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CRITICAL PHENOMENA IN FEfGENBAUM SYSTEMS WITH 

ONE-WAY COUPLING 

A. P. Kuznetsov, S. P. Kuznetsov, 
and I. R. Samaev 
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Transition to chaos in two Feigenbaum systems with one-way coupling is investigated 
as a function of three parameters (the controlling parameters of the subsystems and 
the coupling constant). It is demonstrated that there exists a hierarchy of types 
of critical behavior with respect to the increasing codimension: There exist 
Feigenbaum critical surfaces, limited by tricritical lines and intersecting along 
the bicritical line. These lines in turn intersect at a multicritical point of a 
new type. The dynamical regimes near the indicated critical situations are dis- 
cussed. In particular, hyperchaos is realized near the bicritical line and multi- 
stability is realized near the tricritical line. A table of universal critical 
indices is given. 

In the context of problems in nonlinear dynamics critical behavior is understood to be 
a collection of phenomena arising at the transition of dynamical systems to chaos and char- 
acterized by some properties of scale invariance (scaling) in the space of controlling param- 
eters. The simplest and best-studied type of critical behavior is associated with transition 
to chaos, according to Feigenbaum's scenario, through a sequence of period-doubling bifurca- 
tions, and it is characterized by one-parameter scaling with a universal scaling constant 
6 = 4.66920 [i]. 

It turns out that the problem of the behavior of two Feigenbaum systems in the presence 
of one-way coupling between them (the first system acts on the second system but the second 
system does not affect the first system) is extremely interesting from the viewpoint of crit- 
ical phenomena [2]. In this paper we shall show that global analysis of the space of all 
significant parameters of the problem opens up an entire hierarchy of types of critical be- 
havior, which are characterizedby one-, two-, and three-parameter scaling. This analysis 
makes it possible to understand the characteristics of the coexistence and mutual arrange- 
ment of the critical points, lines, and surfaces of different type in the parameter space. 
In turns out that some of the types of critical behavior studied are associated with multi- 
stability, and this makes it possible to study and classify multistable states on the basis 
of the theory,of critical phenomena. 

From the viewpoint of physical applications, systems with one-way coupling are asso- 
ciated, in particular, with the problem of turbulence developing downstream [3]. They can 
also be built artificially, for example, in radioelectronics and optics, in order to create 
devices with new functional possibilities (noise generators, stable and multistable memory 
elements, etc.). 

i. Model Equations. Double Feigenbaum Point. As is usually done in the study of crit- 
ical phenomena, we shall consider a model system, which in our case consists of two logistic 
maps 
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Fig. 1 

where x and y are dynamical variables characterizing the states of the first and second sub- 
systems, X and A are the controlling parameters, and B is the coupling constant. 

If we set B = 0, then the system (i) separates into two uncoupling Feigenbaum systems, 
which demonstrate period doubling and transition to chaos as a function of the corresponding 
controlling parameters X and A. Let the values of these parameters be such that stable cycles 
of period 2 k are realized in both subsystems. Then the compound system has 2 k states, which 
differ by the shift of the oscillations in the subsystems relative to one another by an in- 
teger number of discrete-time units. These regimes are modified, but remain stable also when 
the coupling is switched on, if the magnitude of the coupling is sufficiently small. 

Thus the system (I) exhibits multistability (though the mechanism, under discusion, of 
its appearance is not unique; see below). The formation of multistable states can be traced 
geometrically by studying the transformation of the parameter plane (A, B) as % increases. 
When % passes through the bifurcation value E l = 0.75, the first subsystem undergoes the 
first period doubling. At this time there appears in the (A, B) plane an accumulation point 
(El, 0) into which two fold lines, which bound the region of coexistence of two different 
2-cycles of the compo6nd system, converge. The (A, B) plane can now be thought of as consist- 
ing of two partially overlapping sheets 1 and 2 (Fig. la), corresponding to the two cycles 
mentioned. A jump from the first sheet onto the second sheet occurs at the transition through 
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TABLE i. Accumulation Points Converging to a Tricritical Point T I with ~ = 0.85. 

N 
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8 

I 16 
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the left-hand fold line and the opposite jump occurs at the transition through the right-hand 
fold line. After the next doubling bifurcation in the first subsystem each of the two sheets 
in turn bifucates. On each of them there appears an accumulation point (k 2 , 0), in which 
the newly arising sheets are connected with one another and the fold lines which are their 
edges converge (Fig. ib). As the parameter k is further increased the process of formation 
of new accumulations and bifurcation of sheets continues and at X c = 1.401155 the number of 
sheets and accumulation points is infinite. In the limit the accumulation points condense 
on the point (k c, lc, 0) in the parameter space (l, A, B). We shall call this point the 
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double Feigenbaum point and designate it by DF. The above-described process of multiplica- 
tion of multistable states is associated with a double Feigenbaum point in the same sense 
as the period doublings are associated with the critical point of an individual mapping. 

Diverse regimes and bifurcations can be observed by moving along any of the sheets. In 
what follows we shall focus on studying one particular sheet, which forms the front side of 
the surfaces shown in Fig. 1 and which we shall call the in-phase sheet. The terminology 
is explained by the fact that as the parameters are varied in the direction of the point of 
zero coupling the regimes corresponding to this sheet transform into in-phase oscillations 
of the uncoupled subsystems. 

The scaling properties of a neighborhood of a double Feigenbaum point on the in-phase 
sheet follow from the renormalization-group analysis performed in [3, 4]. The structure of 
the space of three parameters is invariant relative to changes of scales along the charac- 
teristic directions A I = %, A 2 = A + B, Aa = B, respectively, by factors of 6 1 = 62 = 
4.66920 and 63 = 2. 

2. Tricritical Behavior. The above discussion and Fig. 1 give only a preliminary idea 
of the structure of the parameter space- We shall now undertake a more detailed analysis 
and we shall begin, once again, with the situation when a 2-cycle is realized in the first 
subsystem. 

Figure 2a shows a map of the dynamic regimes in the (A, B) plane with ~ = 0.85 (in-phase 
sheet). The figure contains lines of period-doubling bifurcations, which condense on the 
Feigenbaum critical lines F -- boundaries of appearance of chaos. The region of existence 
of 4-cycles contains a new accumulation point A2. Fold lines -- the edges of the new sheets, 
on which the in-phase sheet bifurcated -- converge at this point. In the region between the 
fold lines the system has two different stable regimes, while on the lines themselves a hard 
transition between these regimes occurs. The map fragment shown in Fig. 2b and portraying 
in an enlarged form a neighborhood of the point A2, demonstrates a set of accumulations and 
folds on the basis of cycles of period 8, 16, 32 .... The lines of period doubling of dif- 
ferent order bend around different accumulation points and for this reason no longer converge 
to the Feigenbaum line, which, therefore, terminates at some point. This point is the limit 
of a definite sequence of accumulation points (Table i) and is called a tricritical point. 
The tricritical points were introduced in [5] in an analysis of a one-dimensional two-param- 
eter mapping of degree four. Our problem can be transformed into this form when the period 
of the oscillations in the first subsystem is equal to two. 

Using twicethe second equation (i), we find a map describing the change in the state 
of the second subsystem with two iterations: 

= - - + - - 

Y~.2 

Here x0,1 = [1/2 • (% -- 3/4)I/2]/% are the elements of the 2-cycle of the first subsystem, 
After making the substitution of variables we have 
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TABLE Z. Convergence of the Sequence of Tricritical Points 
to the Multicritical Point BT 

1,25 
1,368099 
'1,394046 
1,399631 
1,400829 

A 
N 

B 
N 

A -A 
m N 

A - A 
w 2H 

1,279894 
1,173074 
1,108720 
1,080086 
1,071161 

0,690210 
0,721136 
0,784254 
0,817598 
0,828522 

1,998 

2,506 
3,034 
2,729 

1,401155 1,066 0,83505 2,654 

where 

Y -~ y[l -Bx2-A(I - Bx:) 2] 
I 

Yn.2 = I + Cly~ + by' n. (2) 

b = - - - A ( 1  - Bx .)5 ] (3) ] .  u 

Recomputing using the formula (3), we find that the tricritical points, which have in the 
(a, b) plane the coordinates (--2.81403, 1.40701) and (0, --1.59490) [5], fall in the (A, 
B) plane with i = 0.85 at the points (1.29834, 0.70351) and (1.23075, 1.08446). In Fig. 2 
they are designated as T1 and T2. 

In accordance with the renormalization-group analysis developed in [5~, near each tri- 
critical point there exists two-parameter scaling with the scaling constants 61 = 7.28469 
and 62 = 2.85713. The corresponding characteristic directions in the (A, B) plane are in- 
dicated by the arrows. The first one proceeds along the line on which the dynamics of the 
second subsystem for some choice of the variable is described by the map (2) with a = 0 while 
the second one proceeds along the Feigenbaum critical line. On the other side of the tri- 
critical point, the sequence of accumulations (Table i) converges along the same direction 
toward it by a geometric progression with the exponent 62; this can be used as a basis for 
an algorithm for searching for tricritical points. 

We note that the term tricritical point is introduced by analogy to the theory of phase 
transitions: A tricritical point is a point in whose neighborhood first- and second-order 
phase transitions are realized. The first-order transitions are associated with hard bifurca- 
tions on the fold lines and the second-order transitions are associated with the soft path 
to chaos through period doubling. 

Now let the value of the parameter of the first subsystem be such that it exhibits a 
cycle of period 4. Then the configuration of the regions in the (A, B) plane become more com- 
plicated, but no new types of critical behavior are observed. This is also true of situa- 
tions when the cycle in the first system has period 8, 16, etc. 

3. Bicritical Behavior and the Multicritical Point BT. Now let the controlling param- 
eter i of the first subsystem be equal to the critical value X c = 1.401155. Then as the con- 
trolling parameter A of the second subsystem is increased another type of critical behavior, 
termed in [2] bicritical, is observed on the boundary of chaos. The bicritical line in the 
(A, B) plane can be found by following the evolution of the Feigenbaum line in the second 
subsystem as i + ic" Figure 3a shows the arrangement of this line in the (A, B) plane for 
values of I corresponding to the threshold of instability of 2-, 4-, 8-, and 16-cycles of the 
first subsystem. One can see from the figure that as the parameter I approaches the crftical 
value the Yeigenbaum lines in the (A, B) plane accumulate on the bicritical line B while the 
tricritical points accumulate on some point BT. 
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TABLE 3. 
directionally Coupled Feigenbaum Systems 

Numerical Characteristics of the Hierarchy of Critical Dynamics of Uni- 

Type of critical 
point ~n m 

I I 

2 I 

2 2 

3 2 

3 2 

4,66920 --2,50291 --1,6012 

7,28469 -1,69030 -2,0509 
2,85712 :. 

4,66920]-2,50291!-1,6012 
2,392721-1,50532 -1,1789 

4,66920 -2,50291 -1,6012 
2,65465 -1,24166 -1,3980 
1,54172 

4,66920 -2,50291 -1,6012 
4,66920 -2,50291 -1,6012 
2,00000 

FeiEenbaum F 

Tricritical 
T 

Bicritical B 

Multicritical 
BT 

Double Feigenbaum 
DF 

13,35 O, 6g 0,4498 

10,40'0,40 0,3491 
0,6603 

,35 0,69 0,4498 
,,98 0,92 0,7945 

,35 0,69 
0,82 

13 
7 

13 
6,85 

13'35 / 
13,35 

0,69 
0,69 

0,4498 
0,7100 
1,6012 

0,4498 
0 , 4 4 9 8  

Nomenclature: n is the number of significant parameters (codimension), m is the 
number of significant dynamical variables, 6 is the scaling factor in the param- 
eter space, ~ is the scaling factor in the phase space, u is the multiplicator of 
2 n cycles at the critical point, ~ and K are constants which characterize the spec- 
trum of oscillations at the critical point (difference between the subharmonics of 
different level and the nonuniformity of the amplitudes within a given level), and 
• is the critical index for the Lyapunov exponent. 

Near the bicritical line in the space (l, A, B) there exists two-parameter scaling with 
the constants 61 = 4.66920 and 62 = 2.392724. The first characteristic direction is the 
axis; Feigenbaum critical lines of the second subsystem approach along the second direction 
the bicritical line in the sections (~, A). 

The point BT is a multicritical point of a new type? whose neighborhood is character- 
ized by three-parameter scaling with the Scale constants 61 = 4.66920, 62 = 2.654654, 63 = 
1.541720. The characteristic direction associated with the constant 61 is the ~ axis, for 
62 the characteristicdirection is the linealong which the tricritical points converge to 
BT, and the characteristic direction for 63 is the direction along the bicritical line (Table 
2). 

4. General Discussion of Critical Dynamics. We shall now sum up and give a general idea 
of the geometry of the parameter space of unidirectionally coupled Feigenbaum systems from 
the viewpoint of the types of critical behavior realized in them. The space (~, A, B) con- 
tains two Feigenbaum tricritical surfaces FI and Y2 (Fig. 3b). The first one is the plane 

= if401155 and the second one is a complicated surface which is the boundary of chaos in 
the Second system.* These surfaces intersect along the bicritical lineB. The surface F2 
has a boundary -- the line of tricritical points T. The tricritical and bicritical lines 
converge and terminate at the multicritical point BT. The other end of the bicritical line 
is a double Feigenbaum point DF. We note that any neighborhood of the tricri,tical line and 
the points BTand DF contain regions of multistability and hard bifurcations. 

To each of the types of critical behavior enumerated above there corresponds a definite 
set of quantitative characteristics (number of significant parameters and dynamical variables, 
scaling constants in the parameter space and in the phasespace, critical multiplicator of 
2 k cycles, etc.); they are summarized in Table 3. 

The spectrum of oscillations of the second subsystem in different critical situations -- 
Feigenbaum, tricritical/bicritical, and at thepoint BT -- have a clearly pronounced hierarch- 
ical organization with respect to the levels of the amplitudes of the subharmonics and can 
be approximately described by the recurrence relati0n 

*The surface F2 in reality consists of a set of pieces. For simplicity Fig. 3b only shows 
one piece, which, in Fig. 2, corresponds to the section of the tricritical line from B = 0 
up to the first tricritical point. 
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2 ~2 IS(u /2). + sign 
+ • 2~ cos(~, /2} ---~ 

40~2~ z IS(l- • /2), -- sign (4) 

This is a generalization of the well-known result obtained by the same method in [6, 7] for 
a Feigenbaum spectrum. In the formula (4) = is a scale factor for the dynamical variable 
y in the corresponding critical situation (see Table 3), 8 = ~2 is the scale factor for the 
Feigenbaum and bicritical points, and ~ = ~4 for the tricritical point and the point BT. 

As one can see from Eq. (4), the quantity y = (I/4~ ~ + 1/482 ) characterizes the average 
difference between the neighboring levels of the subharmonics while the coefficient K = 
12=B/(m 2 + 82)I characterizes the degree of nonuniformity of the distribution of the ampli- 
tudes of the subharmonics at a given level of the hierarchy. The numerical values of 7 and 

are also presented in Table 3. 

The Lyapunov exponents L near the critical points satisfy scaling relations of the form 

L --+ L/2, A -~ Al~, (5) 

where A is a parameter measured along some characteristic direction and 6 is a scale factor 
corresponding to this direction. Hence there follows a relation for the envelope of the 
Lyapunov exponent 

L ~ A x,  (6)  

where the critical index X is defined as • = in 2/in 6. The quantities X are presented in 
Table 3. We note that when in the parameter space the bicritical point is crossed two Lyapu- 
nov exponents become positive at the same time, i.e., bicritical behavior corresponds to the 
threshold of appearance of hyperchaos. 

5. Conclusions. It is well known that one of the key ideas in the theory of bifurca- 
tions, theory of catastrophes, and in part the theory of phase transitions is the idea of 
"motion along codimension." In accordance with this idea, situations which are typical at 
first in one-parameter families and then in families with two, three, etc. parameters, are 
successively introduced and analyzed. The results of this work show clearly that an analogous 
approach is also frutiful in the theory of critical phenomena at the threshold of chaos. From 
this standpoint, the basic problems of the theory consist of searching for and classifying 
typical variants of the critical dynamics as a function of the number of significant parameters, 
determining the universality and scaling properties inherent to them, and finding canonical 
models describing each critical situation. It is also necessary to analyze the laws of co- 
existence of types of critical behavior in the parameter space of dynamical systems and meth- 
ods for finding and identifying them experimentally. 

At the present time a large number of systems exhibiting Feigenbaum paths to chaos are 
now known. The prevalence of this path is a result of the fact that the Feigenbaum critical 
point is typically encountered in systems with one controlling parameter (n = i, Table 3). 
What can be said about the possibility of realization of other types of critical dynamics 
discussed here? 

As regards tricritical behavior, such behavior becomes typical when two controlling pa- 
rameters are present and, evidently, it can be observed in many real systems. The situation, 
studied here, of unidirectionally coupled systems is in this sense only one possible example. 
It can be realized in practice, in particular, on the basis of two nonlinear oscillatory 
circuits, excited by an external period signal [2]. As far as we know, the question of the 
experimental observation of tricritical behavior, which has been discussed thus far only in 
a formal mathematical model [5], has still not been posed. 

Bicritical behavior and the multicritical point BT are apparently characteristic only 
for flow systems, since the introduction of the back effect of the second subsystem on the 
first subsystem destroys these types of critical dynamics. The experimental observation of 
bicritical behavior is described in [2]. It should be noted that critical phenomena of this 
type can also be observed in chains consisting of three, four, and more elements with on~-way 
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coupling, if the parameters of the subsystems can be controlled independently. In order to 
realize a bicritical situation two parameters must be selected while for the BT point three 
parameters must be selected. 
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