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Abstract

Universality and scaling properties are investigated in three-parameter families of one-dimensional period doubling maps in
the context of a “multiparameter criticality”” concept which considers critical situations at the border of chaos in order of increas-

ing codimension.

A commonly recognized research program of bi-
furcation and catastrophe theories is based on the idea
of consecutive consideration of phenomena starting
with those of low codimension and then moving to-
wards higher and higher codimensions. It includes
also classification of the phenomena and the estab-
lishment of laws of subordination: how are the bifur-
cations (catastrophes) of lower codimension en-
closed in the parameter space of bifurcations
(catastrophes) of higher codimensions. We develop
in this paper an analogous approach to the problem
of transition to chaos in one-dimensional maps. Since
the dynamics at the border of chaos is often spoken
of as critical behaviour of nonlinear systems, this re-
search direction may be referred to as a theory of
multiparameter criticality.

It is known that in one-parameter families of one-
dimensional maps with a quadratic extremum, the
period doubling bifurcations obey universality and
scaling laws, described by Feigenbaum [1] with the
help of the renormalization group (RG) approach.
Particularly, the accumulation rate of period dou-
bling bifurcations is determined by the universal fac-
tor 6=4.669201....

For two-parameter families of maps having two
quadratic extrema (bimodal maps) a curve may ex-
ist in the parameter plane, defined by a condition that
one extremum is mapped to another one after an it-
eration. On this curve the double iterated map has,
apparently, a fourth order (quartic) extremum. Thus,
the period doubling cascade (if it is observed on this
curve) obeys a specific law, which differs from Fei-
genbaum’s. Located at the border of chaos the accu-
mulation point of this cascade is a codimension-two
point which was called tricritical and denoted by a
symbol T [2]. In the parameter plane the tricritical
points appear as the terminal points of Feigenbaum’s
critical lines. In a small vicinity of the tricritical point
a two-parameter vector scaling exists [2,3]: the to-
pography of the dynamical regimes reproduces itself
under the rescaling along the appropriately chosen
axes (“scaling coordinates”) by the factors of
0,=7.284686... and §,=2.857124... , respectively *!.

#! In this paper we do not consider other types of codimension-
two points which exist at the borderline of chaos and are associ-
ated with more complex solutions than the RG equation fixed
points (see Ref. [4]).
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Now we turn to three-parameter families of one-
dimensional maps x—f(x). Four distinct situations
may appear typically along some curve lines in the
three-dimensional parameter space:

(i) The function f(x) has vanishing second and
third derivatives at the extremum point (Fig. 1a).

(i1) The function f(x) has both a quadratic extre-
mum and a cubic inflection point; the quadratic ex-
tremum is mapped to the cubic point (Fig. 1b).

(ii1) The function f(x) has both a quadratic extre-
mum and a cubic inflection point; the cubic point is
mapped to the quadratic extremum (Fig. 1¢).

(iv) The function f(x) has three quadratic ex-
trema, the first extremum being mapped exactly to
the second one, and the latter in turn to the third one
(Fig. 1d).

If we take a point on curve (i), then the function
f(x) has a fourth order extremum. On curves (ii)
and (iii) the second iteration of the map, f(f(x)),
has a sixth order extremum. Finally, on curve (iv)
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Fig. 1. Four characteristic configurations of one-dimensional maps
giving rise to distinct types of three-parameter criticality: (a) T
type, (b) Stype, (c) S’ type, (d) E type.

the third iteration, f (f(f(x)))), has an eighth order
extremum. So, if we are moving along one of curves
(i)-(iv), then the observed period doubling cascade
will be analogous to the case of the map x—»1—21|x|™
with appropriate m=4, 6, or 8. The period doubling
cascade in situation (i) leads to the tricritical behav-
iour. In cases (ii)-(iv) other types of criticality arise.
To distinguish them we introduce symbols S, §’, and
E, respectively (the first letters of the words ““six™ and
“eight™).

To reveal the universality and scaling properties for
three-parameter criticality we should appeal to the
Feigenbaum theory extension on the maps with a non-
quadratic extremum [5,6 ]. The basic equation which
permits one to find the universal map g describing
large-time-scale dynamics at the onset of chaos is Fei-
genbaum’s RG equation

g(x)=ag(g(x/a)) , (1)

where a is a scaling factor which must be defined dur-
ing the solution process. The function g(x) should be
sought in the form of an expansion containing terms
1, |x|™ |x|*", |x|®", ..., where m is the extremum
order. The subject of investigations in Refs. [5,6] was
the solution dependence on the value of m which
might be an arbitrary real number. Here we are inter-
ested in special cases of m=4, 6, and 8 only. We have
reproduced the solutions of Eq. (4) with high enough
accuracy. Scaling factors and polynomial approxi-
mations for functions g are presented in Tables 1 and
2.

The next step of the analysis is to consider the ei-
genvalue spectrum for the linearized RG equation

o-h(x)=alg'(g(x/a))h(x/a)+h(g(x/a))].
(2)

Those ¢ eigenvalues which are greater than unity in_
modulus are of interest since they are essential for the
multiple iteration behaviour of the RG equation so-
lution near a fixed point.

The largest eigenvalues for T, S, and E critically
types, 11, ds1, and dg; can be found numerically from
Eq. (2). Other eigenvalues exceeding unity in mod-
ulus are integer powers of a up m— 1 excluding 1. The
eigenvalue d=a is not relevant because it relates to a
perturbation of the RG equation solution (elimi-
nated) by an infinitesimal shift of the origin for the
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Table 1 ‘
Scaling factors for codimension-three critical points

Type Orbit scaling Parameter space scaling factors
factora
0y 52 J3
T —1.6903029714 7.284686217 —4.829405415 2.857124135
S —1.4677424503 9.296246833 4.640870187 2.154267900
N —1.4677424503 9.296246833 —3.161910446 2.154267900
E —1.3580172791 10.94862427 3.401113956 1.844210930

Table 2
Polynomial approximation for solutions of the RG equation (1)

gr(x)=1-1.83410790700x*+0.01296222601x3+0.31190173945x"?

—0.06201465160x'6—0.03753928670x%°

+0.01764731251x%4+0.00193826520x28 —0.00282047096x32+0.0001 1545666x3°+0.00039947082x*°—0.00002479251 x*

—0.00012164143x*8+0.00007043385x%2—0.00001797963x°¢+0.00000190870x°° .

gs(x)=1-1.907736962548x5—0.332883482858x'2+0.712701624335x'8+0.035178927147x%*—0.272460026974x>°

+0.025549567361x3+0.095651810755x*2—0.023675376504x 4 —
—0.083627645830x72+0.049185410745x78—0.019538741778x%¢+

0.011912112668x3*—0.041730389115x%+0.089665302592x°¢
0.004900692140x°°—0.000587039134x%

ge(x)=1—1.89735300202x3—0.73884402381x'5+0.98978292252x%*+0.44569064453x>2 —0.58599845479x*°

—0.28196762332x*8+0.39494697971x56— 0.03215266990x%* + 0.39148984068x 72— 1.21607366528x%°+ 1.45859462729x %

—0.97341263480x% +0.38717922254x'%* —0.08672779729x''2+0.00847797841x "'

x variable. So, we obtain the following sets of
eigenvalues,

for m=4: &ry, a%, a3,

. 2 .3 4 o5
for m=6: ds,, as, as, as, a3,

form=8: g, ak,ai,at,as,al,at.

In accordance with the general principles of the RG
analysis this means that an essential control parame-
ter has to be associated with each member of these
sets. In other words, the number of parameters needed
typically for a family of systems to demonstrate the
various types of critically is equal to three, five, and
seven, respectively.

However, at the beginning of the paper we pro-
vided reasonable arguments that the tricriticality may
appear as a codimension-two phenomenon, and the
S and E critically types occur as codimension-three
phenomena. The reason for the apparent contradic-
tion is that those arguments relate to one-dimen-

sional maps being a particular, specific class of non-
linear systems. It can be said that the situations when
an extremum of order m=4, 6, or 8 occurs in iterated
one-dimensional maps are characterized by some
kind of “hidden symmetry”’. Owing to this symmetry
only some of the eigenfunctions of the linearized RG
equation arise due to an arbitrary perturbation of the
initial map. This results in existence of definite selec-
tion rules. For example, there are two eigenvalues dy
and a2 while observing codimension-two tricritical-
ity in bimodal one-dimensional maps; the third ei-
genvalue a3 is ruled out. However, for tricriticality
arising in the three-parameter situation (1) all three
eigenvalues &1, a% and a3 are engaged. For cases (ii)
and (iii) selection rules do not coincide: in the S case
the relevant eigenvalues are ds, a3, ad, while in the S’
case they are Js, a3, a3. Finally, in the E type situa-
tion (iv) the list of essential eigenvalues is Jg, ag,
ad. To substantiate these rules one might consider an
arbitrary perturbation of the initial map f (x) and ex-
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amine the Taylor expansion of the perturbation for
the multiply iterated map. Among eigenfunctions ob-
tained from Eq. (2) only those functions have to be
taken which contain appropriate terms in their Tay-
lor expansions. In Table 1 a summary of the eigen-
values is presented taking into account the selection
rules.

In a small neighborhood of a codimension-three
critical point the normalized map describing evolu-
tion of the x variable over a great number of 2 steps
belongs to the three-dimensional unstable manifold
of the RG equation fixed point, namely

gk(x) =G(X, Cl 5Il(’ C2512ca C35§) . (3)

Here 6, are the relevant eigenvalues of the linear op-
erator (2), the factors C; depend on the perturbation
removing the map from the fixed point g(x) =G(x,
0,0, 0). The values C; may be taken as the most suit-
able parameters to analyze dynamics near the critical
point. Eq. (3) leads to an understanding of univer-
sality (the evolution operator g, depends on the three
parameters C; only) and scaling (the substitution
C;—C,/; leaves the evolution operator unchanged
under time scale doubling k—k+ 1). The parameters
C; are called scaling coordinates.
Let us consider the model one-dimensional map

x—1—Ax?>—Bx*—Cx (4)

to illustrate universality and scaling properties of the
three-parameter critically. Table 3 presents the coor-
dinates (A4, B, C.) of the T, S, §’, and E type critical
points found as the accumulation points of period
doubling cascades along curves (i)-(iv) in the pa-
rameter space (4, B, C).

To observe three-parameter scaling in the parame-
ter space it is necessary to obtain explicit relations
between parameters A, B, C and scaling coordinates
C,, C,, C;. For this we define a tangent coordinate
system (&, &, &) which coincides with (Cy, C,, C3)

Table 3
Codimension-three critical points for the map (4)
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within the linear approximation and is related to the
parameters 4, B, C via the affine transformation

(AA, AB,AC)=¢,r +6ory +&rs .

Here AA, AB, AC denote deflections from the critical
point. The vectors r; should be calculated specifically
for each critical point and for each concrete map.

However, the assumption of a linear relation be-
tween old and new coordinates appears to be insuffi-
cient for verification of the scaling properties for the
S, §', and E types of criticality. In general, we suppose
that scaling coordinates C; are connected with &; via
nonlinear relations

Ci=¢+ zaj(]é)éjléé L, i=1,2,3, (5)

where a ) are some constants, and summation is car-
ried out over all non-negative indices j, k, [, provided
i+j+k>0. However, by taking into account the con-
crete values of §; we may simplify Eq. (5).

Ifin (5) we make the substitution C;—-C;/d} and
&—E&/0%, we obtain

Ci=¢+ Z [(51/51151265[3)"]0](19@1512(52

Let us neglect the terms which do not increase with
n—oo. In other words, we retain only the terms with
the factor &;/6) 058% greater than unity.
So, we introduce the ersatz-scaling coordinates C:
— for tricriticality we simply suppose

Clzély 62=62) 53=63;

— for S type:

Cr=¢+afdle3, Go=&, CGi=&;
—for S’ type:

C'l =& +afslé3+adil&é, C,=&, Cy=&;
— for E type:

Ci=& +alhl&3+abil&é +adidds,

Type Ac B, C.

T 0 1.594901356229 0

S 1.872448192264 —1.625205284712 1.094016101529
S 1.379909480783 —0.557409701182 1.181821122326

E 2.449366934076

~1.260415730596

0.700954625016
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Fig. 2. Topography of the parameter space cross-sections near the
codimension-three tricritical point for the map (4). The scaling
coordinates (6) are used. Domains of different period attractive
cycles are shown by different shading. The tricritical point is lo-
cated exactly at the middle of the pictures.

C~'2=éZ’ 63=€3 o

Taking the critical points of Table 3 we have calcu-

lated all the necessary coefficients and find the fol-

lowing relations between old and new coordinates:
the T point:

Ad=—0.80991808C;,
AB=C,-0.60297275C, +C5, AC=C,, (6)

the S point:

Fig. 3. Topography of the parameter space cross-sections near the
S type critical point for the map (4). The scaling coordinates (7)
are used. Domains of different period attractive cycles are shown
by different shading. The critical point is located exactly at the
middle of the pictures. :

5

AA=-0.52856711(C, +0.780253C2)
—0.80973728C, + C;,

AB=(C, +0.780253C%) + C, —0.848712657C,

AC=-0.12666138(C, +0.780253C2)
+0.08221729C, +0.59074778C, (7)
the S’ point:
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Fig. 4. Topography of the parameter space cross-sections near the
S’ type critical point for the map (4). The scaling coordinates
(8) are used. Domains of different period attractive cycles are
shown by different shading. The critical is located exactly at the
middle of the pictures.

AA4=0.83522562(C, —0.0824C3% +0.1898C, C5)
—0.94065706C, + C5 ,

AB=—-0.06885319(C, —0.0824C%+0.1898C, C5)
+&,—0.6381335C;,

AC=(C,—0.0824C3%+0.1898C,C;)
—0.14833524C, —0.07558422C; , (8)
the E point:

-1
Fig. 5. Topography of the parameter space cross-sections near the
E type critical point for the map (4). The scaling coordinates (9)
are used. Domains of different period attractive cycles are shown
by different shading. The critical point is located exactly at the
middle of the pictures.

AA= (€, -0.200585C3+0.3443C, C;
—0.13839C3%) + C, —0.94564636C;,
AB=—0.55973816(C; —0.200585C3
+0.3443C,C;—0.13839C3)
—0.45710026C, + C;5 ,
AC=—0.33884190(C, —0.200585C3%
+0.3443C,C5—0.13839C3)
+0.31758086C, —0.00651569C; . (9)
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In Figs. 2-5 the topography of different dynamical
regimes is shown in neighborhoods of the critical
points for the map (4). They correspond to cross-
sections of the parameter space by coordinate sur-
faces (C;, C;). A critical point is located exactly at
the center of each picture. Domains of cycles of dif-
ferent periods are shown with different shading. The
outlined rectangles are shown separately with mag-
nification by the factors d; and d; along C; and C; axes,
respectively. It may be seen that location and shape
of different domains are well reproduced in the cho-
sen coordinates under the rescaling.

In conclusion we have to emphasize that the con-
cept of multiparameter criticality seems to be a nat-
ural generalization of the idea of “roads to chaos” for
a multiparameter case. It is a promising research field
in nonlinear science because it leads to the introduc-
tion of new universal models and scaling properties
at the boundary of chaos. In this paper we have sur-
veyed only a small part of this field concerning the

critical behaviour types associated with fixed points
of the RG equation for period doubling one-dimen-
sional maps.
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