the
logarithmical scale for period-
doubling system under external
periodical perturbation for:

a) w=1/3 and b) w = (51/2-1)/2,
The second one is taken from /16/.

b- (AA)Y*, x=1.83/1ns = 1.19, ‘ (18)

giving in the logarithmic scale a straight dotted line in Fig.9. One can see that
the border between quasiperiodical and chaotical regimes actually lies along this
line. Using Eq.(18) one can evaluate a number of "torus doubling bifurcations" /16,
17/ observed in a system when A is increasing with.constant b{n- - % 1ogéb).

3.2, Spectrum of the Feigenbaum System and Renommalization Chaos

It was noted by PIKOVSKY that a similar to (18) renormalization group equation may
may be used for the analysis of scaling laws in spectrum generated by a period
doubling system. For this aim the next system of two maps may be considered

x' = f{x), C' =C+ ¢(x)exp(2ninw) , (19)

where the initial function ¢(x) = 1. It is clear that for sufficiently large n the
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a)

b)

d

Figure 10. The renormalization cycle (a) and renormalization chaos (b} in spectral
ampiitudes of period-doubling system obtained for the sequences of binary shifts
of the frequencies w = 0.0101010 and w = 0.1010011, correspondingly.

value Cn will be proportional to the amplitude of the spectral component with
frequency w. Performing the Feigenbaumr's doubling procedure to Eqs.{19) many times,
we obtain the following recurrent renormalization group equations

bget (X) = 7 8 (x/2) + 4p(9(x/a))exp(2nin ) (20a)

w = 2w , mod 1. (20b)

me1
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Analyzing these equations allows us to make conclusions about ratios of ampli-
tudes of spectral components, These ratios are found to be determined by the
structure of w as a binary fraction. '

Let us take any binary fraction w = 0.abcd...e, and consider a sequence of w's
obtained by binary shifts: Wy = 0.bcd...e, Wy = 0.cd...e etc. Then we proclaim

.that the ratios of spectral amplitudes over frequencies of this sequence change
'periodica11y in a case of periodical structure of code abcd...e and chaotically
for random structure of it. Figure 10 illustrates both situations. For the re-

normalization cycle of period 2 (Fig.10a) the ampliitudes of spectral components
“decrease by 0.0638 times or -23.9 dB per period of the cycle. The same value was
obtained in /24/ by numerical solution of (Zd) for w = 1/3 as an eigenvalue of
renormalization transformation through the whole cycle. For random codes (as in

Fig.10b), one -can determine a mean scaling factor. According to calculations of
/14/ it is equal to

<20 1g|¢m+1/¢ml> + -13.94dB .

group. I1lustrations of chaotical renormalization dynamics in this paper are simpler
than those considered earlier in /6-7/ and so may be useful for a better under-

standing of this subject as well as of the approximate approach to the description
of renormalization dynamics developed in the present paper.

REFERENCES

1. R.Balescu. Equilibrium and Nonequilibrium Statistical Mechanics, Vol.i1. New
York, London, 1975.

2. M.Feigenbaum. J.Stat.Phys., 1979, 21, 6, 669.

3. M.Feigenbaum. Commun.Math.Phys., 1980, 77, 1, 65.

4. M.Feigenbaum, L.Kadanoff, S.Shenker. Physica, 1982, 5D, 2, 370.
5. S.0stlund et al. Physica, 1983, 8D, 3, 303.

6. B.V.Chirikov, D.L.Shepelyansky. Physica, 1984, 13D, 395,

7

. B.V.Chirikov, D.L.Shepelyansky. Proc.Conf. “Renormalization Group", Dubna, 1986.
World Sci., Singapure, 1988, 221.

8. E.B.Vul, Ya.B.Sinai, K.M.Khanin. Sov.Math.Usp., 1984, 39, 3, 3 {in Russian).
9. D.Bensimon, M.Jensen, L.Kadanoff. Phys.Rev., 1986, 33A, 5, 3622.

10. H.Hentchel, I.Procaccia.” Physica, 1983, 8D, 3, 435.

11. T.Halsey et al. Phys.Rev., 1986, 33A, 2, 1141,

12. B.G.Levi., Physics Today, 1986, April, 17.

13. S.P.Kuznetsov. Sov.Phys.-JETP Lett., 1984, 39, 3, 133.

14. S.P.Kuznetsov, A.S.Pikovsky. Preprint No.168, Inst.Appl.Phys., Gorky, USSR, 1987
(in Russian).

15, A.Arneodo. Phys.Rev.iLett., 1984, 63, 1240.
16. K.Kaneko. Progr.Theor.Phys., 1984, 72, 2, 202.

17. V.S.Anishchenko, T.E.Letchford, M.A.Safonova. Izvestiya VUZ'ov -"Radiofizika,
1985, 28, 9, 1112 (in Russian).

275



