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INFLUENCE OF A FRACTAL SIGNAL ON A FEIGENBAUM SYSTEM
AND BIFURCATION IN RENORMALIZATION GROUP EQUATIONS

A. P. Kuznetsov, S. P. Kuznetsov, - UDC 517.9
and I. R. Sataev

A fractal signal model, having a phase portrait in the form of a two-scale Cantor
set, is introduced todescribe realisticsignals generated by dynamic systems at the
onset of chaos. It is shown that the effect of such a signal on a Feigenbaum sys-
tem can lead to bifurcation of the renormalization group equation, consisting of
coincidence and exchange of the nature and stability of its fixed points. From the
point of view of real dynamics, this bifurcation corresponds to changing the type of
critical behavior at the onset of chaos.

Substantial progress in nonlinear dynamics has been achieved recently in studying scen-
arios of transition to chaos [1]. Interesting examples of fractal attractive sets, generated
in phase space of dynamic systems exactly at the onset of chaos, have been introduced. ¥Frac-
tals have a hierarchical organization, repeating in infinitely decreasing scales, and charac-
terized by a fractional value of Hausdorff dimensionality [2, 3]. One of the simplest examples
is the Feigenbaum attractor, realized at the critical point of transition to chaos in dynamic
systems, demonstrating bifurcation cascades of period doubling. This attractor has the struc-
ture of a Cantor set with Hausdorff dimensionality Dy = 0.538045.

A powerful tool of theoretical investigation of similar situations is the renormalization
group method, first developed in nonlinear dynamics by Feigenbaum [4], and further developed
by many other investigators. This approach consists of constructing a special renormalization
procedure, making it possible to determine, from some known evolution operator of a dynmamic
system at some time interval, the evolution operator in a time segment several times larger.
By multiple application of this procedure one obtains a sequence of operators, describing the
behavior of the system at longer and longer times. In phase space this corresponds to transi-
tion to treating the dynamics at smaller and smaller scales. In a critical situation the se-
quence of these operators has the limit of a universal operator, which also determines the
structure of the fractal attractive set in phase space.

In view of the current achievements in understanding the behavior of critical dynamics
of nonlinear systems, problems naturally arise concerning the mutual influence of motions of
this kind. 1In this case both the dynamics of an acting system, and the dynamics of a system
subject to action, are characterized by a hierarchical organization, covering a wide range
of scales in phase space, no matter how small. Concurrent motions with different scale proper-
ties may or may not lead to new critical patterns in the dynamics of the second system. As
we will show, a transition from one situation to another is possible in varying the parameters
of an active signal, characterizing its scale properties,

Within the renormalization group method, this phenomenon is addressed as bifurcation
of renormalized dynamics. Indeed, it can be assumed that the renormalized transformation prov-
ides some dynamics in operator space ('renormalized dynamics"), while for time ("renormaligzed
time") there occurs a number of steps of renormalized transformations. A universal limiting
operator is then associated with a fixed point of renormalized transformation, which, general-
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ly speaking, can bifurcate in varying the problem parameters. Such a bifurcation must also
occur in conventional dynamics, leading to a change in type of critical behavior, including
rearrangement of structure of. the fractal attractive set and changes in scaling constants.

l. Fractal Signal. A signal we would like to design so as to study, in what follows,
its action on a nonlinear system must satisfy the following conditions. Firstly, it has a
phase portrait in the form of a fractal structure and a hierarchy of scales, and, secondly,
it contains parameters making it possible to control its scaling properties, and whose varia-
tion could generate bifurcation of renormalized dynamics.

We define a fractal signal as a sequence y,, given in discrete time and constructed
by means of the recursion relations

¥, = b +¥), = -a@ +y), (1)

2n Y 2n+1

where a < 1 and b < 1 are positive constants. The initial element is y, = b/(1 — b).

It can be shown that such a signal can be produced by assigning an appropriate rule of
time dependence of elements of a two-scale Cantor set [2]. This set is obtained from the ini-
tial segment {-a/(1 — b), b/(1 — b)] by means of the following recursion scheme. During the
first step of the construction the segment is divided into three parts of ratio a, l-a-b, b,
and the mid interval is excluded. The same procedure is applied to each of the remaining seg-
ments, etc. The fractional dimensionality of the limiting set D is determined by the equation

[2]:
a +b =1, (2)

We note that the given geometric treatment and Eq. (2) is valid if a + b < 1, since oth-
erwise the intervals, of which the set is constructed, overlap. The original definition (»
remains sensible even when this condition is violated, but in that case the dimension is us-
ually defined to be equal to unity.

For a = 1/2.5029 and b = a? the set constructed approximates the Feigenbaum attractor
at the onset of chaos generation through period doubling, while the signal elements are num-
bered in the correct order of time sequencing during their construction by means of Egs. (1).
The Hausdorff dimensionality, calculated by Eq. (2), is in this case 0.5245, quite close to
the exact Dy value.

The model (1) can be used similarly to describe signals, generated by mappings of more
general form yp4; = 1 — A|yp|? with arbitrary powers z for critical values of the parameter

A. For this one must put a = 1/b, b = 1/¢?, where o is a scaling factor for given z [5]. For
a=b = 1/3 the elements y, span the points of the classical Cantor set, located in the seg-
ment [—3,3]. Such a signal is naturally called a Cantor signal. For a =1, b = 0 the elem-
ents y, acquire only the values of 0 and -1, while their time-sequenced order corresponds to
the sequence R and L in the symbolic trajectory description at the onset of chaos generation
through period doubling [6].

Thus, many interesting fractal signals, generated naturally in dynamics of nonlinear
systems or constructed artificially, are combined in one wide class, since they are obtained
at least approximately by means of the common sceme (1) for different values of the parameters
a and b. Though the suggested construction may be somewhat artificial, it is a useful tool
for deeper understanding of the nature of critical effects in dynamic systems, and, in particu-
lar, it creates a basis for treating bifurcation of renormalized dynamics.

2. Dynamics of a Feigenbaum System under the Action of a Fractal Signal. Approximate
Renormalization Group Analysis. Let the fractal signal (1) act now on a system demonstrating

transition to chaos through period doubling. The situation is described by the model equa-
tion

2
X, =1=-2x +cy, (3)
where x is a dynamic variable, X is a control parameter of bifurcations of the original sys-
tem, and ¢ is a parameter of external action intensity. We note that multiple stability is,
obviously, possible in system (3): for sufficiently small c values the system is capable of
performing motion with different phase shift with respect to the fractal signal. We further

restrict the discussion to situations for which at the moment of time n = 0 (see definition
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(1)) the system is triggered from the vicinity of the érigin of coordinates. Numerical calcula-
tions show that this attractor possesses the widest attractive basin.

We start with approximate renormalization group analysis in the style of [8], making
it possible to obtain an explicit procedure of renormalized transformations and analyze the
qualitative features of renormalized dynamics.

We construct the system evolution operator in two steps of discrete time. Considering
only small values of the dynamic variable and of the external action intensity, we neglect
terms containing x* and c¢?:

- 2 2 " 2 2 -
X.,=1-a(l-ax_+cy)” +cy  ~1-2a+22% + (v, - 2ay)c. (4)
We now use the definition of the fractal signal (1) and express ¥n and yp4; in terms of Yn/2»
and also replace variables

x =[1 - A =(a + 2ab)CIX_, (5)

and parameters

(6)

A, = 22°[2 - 1 + (a + 2aD)cl,

€, =c(a+ 2ab)/{a - 1 + (a + 2Ab)cl.

As a result we obtain the mapping

2
X, =1-ax + €.y, (7)

Thus, the evolution operator has been reduced following period doubling to the original
form (3) with an accuracy up to variable replacement. This implies that the dynamics of two
samples of the system, whose parameters are related by (6), are similar, differing in the time
scale by a factor of two. The procedure discussed can now be applied to relationship (7), and
the evolution operator can be obtained following four time steps, and so on. As a result of
m-fold renormalization we reach a mapping of shape (3) with parameters Ay, and cp, obtained
recursively from the relations

= 2 - '
A = 2AA -1+ (a+ 2rb)c],

(8)
Chpp = C @+ 24b){x -1+ (a+2xb)c ] .
The pair of quantities (A, cp) can be considered as a representation of the evolution
operator, since it is fully determined within the given approximation. Equation (8) is, there-
fore, also the renormalized dynamics equation.

Putting c = 0, one can find the fixed point of Eq. (8), corresponding to Ay = (V3 + 1)/2.
This point is naturally called a Feigenbaum point, since it precisely determines the critical
behavior of the system with inclusion of external action. There also exists a non-Feigenbaum
point:

A, =1 /(/ d® +ab + a), Cp = 1+ 22, - 222, (9)
Linearizing the mapping (8) near fixed points, one can analyze the nature of their stab-
ility and determine the corresponding eigenvalues. For a Feigenbaum fixed point we obtain
8V =4 +v3 2573 8% = 2r_(a + 2ab), (10)
and for a non-Feigenbaum point

=1-2A_ + zAiF(l +be.) £V (122 + 2A§F(1 + bcm_)]z - 22, (3, - 2) . (11)

For a + 2Apb< 1/2) the first point is a saddle point, and the second — an unstable nodal point.
At the moment a + 2Apb = 1/2Af both points coalesce. For a + 2Agb > 1/2Ap the Feigenbaum
point becomes an unstable nodal point, and the non-Feigenbaum point — a saddle point. Thus,
for o + 2Agb = 1/2Af there is bifurcation of coincidence and exchange of stability of fixed
points, as well known in bifurcation theory {9]. The line combining both fixed points is a
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stable saddle manifold. The parameter values of the original mapping and of ¢, belonging tc
this line, correspond (within the approximation considered) to the critical situation of trans-
ition to chaos. Indeed, for given initial A and c, multiple application of the renormalized
transformation (8) at that line leads to displacement along it toward one of the fixed points.
Till bifurcation this is a Feigenbaum fixed point, and following bifurcation — a non-Feigen-
gaum point. The bifurcation line found within the approximation considered on the parameter
plane of the fractal signal (a, b) is shown by dots in Fig. 1. The regions of Feigenbaum and non-
Feigenbaum critical behavior are denoted by F and NF, respectively.

The analysis performed also makes itpossible to obtain approximate values of the criti-
cal indices. The constant corresponding to scaling by the control parameter is determined
by the largest eigenvalue of the fixed saddle point:

(1)
= + 22
5 - { s, 5, 73, a+ 2ab < 1/2a (12)

(a, b), a + Zhrb >1/2AF

The scale factor o is found by relation (5): @ = A — 1 + (a + 2Ab)c. Substituting hence the
A and ¢ values for saddle points of given a and b, we have

(13)

{ @ =1/2A_ = 2,73, a+ 2xb </2a_
a =

> » .
Oy =2/(a + va* +4b ) a +2a b > 1/2a,

The dependence of the scaling constants § and « on the fractal signal parameter have
a characteristic nodal point at the bifurcation point, related to changing the type of crit-
ical dynamics. Prior to bifurcation (shown below on the boundary of Fig. 1) it displavs Feig-
enbaum behavior with fixed scale constants, and following it — non-Feigenbaum behavior with
scale constants depending on the parameters a and b.

3. Exact Renormalization Group Analysis. We turn now to rigorous renormalization group
analysis of the problem, which verifies the qualitative conclusions of the approximate theory
and makes it possible to refine the values of critical indices and the bifurcation cenditions
in the plane of fractal signal parameters (a, b).

We initially obtain the exact renormalization group equations. We denote the first of
(3) by £f,(x, y), and turn to the mapping describing the change in state following two time
steps:

X, = F(f (X, 7). Y,,)

Changing the scale of the dynamic variable x by a number times (—a), and expressing yn and yp4:
in terms of y,/, according to (1), we obtain a new mapping f,(x, y). Repeating the procedure
multiple times, we reach the renormalization group equation

£,.(x,y) =~ af (£ (- x/a, b(1+y)), - a(l +y)). (14)

The fixed points of this equation are of further value. Obtaining these solutions implies find-
ing the scale constant o and functions f(x, y), satisfying the equation

f(x,y) = - af(£(- x/a, b(1 +y)), - a(l +y)). (i5)
Seeking a solution of (14) in the form fi(x, y) = f(x, y) + 6®h(x, y), where h is a
small correction, within the linear approximation we obtain

Sh(x,y) = - a[f'(f(-x/a, b(1 + y)), =a(l + y))h(-x/a, b(1 + ¥)) + (16)

+ h(f(-x/a, b(1+¥)), -a(l +1)].
Hence can be found the eigenfunctions hg(x, y) and eigvenvalues &g, characterizing the dynsm-
ics near the fixed point.

In our calculations the function f(x, y) was represented in the form of expansion in
Chebyshev polynomials:



] '
£y =3 u T (T (7). (17)

», n=0

(Since the function must be even in the first argument, polynomials in x with even subscripts
only appear in the expansion.) To find the fixed points of Eq. (14) we used the Newton meth-
od, according to which the new approximation for the function f(x, y),

f (% Y) = £(xy) + hix,y),
is obtained by solving the equation
£(x,y) + h(x,y) = - af(f(-x/o, b(1 +y)), -a(l + y)) + Lh(x, ), (18)

where L is the linear operator appearing in (16). In using expansion {17) Eq. (18) is convert-
ed to a system of M x N linear algebraic equations, while the matrix elements of the operator
L in the corresponding basis were calculated by using the orthogonality of Chebyshev polyno-
mials on a grid formed in the (x, y) plane by zeros of the product T,p4;(X)Tn4,(y). The 2M
and N values in the calculations performed reached 10. The calculation results for several
specific a and b values are given in Table 1.

To find the bifurcation coincidence of fixed points we substitute in (15) f(x, y) =
g(x) + yh(x), where g(x) is the Feigenbaum function [4], and yh(x) is a small correction. Equat-
ing first order terms, we obtain the following existence condition of a.doubly degenerate fixed
point:

h{x) = - aa[(b/a)g’ (g(- x/a)}h(- x/a) - h(g(- x/a))]. (19)

This problem is solved numerically as follows: the ratio £ = b/a is fixed, and by an
iterative method one finds the largest eigenvalue in absolute value Yy of the linear operator
in the square brackets on the right hand side of (19). We further put a = ~1/av, b = —£/av.
The bifurcation points in the parameter plane a, b are located on the solid line of Fig. 1.

4. How is Bifurcation of the Solution of Renormalization Group Equations Manifested
in the Observed Behavior of the System? We now discuss the rearranged critical dynamics of
the original system (3), accompanying the bifurcation found of the renormalization group equa-

tions, and expressed in the modification of scaling properties of the system at the onset of
chaos.

With this purpose we have first investigated *he dependence of the Lyapunov characteris-
tic power on the parameter A for system (3), referring to prebifur-ation, the "Feigenbaum"
situation. The critical transition point to chaos is fixed by transition of the Lyapunov
power through zero. Unlike the traditional patterns, illustrating scenarios of period doubl-
ing, 'in the subcritical region there are no sharply expressed bifurcations: they are washed
out by the effect of the external signal, containing components with all possible, 2D-fold
frequencies. However, with contraction of the neighborood of the critical point considered,
the plot shapes approach the traditional ones, characteristic of the unperturbed logistic map-
ping [1]. According to the expected Feigenbaum scaling, the patterns obtained at high resolu-
tion possess scale invariance with respect to scale variation for 8 = 4.669 in the control
parameter and twice in the Lyapunov power. The presence of the external signal is important
only in the sense that critical parameter value depends on the action intensity c. The attrac-
tor at the critical point is a classical Feigenbaum attractor with dimensionality Df.

The second, "non-Feigenbaum' situation is illustrated in Fig. 2. A sequence of plots
is shown, demonstrating with increasing resolution the dependence of the Lyapunov power on
the parameter A near the critical point for the case a = 0.2, b = 0.2, ¢ = 0.5. From plot
to plot the vertical axis scale is recalculated twice, and along the horizontal axis it is
converted by a factor 2.93239, corresponding to the older eigenvalue of the linearized renorm-
alization group transformation at the non-Feigenbaum fixed point for given a and b. At the
second step already the pattern practically stops changing. This verifies the presence of
the expected scaling, and implies that the system dynamics .at . the onset to chaos is related
to the non-Feigenbaum fixed point. A new fractal structure is formed at the critical point
of transition to chaos: the total action of the external signal at all hierarchy levels leads
to transformation of the Feigenbaum attractor into a new attractive set with different scal-

ing properties. The Hausdorff dimensionality of this attractor depends now on the external
signal parameters a and b.
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TABLE 1. Scale Constants and Eigenvalues for Non-Feigenbaum
Fixed Points of Eq. (14)

(1) (2)
b a aNF SNF 6NF
0, 28571 3, 50000 g, 451 1,232
0 0, 38462 2, 60000 5, 03506 1, 03642
0, 43416 2, 30329 3, 99075 1
0,5 2, 00000 3,15823 <
0,1 3,62884 10, 08665 1, 41811
0, 05 0,15 3,27345 8, 0B4B3 1, 30943
0,2 2, 95726 B, 52502 1, 19965
0,1 0 3,16228 7, 42181 1, 36605
0,1 2, 74442 5, 57055 1, 14818
0,3 2, 04806 3, 33476
0.4 1,17701 2, 75770 <1
0,5 1, 53259 2, 39421
0, 15963 0, 39954 1, 54945 2, 44700 <1
0,1 2,03762 3, 36808
0,2 0,2 1, 83305 2, 493239 <1
0,3 1, 62654 2, 57723
0,3 0,1 1,68773 2, 71621 <1

5. Critical Dynamics near Bifurcation Points of the Renormalization Group Equation.
Quasiscaling. As is well known, in traditional dynamics the time evolution of processes is slowed
down upon approaching a bifurcation point. The same occurs for renormalization if the control
parameters aand b are selected near the bifurcation curve of Fig. 1. The closer we are to
a bifurcation point, the slower the renormalization at the stable manifold of fixed points.
Within the approximate renormalization group analysis the equation of slow motion can be found
by putting in the first of Eqs. (8) Ap4; = Ay ® Ap. We then obtain from it
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a +2Arb
R R v/ wi
and following substitution into the second of Egqs. (8) we have

a + 4lrb 2
[ = ZAF(Q + er.b)c- - —'ﬁ-r——_T C.‘ (20)

mel

One can now transform from the discrete renormalized time to the continuous

a+ 4a b
de  _ _ F 2
G5 = &€ —Ex:—:—f— c’, (21)

where € = 2Ap(a + 2Agb) — 1 is a supercritical quantity.

In a real dynamic system (3) the approach to a bifurcation point of the renormalization
group equation is expressed in such a manner, that to observe scaling related to one fixed
point or another of the renormalization group equation it is necessary to descend to deeper
levels of resolving the fractal structure. The required depth of this level can be estimated
from the equation following from (21):

m ~ const/e. (22)

The situation generated in the immediate vicinity to a bifurcation point of the renorm-
alization group equation can be characterized by the term quasiscaling: numerical calculaticns
show that in transition from one level of resclution to another the plot of the Lyapunov power
hardly changes, though a very slow evolution of these patterns does take place.

6. Explanation of Critical Behavior of Two Feigenbaum Systems with Unidirectional Coupl-
ing. A new type of critical behavior, called bicritical, was detected in [10] both numerically
for a model system with two logistic mappings with unidirectional coupling, and experimentally
for a system of unidirectionallly coupled nonlinear vibrational contours, excited by periodic
external action. It is realized at a certain point in the plane of control parameters of the
subsystems, and characterized by the fact that for arbitrarily small increase of parameters
of the first or second subsystem chaos is, respectively, generated in the first or second
subsystem. In the vicinity of this point there occurs a universal configuration of the regions
in the parameter plane, characterized by two-parametric scalin%;)it transforms to itself upon

scale changes along the coordinate axes by §(1) = 4.6692 and § = 2.39 times. This corre-~
s€onds to recalculating the scale of dynamic variables of the subsystems a(1) = 2.5029 and
a{2) = 1,51 times. :

These results can be explained within the larger context constructed in the present
study. If the first system is located exactly at the onset of generation of chaos, it gener-
ates a fractal signal approximately described by model (1), to which corresponds some point
in the (a, b) plane (Fig. 1). This point is located above the bifurcation curve, therefore
the behavior of the second system upon transition to chaos is determined by the non-Feigenbaum
fixed ‘point with scaling constants equal, according to Table 1, to 1.549 and 2.447. It is
seen that they are in good agreement with the constants a‘'?’ and 82/ found in [10].

7. Concluding Comments. We have, thus, shown that the following happens as a function
of the parameters a and b, providing the scale properties of the external signal. For small
a and b the transition to chaos in the system considered obeys Feigenbaum scaling with the
classical values of scale constants § = 4.6692 and o = 2.5029, independently of a and b. Fol-
lowing transition through some critical line in the a, b plane, the scaling properties of the
dynamics at the onset to chaos start depending on a and b. This recalls the situation occur-
ring in the theory of phase transitions, when the space dimensionality, considered as a con-
tinuous parameter, passes through the critical value d = 4. In this case Eq. (21) for slow
renormalized dynamics in the vicinity of bifurcation peints coincides, accurately within some
coefficients, with the classsical Wilson-Fisher equation [7].
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Having completed this analogy, one might think that the fractal dimensionality of the
signal operating on the system must be the appropriate control parameter in our problem. This
is, however, not the case: the bifurcation curve in the (a, b) plane does not coincide with
lines of equal fractal dimensionality. This analogy has further methodological value. In-
deed, it is known that including problems of the theory of phase transitions in a wider class,
containing nonphysical situations, has proved useful for their understanding and approximate
description. Exactly the same analysis of the effect of an artificially constructed signal
(1) on the dynamics of a Feigenbaum system sheds light on the behavior of such systems under
the action of realistic fractal signals.
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EFFECT OF RANDOM ATTENUATION OF RADIATION ON INTENSITY FLUCTUATIONS
IN THE SATURATION REGION

R. Kh. Almaev and A. A. Surorov UDC 538.56

The propagation of electromagnetic waves in a turbulent medium with fluctuations

of the complex dielectric permittivity € is considered. Asymptotic expressions are
obtained for the relative dispersion of intensity fluctuations 0% in the satura-
ted region. It is shown that the presence of fluctuations in the imaginary part

of € leads to a substantial change in the nature of behavior of of for strong in-
tensity fluctuations of radiation. :

As is well known (see, for example, [1, 2]), in the classical theory of propagation of elec-
tromagnetic waves the medium is characterized by fluctuations in the real part only of the
dielectric permittivity €. Such a treatment, however, is not valid in all situations cccur-
ring in the atmosphere. In particular, in investigating the transmission of radiation through
atmospheric paths, including aerosol layers with stable or varying microstructure, or investi-
gating the propagation of radiation well-absorbed by gas components in a "pure' atmosphere,
when the random variations in the imaginary €7 and real e components of € are comparable,
it is necessary to take into account the contribution of fluctuations in the imaginary part
of ¢ to the statistics of the electromagnetic wave. Such problems were treated in [3, 4] for
media with smooth correlation inhomogeneities in eg, ey within the approximate method of smoeth
perturbations in the cases of propagation of submillimeter radio waves in the atmosphere [3]
and of laser beams in the channel of an illuminated cloudy medium [4], as well as in [5, 6]
for the cases of optical radiation transfer in a turbulent atmosphere containing discrete in-
homogeneities, with calculations of radiation intensity fluctuations in them carried out for
the model of ideally absorbing particles. One must, however, keep in mind that under certain.
conditions on the statistical characteristics of radiation in a turbulent atmosphere — even

Scientific-Industrial Union "Taifun." Translated from Izvestiya Vysshikh Uchebnykh Zaved-
enii, Radiofizika, Vol. 34, No. 6, pp. 671-680, June, 1991. Original article submitted March
6, 1990.

0033-8443/91/3406- 0563 $12.50 @ 1992 Plenum Publiishing Corporatien 565

B



