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It is proposed that a bicritical point exists in the plane of  the control parameters of  two logistic ma])s with unidirec- 

tional coupling where the lines of  transition to chaos in both subsystems converge. The global scaling properties (a- 

functions, f (a)  spectra, and generalized dimensions) of  bicritical dynamics are examined. It is shown that bicriticality 

can also be observed in chains of  more than two cells. 

1. Introduction. After the most-fundamental concepts of the chaotic dynamics of small nonlinear systems were estab- 

lished, a promising approach to the analysis of more-complex, distributed systems was outlined, which consists of the examina- 

tion of lattices of coupled maps constructed from cells with known dynamic properties [1-7]. In most cases, these are lattices of 

maps of the Feigenbaum type, which demonstrate the transition to chaos through period-doubling bifurcations. A number of 

interesting results have been obtained - for example, in the case of lattices with unidirectional coupling, which have been 

proposed for the modeling of turbulence in flow systems [6, 7]. These are spatial period doublings, the saturation o f  attractor 

dimensionality down stream, spatio-temporal chaos, the generation of moving domain walls in the presence of a small random 

perturbation, etc. Kaneko [1] has discovered a new, non-Feigenbaum type of critical behavior that can be realized in as few as 

two unidirectionally coupled systems that demonstrate period doublings. A suitable example is the model map 

where x and y are the dynamic variables of the two coupled systems, ~ and A are the control parameters, and B is the coupling 

constant. The indicated critical behavior is realized if the first and second systems are brought precisely to the onset of chaos 

simultaneously by means of 2 and A, respectively. (For system (1), 2 c = 1.40115519 and A c = 1.12498140 when B = 0.375.) The 

corresponding point on the plane 2, A has been called [11] the bicritical point, because of the natural analogy with phase 

transitions. This terminology usually denotes the point at which two different lines of phase transitions of the second kind 

converge. 

Bicritical behavior obviously corresponds to the onset of dynamic conditions with two positive Lyapunov exponents - so- 

called hyperchaos [12]. A renormalization-group analysis of a bicritical situation was developed and the corresponding properties 

of universality and scaling were revealed earlier [13]. We shall examine the geometrical structure of the bicritical attractor, 

introduce a-functions that describe its global scaling properties, examine the f(c 0 spectra and generalized dimensions, and show 

the possibility of realization of bicriticality in more-complex lattice systems. 

2. Geometry of Bicritical Attractor. As we shall now see, an attractor at a bicritical point is a very interesting example of 

a multifractal set embedded in a two-dimensional phase space (x, y). In order to understand its geometrical nature, we recall first 

of all the well-known for construction of the Feigenbaum attactor [10, 15]. For this, we iterate the map Xn+ 1 = 1 - 2cXn 2, x 0 = 0, 

obtaining a sequence xl, x2, x3, .... Then, the zeroth level of construction is a segment [xl, x2] , the first level is a union of two 

segments Ix 1, x3] and [x 2, x4], the second is a union of four segments [xl, xs], [Xe, x6] , [x3, x7] , and [x4, x8], etc. Each set obtained 

in a construction step contains all subsequent sets. The object that appears at the limit is the Feigenbaum attractor. 

In order to construct the bicritical attractor, we take the initial point x 0 = 0, Yo = 0 and find by iterations (1) a sequence 

of pairs (xl, Yl), (x2, Ye), (x3, Y3) ..... The zeroth level of construction not corresponds to a rectangle with opposite vertices at 

points (xl, Yl) and (x2, Y2)" We denote it as 
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The first level will be represented by two rectangles with, respectively, opposite vertices (xl, Yl), (x3, Y3) and (x2, Y2), (X4' Y4): 

We shall continue the construction, as shown in Fig. 1. At the n-th level, we have 
n 

2 

i7 = u [ (X C yi) , (X y n) ]. n n' 
i =1 i + 2  ~+2 

The bicritical attractor is obtained at the limit n --, oo. 

(2) 

(3) 

(4) 
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Let us evaluate the Hausdorff  d imension of this set. At  the n-th level, it is approximately 2 n rectangles of size l i • L i. 

For large n, these rectangles extend along the y axis so that L i >> l i (see Fig. 1 and subsequent  discussion of the cr x and Cry 

functions). The n u m b e r  of small squares of size l i required to cover the i-th rectangle is estimated a s  Li / l  i. Following the well- 

known defini t ion of the Hausdorff  d imension D [14], we shall examine the sum li D over all small squares and rectangles 

2 n 

s = ~ (L I1) I .Z~ (5) 
i = 1  

and select a D value that ensures the finiteness of S n when n --> oo. Numerical  calculation gives D = 1.0794. 
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3. Characteristics of Bicritical Attractor. For a global description of the scaling properties of the bicritical attractor, we 

introduce by analogy with Feigenbaum [8, 9] the functions Crx and Cry: 

X' - X' Y'm - Y'm*N 
(m/2N) - m m§ ~ (m/2N) - (6) 

X Xm -- ~'m+N/e Y Ym -- Ym+N/2' 

where m and N = 2 n approach infinity, and Xm, Ym and x/n , Ym are cycle elements of periods N and 2N for map (1) at the 

bicritical point. These functions, which were found numerically, are shown in Fig. 2a (a x on the left and cry on the right). Owing 

to the independence of the dynamics of the first subsystem, the function a x coincides with the well-known Feigenbaum function. 

On the other hand, Cry is a new universal function, which describes the scaling properties of the y-projection of the bicritical 

attractor. The fact that I crx [ > lay I indicates that trajectory splitting in the y-direction is reduced more slowly than in the x- 

direction when the resolution of the attractor structure is increased. The function Cry, just as Crx, has discontinuities at all binary 

rational points m / 2  n. Note that the nonuniformity of the fine structure for Cry is expressed more strongly than for Crx. 

It is known that the following relations are valid for Crx: 

Similarly, for cry we find that 

O"x(+O ) ~ l / c / e ,  C r x ( I / 2 - O  ) "-> I / Ic / l ,  a = - 2 ,  5 0 2 9 1 .  (7) 

(T (+0) -~ 1/b e, o~y(i/2-O) ~ i/Ibl, b = -i, 50532. y (8) 

Roughly, crx and cry can be represented by two level stems (7) and (8). This corresponds to approximation of  the bicritical 

attractor by a multifractal that gives, when projected onto the coordinate axes, two-scale Cantor sets [15] with parameters 1/a, 

1/a 2 and l /b ,  l ib  2. For  the Feigenbaum attractor, such an approximation provides, in particular, useful approximation formulas 

for the power spectrum, dimensions, f (a )  spectrum, etc., which are difficult to generalize as applied to the y-projection of the 

attractor. 

Now let us evaluate the spectrum, of scale indices f(a) .  We prefer to see this spectrum as an attribute of a signal 

generated by a "black box" than as a characteristic of the bicritical attractor. Having two signals, x and y, we shall limit ourselves 

to their independent processing. Using the procedure of Halsey et al. [15], we shall determine the parti t ion function at the n-th 

resolution level 
n 

2 

ro = Z (9) 
i = 1  

where Pi  = 1/2n, li = [xi - xi+2n I or lYi - Yi+2n i, xi, Yi are sequences generated by map (1) at the bicritical point with zero 

initial conditions. Further,  we shall require that F n remain finite for n --, co and let 
n 

2 

1 q = 1o%i Z 17 (10) 
i = 1  

Following Halsey et al. [15], we obtain t he f ( a )  spectrum in parametric form 

ct = d'c/dq, f = ctq - ~:. (11) 

In a two-scale approximation, the sum Fn+ 1 can be obtained from F n by replacing each term piq/li T by two: 

l a l  c p q  l a l  z'c pq  I b l  c pq i b l  2"c pq 
+ for x and + for Y. 

2 q i r 2 q 1 -c 2 q 1 ~: 2 q i r 

For  example, w e h a v e ,  r+~ = ( l a I  v + I a l Z r ) 2 - q F  f o r x a n d  F .  1 = ( tb I  ~ + i b l Z r ) 2 - q F  . fory .  Hence, wefind,  

respectively, q = l o g 2 (  la l  r + la l  z'c) and q = l o g 2 (  Ibl r + Ibl al:) and obtain a a n d f f r o m  (11) analytically. 

In Fig. 2b are f ( a )  spectra generated by both variables x and y. The dotted curves correspond to the two-scale approxi- 

mation; the solid curves represent exact numerical calculation. For  the first variable x we obtain, finally, the traditional Feigen- 

baum form of f ( a )  [15], while the second spectrum is entirely different. It is located in the interval of a of from 1/log2 bz = 

0.843736 to 1/log21b [ = 1.69472 and has extreme fmax = D~Y) = 1.1714. It could have been assumed that this value would give 

the Hausdorff dimension of the y-projection of the bicritical attractor. This is not so, however, due to overlapping of the y- 

projections of different elements of the set  construction (see Fig. 1). This is expressed in the fact that D~Y) > 1. In spite of this, 
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D0(Y) can be considered a dimension that reflects the scaling properties of the variable y. With the same stipulations, we can 

introduce an entire family of generalized dimensions Dq(Y) = T/(1 - q) [14]. Their graph is shown in Fig. 2c, in which some 

important points are indicated by corresponding numerical values. 

4. Lattice Systems. Bicriticality is a prevalent type of universal behavior of this class of systems, which is typically 

realized in the presenc e of not fewer than two control parameters. It can be encountered not only in systems of two coupled cells 

but also in chains of a larger number of cells. For  example, in a system of three cells 

= , = z ( 1 2 )  
x o . ,  . .  , o . = ,  - C z o . ,  i - - 

we can observe the following bicritical situations. 

1) Let  2 < ao, which ensures a stable cycle in the first system. Then we select an A such that a Feigenbaum critical 

situation is realized in the second system and a C such that bicriticality is obtained in the third system. This situation can be 

described by means of the diagram 

P ) F ) / 9 ,  

where P represents periodic motion, F Feigenbaum critical dynamics, and B bicritical dynamics. Calculations have shown that 

such a lattice state can be realized, for example, with the following parameter values: it = 1, A = 1.272008, B = 0.25, C = 

1.128102, and D = 0.375. 

2) Let it = itc and A = A c for a given B and small C and D. Then, the second system will be in a bicritical state while 

the third accomplishes forced (synchronized) motion with the scaling properties that are inherent in bicriticality: 

F ) /9 .... ~ B .  

This situation is observed, for example, when it = 1.401155, A = 1.124981, B = 0.375, C = 0.6, and D = 0.375. 

3) For  it = itc and small A and B, we have a Feigenbaum bicritical state in the first system and synchronized motion of 

the second system with the same scaling properties. With suitable selection of C for a given D, bicriticality can be obtained in 

the third system: 

F p F p B..  

This situation is observed for it = 1.401155, A = 0.8, B = 0.375, C = 1.179791, and D = 0.375. 

Similar considerations are obviously applicable to lattices that consist of a larger number of cells. For  example, in a 

lattice of four cells, the states characterized by the following diagrams can be realized: 

P ) P ~ F > B, F ; F ) F ~ B 

P > F ~ F > B, F '>F ) B ) B 

P ) F > B > B, F )B ; B ) B 

It is clear that the degree of  diversity of the possible situations increases with an increase in the number of  cells in the lattice. 

They are all, however, easity described by similar diagrams. 

The above examination shows that the joining into a lattice of even the simplest systems that demonstrate the transition 

to dynamic chaos leads to new versions of critical mechanisms. The gradual "connection" of cells to a lattice in a situation of 

unidirectional coupling is a possible method for study of these critical states. 
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