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The mechanism of quasiperiodic oscillations in two identical symmetrically coupled Feigenbaum systems 1s
investigated. A method is proposed for describing discrete mappings near the point of bifurcation by

transforming from discrete to continuous time. This method makes it possible to analyze efficiently the
dynamics of coupled systems. It is shown that quasiperiodic regimes should exist in certain regions of the
nonlinearity and coupling parameters, irrespective of the type of coupling, and within these regions the
frequency of the new oscillatory component is a function of the nonlinearity and the coupling. The threshold
frequency of the quasiperiodic oscillations satisfies the following similarity laws: When the time scale of the
fundamental oscillations is doubled the threshold frequency remains unchanged in the case of dissipative
coupling and is rescaled by a factor of {@{/2 in the case of inertial coupling, wherea = — 2.5029 is the well-

known Feigenbaum scale factor.

INTRODUCTION

The idea of using simple systems which exhibit chaos as
elements for constructing composite models of more compli-
cated systems is now widely dissimenated in the literature. In
particular, systems constructed from subsystems in which the
transition to chaos occurs through a sequence of period-dou-
bling bifurcations were studied in Refs. 1-4. In this paper we
shall confine our attention to situations when the subsystems
are at the threshold of bifurcation. In this case the description
of the individual subsystems simplifies and reduces, with the
help of a transition from discrete to continuous time, to some
canonical differential equation. For a composite model there
correspondingly arises a system of such equations, which can
be analyzed by the traditional methods of the qualitative
theory. This approach can be extended to systems of different
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structure, including distributed systems. Here as a specific
illustration of this approach we shall study and explain the
phenomenon, observed in numerical and physical experi-
ments, of quasiperiodic oscillations in coupled Feigenbaum
systems.

1. DYNAMICS OF AN INDIVIDUAL
SYSTEM AT THE THRESHOLD OE
PERIOD-DOUBLING BIFURCATION

We first study the simplest model mapping that exhibits
transition to chaos through a cascade of period-doubling
bifurcations:

X'/H-l =\ X%, (l)
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where X is the dynamical variable, n is discrete time, and A
is the control parameter, and we shall explain for this exam-
ple the idea of transferring to a description of the dynamics in
continuous time.

Let the value of the control parameter in Eq. (1) be
close to N, — the point of the doubling bifurcation of a 27
cycle, and X is an element of this cycle. Consider the behav-
ior of a small perturbation of the dynamical variable near the
point Xo as a function of the supercriticality A = X — A,
we perform the mapping (1) 2n+1 times with the initial coa-
dition Xo = Xo T %o and we study the result of this proce-
dure as a function of the initial element 27* !, Expanding the
obtained function in a series in the small quantities A and &g
we arrive at the approximate mapping after 27+1 steps of
discrete time

G ==&, -+ AAE, + BE. @

Here
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are derivatives calculated at the point Xy = Xo; A = A,. Near
the bifurcation the change in the perturbation over two peri-
ods of the starting cycle is small. For this reason it is possi-
ble to transfer from the expression (2) to a differential equa-
tion in which the time is measured in units of 2n+1,

: ©)

£ = AAE 4 BEs.

The coefficients 4 and B can be found numerically with

the help of a simpie algorithm. Differentiating the mapping
(1) we arrive at a chain of recurrence relations:

IIX = )\ﬂ— ng [X]Z” = [XJO;
, Xx,=—2XXx, [Xx]=1;
Xy=1— ZXX;J [X,‘]yl — [XR]0§

,'Xxxu = ——ZXX)\XO— 2X;.Xx0, [X)Xo]ﬂ =0;
, X.X.,X,, = ‘_2XXX‘,X,. — 2X§;°, [XXDXO]O =0;
Xxxx,=—2XXxxx,—6XxXxx, [Xxxx)o=0. 4)

Here the initial or boundary conditions that the mapping must
satisfy are given next to the mapping for each variable. We
note that the coefficient B depends on which of the elements
of the cycle is taken as the starting element. The values of 4
and B for all n from 1 to 7 are presented in Table I in the
wwo left-hand columns for the case when the cycle element
closest to the extremum is chosen as the initial element.

We now discuss the properties of Eq. (3). For A < 0it
has one stationary point § = 0, which becomes unstable at A

= 0, after which there appear two stable symmetric positions
of equilibrium ¢ = +(—AA/AB)Y2. This bifurcation corre-
sponds to doubling of the period of the 2%-cycle of the start-
ing mapping (1). Figure la shows a a plot of the dependence
of the positions of equilibrium § on the supercriticality A.
This is a small piece of the well-known "Feigenbaum tree"
in a neighborhood of the bifurcation point. The temporal
dynamics of Eq. (3) for A = 0.01 for the case of a 2-cycle is
illustrated in Fig. 1b (solid line). The dashed line in the same
figure shows the dependence of the solution of the starting
mapping (1) on the discrete time n. Comparing these two
plots shows that the obtained approximate canonical equation
(3) adequately describes the dynamics of the quadratic map-
ping and hence also the characteristic universal dynamics near
a period-doubling-bifurcation point. The universal properties
of the transition to chaos are manifested for Eq. (3) in the
scaling properties of the coerfficients: As one can see from
Table I, the coefficient A is scales by the factor § = 4.6692
at a transition to a cycle with doubled period and the coeffi-
cient B is scaled by a factor a%, where @ = —2.5029 and $
and g are the well-known Feigenbaum constants.

2. STARTING EQUATIONS OF
COUPLED FEIGENBAUM SYSTEMS

We now analyze two coupled systems. In Ref. 4 it was
shown, with the help of a renormalization group analysis, that
for the problem at hand a system of two logistic maps can be
used as the universal model:

Xn+1:}\_—X1zz+s(K1(Xn_Yu)+K2(X2~Y/2z))7 (5)
Yoa=h—Yi+e(&(¥,—X)+ K (Y] —X),

where X and Y are the dynamical variables of the first and
second subsystems; A and & are the nonlinearity and coupling
parameters; and, the coefficients K 2 determine the character
of the coupiing.

Dissipative coupling obtains X; = 0 and X; = 1 and
inertial coupling obwins for K; = 1 and X; = —0.088.
According 0 the results of renormalization group analysis
there are no other significant types of coupling.

In the absence of coupling (¢ = Q) the system {4) exhib-
its the usual cascade of period-doubling bifurcations that ends
with a transition to chaos. The difference from a single qua-
dratic mapping lies in the fact that for a composite system
each state of period 2" can be realized in 2" different ways,
differing by the phase shift of the oscillations in the subsys-
tems by one step of discrete time. The introduction of cou-
pling modifies these regimes, but it is still possible to classify.

TABLE I
Dissipative coupling Inertial coupling
n A B B, n
F=F, o H, Fe=F, H H,
|

1 8.0 —11.716 —68.284 —28.0 —0.657 1.657 1 —17.538 —8.807 1.511
2 35.793 —72.028 347503 | —52.495 | —17.572 3642 | 2 40.782 19.940 —4133
3 165.756 —449.477 —2254.23 —105.288 —34.343 6.848 3 —102.900 —31.260 10.221
4 772.507 —2813.25 —14093.97 —210.629 —69.431 13.859 | 4 257.068 127.950 —25.540
9 3605.60 —17620.41 —88334.22 —421.213 —138.667 27.664 b —643.592 —320.337 63.899
6 16833.83 —110379.3 -—553353.9 —842.445 —277.411 55.336 6 1610.40 801.598 —159.897
7 78599.14 —691470.1 —34668528 —1684.88 —554.804 110.667 | 7 —4031.43 —2006.57 400.252
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FIG. 1. The positions of equilibrium of Eq. (3) as a function of the
supercriticality (a) and the temporal dynamics of the perturbation of a 2-
cycle (b) for a quadratic mapping.

them according to the magnitude of the shift of the oscilla-
tions of the uncoupled sybsystems.*8 In Refs. 4, 6, and 7 it
is shown that for regimes which are characterized by a shift
of the phase of the oscillations of the subsystems by one-half
the period quasiperiodic motions can arise in a certain range
of values of the parameters A\ and e.

3. DYNAMICS OF COUPLED SYSTEMS
NEAR THE BIFURCATION POINT
OF AN INDIVIDUAL SUBSYSTEM

Extending the arguments of Sec. | to the case of coupled
Feigenbaum systems (5), it is not difficult to obtain a system
of differential equations describing the dynamics of the com-
posite system in a neighborhood of the bifurcation point:

§— AAE | BE |- Fek 4 Hen, ©
W= A, A+ Byn® + Fren -+ H €.

Here ¢ and 5 are the perturbations of the elements X and Y of
the period-2" cycle and the coefficients F and H are given by
the expressions

02X pni1 L 02X

= T9Xg0e * — T0Y,0¢
M

3% g I 92 yss
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where the derivatives are calculated at the point ¢ = 0, X\ =
A Xy = X, Yy = Y. The numerical procedure for determin-
ing the coefficients F and H is analogous to that described in
Sec. 1. It is only necessary to take into account the following
additional recurrence relations:

X, =—2XX,+ K,(X—Y)+ K, (X*—7?), [X]Jn=[X]s
Y, =—2YY 4+ K (Y —X)+ K,(¥Y2—X?, [Y]r=[Y ]y
"Ny =—2XXx.—2XxX, + K Xx, + 2K,X X5, [Xxeho=0;
Xyp=—2XXyo— K,Yy,—2K,YYy, [XpJo=0;
Yye=—2YY5, —2Yy Y.+ K\ Yy, + 2K,YYy, [VyJo=0;
,YXDE == —ZYYXUS — 1)()(’n _— 2K2XXXua [YXUE IO =0,
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Here we study the antiphase regim s, which give rise to
quasiperiodic attractors. Table I gives the values of all coeffi-
cients F and H for n = 1-7 for the cases of intertial and
dissipative coupling. For the first subsystem the element
closest to the extremum is taken for X, and for the econd
subsystem the element shifted in phase by one-half the period
of the cycle is taken for ¥,

We shall say a few words about the structure of Egs.
(6). It can be shown that for antiphase motions the relations £
= F|, BH = —BH, are satisfied. This makes it possible to
simplify the system (6):

f= CE— 8 — DO;
f=CH— 6 4 DE, @

where 8 = (B/B)Y2, C = —(4A + Fe)/B, D =
—(| HH1{)"e/B.

This system of equations contains only two significant
parameters C and D, which must be interpreted as the nor-
malized supercriticality and the normalized coupling. Thus
analysis of the dynamics of coupled mappings in a neighbor-
hood of bifurcation points of an individual subsystem reduces
to a two-parameter analysis, and in addition the analysis is of
the same type for different types of couplings and for all
bifurcation points.

Figure 2 shows a map of the dynamical regimes of the
system (9) in the (supercriticality, coupling parameter) plane.
The straight line A = —Fe/A (I}) and the broken lines A =
(2| HH | 1¥2 | &| — Fe)/A()) divide the map into three
characteristic regions, in which regimes of same-type are
realized; bifurcations occur when the lines are intersected.
Proceeding from bottom to top in this place we observe first
a single stationary point — a stable focus with the coordinates
g =0,0 = 0. On the line /, it becomes unstable owing to
the Andronov—Hopf bifurcation, as a result of which a stable
limit cycle with frequency wg = D appears. As the supercriti-
cality is further increased the period of the oscillations in-
creases and four regions of condensation of the mapping
points are formed on the limit cycle. On the bifurcation line
I, the period of the oscillations becomes infinite and as a
reuslt of a saddle—node bifurcation four more pairs of sta-
tionary points, which are either stable nodes or saddles,
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FIG. 2. Map of the dynamical regimes of the approximate canonical
equations for two coupled Feigenbaum systems.
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appear in the cycle. The coordinates of these points are given
by the expressions

(10

where x = (C + [C? — 8D2)1/2)/2 for the saddles and (C —
[C> — 8D2)V/2)/2 for the nodes. In Fig. 2 the qualitative
phase portraits of the system re shown next to the parameter
plane. The phase portraits obtained integrating the system
9 numerically with different values of C (D = 0.15), are
presented in Fig. 3. A plot of one of the coordinates of the
equilibrium position versus the supercriticality for fixed ¢ and
n = | is presented in Fig. 4. The solid lines correspond to
stable regimes and the dashed lines correspond t0 unstable
regimes; in the region of the limit cycle the amplitude of the
oscillations is plotted along the vertical axis. For the starting
mapping (5) it follows from w‘nat has been said abovg thgc on
the boundary [, the 27-cycle is replaced by a quasiperiodic
attractor, which in turn becomes unstable on the line /5, giv-
ing rise [0 two symmetric cycles whose period is equal to
wice initial period.

The dynamics of the solution of the system (6) and the
pehavior of the perturbation of the mapping (4) in different
regions of the parameters A and ¢ for n = 1-3 are compared
in Fig. 5. It is obvious that the agreement between the model
and the original system is good.

We now discuss the properties of universality and simi-
larity of the* approximate canonical equations (6); these prop-
erties follow from the analogous properties of coupled
Feigenbaum mappings. As one can see from Table [, as 7
varies the coefficients F and H are rescaled by a factor of two
for purely dissipative coupling and by a factor a for inertial
coupling. In the general case the coefficients F and H are a
superposition of the known coefficients for inertial coupling
(i) and dissipative coupling (@) F = K\F; + KxF;, H = K\H;
+ K,H,. An important consequence of these properties of the
coefficients is the scaling of the threshold frequency of quasi-
periodic motion wg ~ (| HH; | )2, As n varies the thresh-
old frequency remains unchanged in the case of dissipative
coupling and is rescaled by a factor | a|/2 in the case of
intertial coupling. Figure 6 shows a series of plots illustrating
the change in the dependence of the frequency of quasi-
periodic motion w on the supercriticality A for successive
period doublings. The results were obtained by direct numeri-
cal modeling of the dynamics of the mapping (4). The quanti-
ty W = w/e is plotted along the ordinate axis and the quantity
L = B(A — Aple, where A, is the value of the supercriti-
cality for which bifurcation of creation of a torus from a 2"-
cycle occurs, is plotted along the abscissa axis; for dissipative
coupling 8 = (8/2)*~! and in the case of inertial and mixed
couplings 8 = (&/ | a | )*~ 1.

4. QUALITATIVE EXPLANATION OF THE
APPEARANCE OF QUASIPERIODICITY

The mechanism of the appearance of quasiperiodic oscil-
lations can be qualitatively understood from the following
analysis. Let the value of the nonlinearity parameter be close
to the bifurcation value for a cycle of some period (for exam-
ple, period 2) of a separate uncoupled mapping. For ¢ = 0
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3. Phase portraits of the system (9). a) 0.1; b) 0.3; ¢) 0.05; d) 0.43.

FIG. 4. The coordinates of the equilibrium position versus the
supercriticality for the approximate canonical equations of two coupled
systems.

period-2 regimes will exist in both subsystems. Consider the
situation when the subsystems oscillate in antiphase. In Fig. 7
the dots denote successive times and the numbers ! and 2
denote the states of the subsystems at these times. We now
perturb the second subsystem (the upward pointing arrow at
the initial moment of discrete time in the figure). Over one
period of the cycle this perturbation changes sign (flips),
since the cycle multiplier is equal to approximately —1. Now
let the coupling between the subsystems be different from
zero. The action of the second subsystem at the kth step will
result in the appearance of a small perturbation in the first
subsystem at the (k + 1)-st step. The sign of this perturbation
will depend on the sign of e. For definiteness, let it be direct-

- ed in the same direction. It is obvious that the perturbation of

the first subsystem will grow in time owing to the constant
influence of the second subsystem, untl, finally, it itself
starts to exert a back effect. Because of the symmetry of the
coupling the new perturbation of the second susbystem is
directed in the same direction as the perturbation of the first
subsystem giving rise to it, i.e., it is directed opposite to the
initial perturbation. For this reason, the perturbation in the
second subsystem will, in time, decrease to zero. In the pro-
cess, the perturbation in the first subsystem will reach a max-
imum. The process will then repeat, since we have returned
to the starting state, with the only difference that the subsys-
tems have exchanged roles. If the cycle multiplier is greater
than one, then the process described above is accompanied by

E. N. Erastova and S. P. Kuznetsov 133



18! 4

[

FIG. 5. Temporal dynamics of
the perturbations of antiphase
cycles of coupled systems in
different regions of the parame-
ters A and €. a, b) 0.02; ¢)
0.0022; A: 1, 4) 0.001454; 2, 5)
0.003401; 3, b) 0.008; 7) 0.02;
8) 0.004901; 9) 0.01.
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FIG. 6. The frequency of quasiperiodic motion versus the supercriticality.
a) Dissipative coupling, b) inertial coupling, and c) mixed coupling: K, =
1, & = 0.
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FIG. 7. Qualitative explanation of the appearance of quasiperiodicity. I
and I are the first and second subsystems, respectively.

an increase in the amplitude of the oscillations. Nonlinearity
will stabilize the amplitude at some level. As follows from
the arguments presented above (and in agreement with Eq.
(9)), the period of the renewed oscillations is proportional to
the coupling parameter.
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CONCLUSIONS

The method, developed in this work, for transferring
from a discrete model to canonical differential equations near
the bifurcation point makes it possible to analyze effectively
the dynamics of coupled systems. It was shown, in particular,
that in certain regions of the nonlinearity and coupling param-
eters quasiperiodic regimes will exist irrespective of the form
of the coupling between the subsystems, and in addition the
frequency of the new oscillatory component is directly pro-
portional to the coupling parameter and, for fixed ¢, it de-
creases as the supercriticality increases. This means that in
the general case it is not in rational ratio with the discrete-
time step in the starting mapping (4). For this reason, in the
region of existence of quasiperiodicity the regions of synchro-
nization of the frequencies — periodic motions and strctly
quasiperiodic oscillations — should have a complicated struc-
ture. Such structure is indeed observed in a physical experi-
ment for the example of two dissipatively coupled nonlinear
circuits under an external periodic perturbation.®
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