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The behavior of two unidirectionally coupled systems is considered, which show 
period doubling near the threshold for hyperchaos. The renormaiization group 
equation is derived and solved. Universal functions have been found to describe 
the behavior near the critical point. The scale constants have the Feigenbaum 
values -2.5029 and 4.6692 in the first subsystem, while in the second they have 
the new universal values -1.50532 and 2.39274, which characterize the splittings 
in the cycle elements and the convergence rate for the doubling bifurcations. 

i. Concepts such as renormalization group, universality, and scaling have led to con- 
siderable progress in elucidating the transition tochaos in a nonlinear system via period- 
doubling bifurcations, switching, and quasiperiodic modes [i, 2]. One naturally examines 
whether a similar approach and analogous trends can apply in more complicated situations, 
namely at the hyperchaos threshold, which is a compound dynamic state characterized by two 
positive Lyapunov parameters [3]. Here I consider a simple example of hyperchaos in a sys- 
tem composed of two subsystems capable of showing Feigenbaum period doubling in the presence 
of a unidirectional link between them (the first subsystem affects the second but the second 
does not influence the first). There are various types of system in which the transition 
to chaos occurs by period doubling: a nonlinear dissipative oscillator with external input, 
certain hydrodynamic systems, electronic oscillators, etc. [4-6]. The unidirectional cou- 
pling can occur between any two systems of that type and has attracted attention in particular 
in connection with turbulence developing downstream [7, 8]. 

The model system is taken as the coupled mappings 

x . + ,  = g o ( x . ) ,  ~ .+ ,  = l o ( x . ,  u . )  , ( 1 )  

where 

go(x) = l--~.x", [o(x, y) -~ 1--Ag2--Bx='~ 

with x and y dynamic variables indicating the states of the first and second subsystems, 
while ~, A, and B are parameters. Figure 1 shows the dynamic states in the (~, A) plane 
derived numerically with B = 0.375. System (i) demonstrates a special kind of critical 
behavior: two-parameter scaling near the bicritical point having coordinates l~---~1,401155, 
Ac=i,124981 , and near that point, there is a complicated configuration that includes period- 
ic states (light regions), chaotic states each having one positive Lyapunov parameter (hori- 
zontal and vertical strokes), and hyperchaos (crosses). That type of critical behavior 
was first observed numerically [9] in a mapping system analogous to (i) and by experiment 
in a system of coupled nonlinear tuned circuits externally excited. To provide a theoretical 
basis and to evaluate their general significance, one needs a renormalization group analysis, 
which is considered here. 

2. To derive the renormalization group equations, We follow Feigenbaum's method [2] and 
transfer to mappings that describe the state change in two iterations and alter the scale 
of the variables x and y by certain factors a and b, so 

xn+2 = ago (go (x,,/a) ), Y,+2 = bfo (go (x./a),  fo (x./a, yn/b) ). (2) 
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Fig. 1 

The procedure is applied repeatedly to get the renormalization group equations 

g~+, (x) = ag~ (g~, (x/a)), ~+, (~ y) =~f,~ (g., (x/a), f., (x/a, y/b) ). 

The bicritical point should correspond to the fixed point in (3) in the (g, 
space: 

(x) = a g  (g (x/a)),  [(~ y) = b f  (g (x/a), [ (x/a, y/b))  , 

(3) 

f) function 

(4) 

which serves to define the scale constants a and b. With the normalization g(0)=l, /(0,0)=I , 

we have a=(g(1)) -i, b=(/(l,l))-'. 

3. The first equation in (4) is not dependent on the second. Feigenbaum solved it 
numerically to derive a=--2,502907 and obtained a representation of g(x) as a polynomial 
containing even powers of x, which enables one to compute it in the [0, I] interval to the 
tenth decimal place [2]. 

The task is thus to solve the second equation in (A). The method is especially con- 
sidered because there is a difference from other functional equations encountered in renormal- 
ization group analysis for nonlinear dynamics [i, 2] in that the unknown function f is depen- 
dent on two arguments, not one, which is a fundamental point and is associated with our 
considering a chaotic state having two positive Lyapunov parameters. 

Figure 2 ~ shows the method of representing f(x, y) in the region ~y~[0, l] It 
is specified as a table at (M + 1) 2 nodes on the square net in the (x, y) plane and a defined 
procedure for interpolation between those nodes. The region is split up into M2/8 triangular 
elements, in each of which one uses a distinct interpolating polynomial of fourth degree 
in x and y. Within each triangle and its boundaries, there are 15 nodes, which is the same 
number as that of the coefficients in the interpolating polynomial, i.e., the latter is 
defined uniquely. The polynomials corresponding to adjacent triangles are equal at the 
boundaries between them, since there they are converted to polynomials of fourth degree 
in one variable, which coincide at the five interpolation-nodes. 

As we have a table of values for fm, an interpolation procedure, and a known method for 
calculating g, one can derive numerically values for the expression on the right in the 
second equation in (4) at the nodes in this net and obtain a table for fm+z- Here b may 
be taken as (fr~(],l)) -i. Then fm+l is derived in the sense in which fm is defined. These 
functional iterations may be repeated as desired, but the resulting fm sequence diverges. To 
provide convergence to the fixed point in the renormalization group equation, the following 
iteration scheme was chosen empirically: 

*It can be shown that f(x, y) should be even on both its arguments. 
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f (x ,  y)  . -  0,93 Rf  + O,39R~f--O,32Rff , (5) 

in which R k denotes k-fold functional iteration. 

4. The calculations were performed for a 21 • 21 node net. The initial approximation 
was the function in (i) at the bicritical point. About 20 iterations on (5) gave f to the 
sixth figure after the decimal point that satisfied the second dquation in (4),together 
with b = -1.50532. Figure 3 shows the universal function f(x, y). 

The mapping 

x,,+, = g ( x , , ) ,  y . §  = f (x , , ,  y . ) ,  (6) 

describes the behavior at the bicritical point and has the fixed point x,----0,549305, y,~-0,528067. 
However, then (4) clearly implies a two-cycle, one of the elements being x,/a, y,/b. The 
existence of the 2-cycle implies a 4-cycle with element x,/aZ, y,/b z and so on to infinity. 
All these cycles have identical multipliers ~i = -1,601191 (for x perturbations according 
to [2]) and ~=-------i,i7886 (for perturbations in y obtained as the derivative O[(xy)/ay 
at x,,y,). 

5. We now examine the effects from perturbations in the initial mapping that cause 
the system to deviate from the bicritical point. We consider only perturbations that corre- 
spond to unidirectional coupling betwen the subsystems. Formally speaking, the treatment 
consists in examining the evolution of small perturbations in the fixed point (g, f) in 
the (3) functiona]mapping. We put gm(x)~-g(x)+hm(x) and [m(x)=[(x,y) +~m(~Y) , in which 

ha ~<<I , to get from (4) in the approximation linear in h and ~: 

= ~  ,,c § 
L \ ka l/ ~a I 

(7) 

Feigenbaum [2] solved the first equation in (7) and found the first eigenvalue 61 = 
4.669201 and the polynomial approximation for the corresponding eigenfunction h(z)(x). 

We solved the second equation in (7) by the use of f previously derived as a table. 
The derivative f~ was calculated by analytic differentiation of the interpolating polynomial. 
A table was found for ~(x, 9) as for f(x, y), together with interpolating polymonials 
of fourth degree in the triangular elements into which the region was split up (Fig. 2). 
Simple iteration for a sufficient number of steps with all the trial initial perturbations 
gave rise to the same eigenfunction ~2(x,y) with eigenvalue 6=-~-2,39274. Figure 4 shows 
this graph. No other significant eigenfunctions for the (7) linear'operator were observed 
(certain eigenfunctions correspond to perturbations that are eliminated by infinitesimal 
change in the variables, while the others had eigenvalues less in modulus than one and are 
damped for m ~ ~). 
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For large m, the (7) solution is a linear combination of two eigenvectors (ho},@r and 
(0,@~)), in which the coefficients are major parameters. The behavior near the bicritical 
point is described by 

x,,+, = g ( x . )  + A , & . ( x , O  , 

b',~+, ---- [ (x,,,. y,,) + A,q~,) (x . .  y,, ) +A2cp~z~ (x,,. g,O �9 

(8) 

With the (3) transformation corresponding to description over two steps in discrete time, 
the additional terms in the first and second equations are multiplied correspondingly by 
61 and 62, so in the plane of the parameters (At, A2) , there will be a universal scale- 
invariant pattern of regions that is converted into itself when one changes the scales for 
the coordinates A I and A 2 correspondingly by factors of ~l and 62 . This agrees with exist- 
ing numerical and experimental data [9]. 

6. As the solutions to (4) and (7) can be constructed without reference to the detailed 
forms of the seed functions go and f0, the functions f and ~(2) and the constants b, P2, 
and 62 are universal, as also are the Feibenbaum functions and constants g, h,, a, ~i, 61 �9 
Therefore, the dynamic behavior near the bicritical point in such a system showing period 
doubling is universal and is independent of the coupling strength and of whether one de- 
scribes the subsystem dynamics by means of mappings or differential equations. We thus 
have a renormalization group basis for the universality and scaling occurring in a new type 
[9] of critical behavior for coupled systems. This is a nontrivial example of scaling 
behavior in dynamic systems at the hyperchaos threshold. 
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