International Journal of Bifurcation and Chaos, Vol. 6, No. 1 (1996) 119-148

© World Scientific Publishing Company

'MULTI-PARAMETER CRITICALITY IN
CHUA'’S CIRCUIT AT PERIOD-DOUBLING
TRANSITION TO CHAOS

A. P. KUZNETSOQV, S. P. KUZNETSOV and I. R. SATAEV
Institute of Radio Engineering and Electronics, Russian Academy of Sciences,
Zelenaya 38, Saratov, 410019, Russia

L. O. CHUA
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA, 94720, USA

Received April 1, 1995; Revised September 25, 1995

Investigation of non-Feigenbaum types of period-doubling universality is undertaken for a single
Chua’s circuit and for two systems with a unidirectional coupling. Some codimension-2 critical
situations are found numerically that were known earlier for bimodal 1D maps. However, the
simplest of them (tricritical) does not survive in a strict sense when the exact dynamical equa-
tions are used instead of the 1D map approximation. In coupled systems double Feigenbaum'’s
point and bicritical behavior are found and studied. Scaling properties that are the same as in
two logistic maps with a unidirectional coupling are illustrated. '

1. Introduction

Many nonlinear systems exhibit transition to chaos
according to Feigenbaum’s scenario via the period-
doubling bifurcation cascade. The simplest repre-
sentative of this class is the logistic map

(1)

In this example the period-doubling bifurcation
sequence A = 0.75, 1.25, 1.36809... converges to
the limit value A\, = 1.4011552... which is called
a critical point. This is usually referred to as a
threshold of chaos. Feigenbaum has discovered that
the remarkable properties of universality and scal-
ing are valid at the critical point and in its neigh-
borhood [Feigenbaum, 1978, 1979]. In state-space
(the z axis) and in the parameter space (the X axis)
self-similar patterns can be detected. They repro-
duce themselves under rescaling with the universal
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Feigenbaum’s constants ¢ = —2.5029... and § =
4.6692..., respectively (Fig. 1). Feigenbaum has
also developed the appropriate theoretical tech-
nique, the remormalization group (RG) approach,
which gives an explanation of the universality and
scaling phenomena.

For a multi-parameter analysis of transition to
chaos, we must study the parameter space of dimen-
sion N,, where NN}, is the number of control parame-
ters. The presence of Feigenbaum’s scenario means
that we observe a series of codimension-1 surfaces in
the parameter space. The period-doubling bifurca-
tions occur at these surfaces, and they converge to a
limit called Feigenbaum critical set; which is also a
codimension-1 surface. (Depending on N, we may
have a Feigenbaum’s surface, curve, or point.) How-
ever, the multi-parameter analysis is much more
complicated. For example, in the two-parameter
case the boundary of chaos may contain not only
the Feigenbaum’s critical curves but also special
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Fig. 1. General idea of scaling (a) and its manifestation in the dynamics of the logistic map. Attractor pictured in the iteration
diagram (b) exhibits a Cantor-like structure that reproduces itself at each second step of magnification by the universal factor
lap| = 2.5029.... In (c) the pattern of the one-dimensional parameter space (A axis) is shown.. Colors represent different
periods (marked by numbers) for regular stable motions. The black region corresponds to chaos and unresolved high-period
cycles. The period-doubling accumulation limit — Feigenbaum’s critical point — is located exactly at the center. The
topographic pattern is reproduced under magnification by the factor § = 4.6692 and by doubling all characteristic timescales.

critical points of codimension-2: In a neighborhood  critical curves (whose occurrence is revealed by two-
of such a point the scaling properties are differ- parameter analysis), and new types of behavior at
ent from Feigenbaum’s. For three-parameter sys- critical points of codimension-3. As we increase the
tems we may find Feigenbaum critical surfaces, number of control parameters, new types of critical
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behavior emerge that must be taken into account
as generic phenomena.

We suppose that the dynamical behavior at
each of these critical sets of different codimensions
allows an RG analysis and gives rise to a class of
quantitative universality and scaling. If this is the
case, the parameter space topography near the crit-
ical point (curve, surface) will be universal and will
depend only on the type of criticality. This param-
eter space pattern may appear in many systems of
different nature and may be considered as a multi-
parameter generalization of the concept of “road to
chaos” or “scenario”.

This research program on the “theory of multi-
parameter criticality” goes back to A. Poincaré. He
supposed that in mathematical disciplines we have
to consider phenomena in an order of increasing
codimension: At first, only the generic case, then
the cases which appear typically in one-parameter
families, then the typical cases when two param-
eters are involved, and so on. In bifurcation the-
ory and catastrophe theory, powerful mathemati-
cal foundations have been developed using such an
approach. However, in studying multi-parameter
criticality we have to use (at least for now) numeri-
cal calculations, in addition to some essential ideas
from the RG analysis.

We already know a number of non-Feigenbaum
examples of period-doubling criticality: In 1D maps
(bimodal and with cubic inflection point [MacKay
& van Zeijts, 1988; Kuznetsov et al., 1993b:
Kuznetsov et al., 1994a, 1994b]), in area-preserving
2D maps [Helleman, 1980; Eckmann et al., 1982;
Lichtenberg & Lieberman, 1982], in non-invertible
2D maps (among them in a system of two 1D maps
with a unidirectional coupling) [Bezruchko et al.,
1986; Kuznetsov et al., 1991, 1993a; Kuznetsov &
Sataev, 1992|. Until now, most examples on this
subject are concerned with model systems, such as
artificially constructed maps. On the other hand,
Feigenbaum’s criticality has been observed in a large
number of real physical systems and differential
equations. So, the fundamental question for the
theory of multi-parameter criticality is: Do the non-
Feigenbaum critical situations occur in real physical
systems as well as in contrived abstract maps? We
discuss this question here. The basic example will
be Chua’s circuit, which is a remarkable proving
ground for a variety of ideas and approaches in non-
linear dynamics [Chua et al., 1986; Madan, 1993].
In Sec. 2 we compare three methods which have
been used to investigate various aspects of Chua’s

circuit: Differential equations, exact 2D Poincaré
map, and approximate Chua's 1D map. We dis-
cuss here Feigenbaum’s critical behavior of Chua’s
circuit, which represents one of the simplest case
of criticality and a paradigm for further consider-
ations. In Sec. 3 we find in Chua’s system some
codimension-2 criticality types known earlier only
for 1D bimodal maps. In Sec. 4 we show that two
Chua’s systems may be used to obtain the criticality
types discovered in two 1D maps with a unidirec-
tional coupling.

2. Chua’s Circuit: Dynamics in
Terms of Differential
Equations and Maps.
Feigenbaum’s Criticality
in Chua’s System

Chua’s circuit is a simple electronic system which
contains a nonlinear resistor (Chua’s diode) with
a piecewise-linear characteristic [Chua et al., 1986;
Madan, 1993]. The dynamics is governed by the

equations
dx

T = aly = k=),

dy
=~ — 2
+ r—y+z, (2)

dz

a —By.-
where z, y, 2z are dynamical variables, o and 8 are
normalized dimensionless parameters, and h(z) is a
function chosen in accordance to Chua et al. [1986]

in the following form:
h(z)=(1+bzx+a—-b,z>1,
=(1+a)z, ~1<z<1,
=(1+bzxr—-a+b, z<1, (3)

where traditionally the parameters a and b are fixed:
a=-8/7and b= —5/7. )

Depending on a and 3 the system (2) exhibits
a variety of periodic and chaotic regimes. The dy-
namical behavior may be best summarized by plot-
ting a “geographical map” in the parameter plane.
In Fig. 2 such a diagram is presented from a com-
puter solution of Egs. (2), in addition to some typi-
cal portraits of attractors calculated at some param-
eter points. (We use a modified parameter plane
(¢/, B) with @/ = a = —0.6803 simply for better vi-
sualization.) Different colors show domains of dis-
tinct stable periodic motions. The black sea re-
gion is occupied mostly by chaos, except for rather
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Fig. 2. Topography of the parameter plane for Chua’s system (2) and portraits of attractors in the projection onto the (z, y)
plane. Colors in the parameter plane represent distinct stable periodic regimes: green — period 2T, yellow — 47, violet - 8T,
red — 167, pink — 6T and light blue — 12T, where T is the basic period which depends slightly on the parameters o' and 3.
The black area is occupied mostly by chaos. Top portraits of the attractors correspond to chaos (left) and the threshold of
chaos (right). The other attractors correspond to periodic motions.
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small domains (not shown) corresponding to cycles
of longer periods. If we vary only one parameter
of the circuit, we will move apparently along a cer-
tain path (a one-parameter curve) in the parameter
plane. The typical scenario of transition to chaos in
such a case is a classic period-doubling cascade. The
attractors shown in Fig. 2 correspond to only a few
sample parameter points of the evolution from pe-
riodicity to chaos along the vertical line o' = 0.622.

Now let us consider Poincaré’s idea of using
maps instead of differential equations. In the 3D
state space of Chua’s circuit (z, y, 2) we select a
surface (plane) in such a way that it would intersect
transversally the flow of phase trajectories (Fig. 3).
Taking any point in the cross section, we can trace
the orbit emanating from this point until it again
visits the surface at some other point. The associ-
ated 2D mapping of the surface into itself is called
a Poincaré map. Now we may set aside the initial
system (differential equations) and use the Poincaré
map. It reproduces the dynamics exactly (we did
not use any approximations) but details of the dy-
namics between subsequent visits of the Poincaré
surface are omitted. In general, the Poincaré map
can only be constructed numerically, but for Chua’s
circuit it was found analytically by Chua et al.
[1986] (see Appendix 1).

In this paper we shall use the terminology
Chua’s system to mean either the differential equa-
tions (2), or its exact 2D Poincaré map.

In Fig. 3 we show several plots of attractors for
Chua’s system (2) and the location of the Poincaré
section according to Chua et al. [1986]. The inter-
sections of the trajectories with the Poincaré surface
are shown on the right-hand side.

It appears that for the chosen parameter val-
ues the dissipation in Chua’s system is strong. This
means that the contraction of an infinitesimal phase
volume is quite large over the time period between
subsequent visits of the Poincaré surface. This cir-
cumstance makes it possible to go from the exact
to an approximate description of the dynamics in
terms of a 1D map.

Due to the strong dissipation, the points of
the attractors on the Poincaré section of Fig. 3 are
localized along rather narrow and stretched strips.
Let us define the coordinates on the Poincaré sur-
face in such a way that the X-axis is directed along
the strip, and the Y axis transversal to it. Then the
exact 2D Poincaré map

X'=G(X,Y), Y =FX,Y), (4)

may be approximated by Chua’s 1D map
X'=G(X), (3)

where G(X) = G(X, O), whose analytical repre-
sentation is rather cumbersome (see Chua et al.
[1986]; Genot [1993], and Appendix 1).

It is clear that the form of the G(X) function
depends on the parameters a and (3 from the origi-
nal Eq. (2). In Fig. 4 we reproduce again the topog-
raphy of the parameter plane, but now for Chua’s
1D map. One can see an excellent correspondence
with Fig. 2: It seems impossible to find visible dif-
ferences. Several iteration diagrams are presented
for this 1D map from selected sample points on the
parameter plane. Observe that the trajectories in
Fig. 2 and the diagrams in Fig. 4 are qualitatively
identical.

We see from Fig. 4 that the dynamics of the
1D map evolves in a neighborhood of the quadratic
extremum. Hence, it is not surprising that the clas-
sic period-doubling scenario occurs. In Appendix 2,
we reproduce briefly the RG analysis for 1D maps
(it will be necessary also for the next section).
Feigenbaum’s universality appears due to the fol-
lowing fact: Under appropriate variable changes, at
the critical point we obtain a convergence of the 2*-
fold iterated maps to the limit function g(z). This
function is the fixed point of the RG transforma-
tion (or doubling transformation). This means that
g(x) satisfies the following Feigenbaum’s functional

equation
s@)=ag (9 (3)) ©)

where a = —2.5029.... The dynamics of small per-
turbations of this fixed point under the doubling
transformation is governed by a unique eigenvalue,
the universal Feigenbaum’s constant § = 4.6692. ...

It is important to note that for the exact
description of dynamics in terms of differential
equations, or its associated 2D -Poincaré map,
the quantitative universality of period-doubling
cascade remains valid. The mathematical proof of
Feigenbaum’s conjecture was given by Collet,
Eckmann & Koch [1981].

In Table 1, we give the period-doubling bifur-
cation values of 3 at the line o’ = 0.622, both for
Chua’s 1D map and for exact equations. Also the
precise coordinates of the critical points are pre-
sented there. Figure 5 demonstrates the universal
convergence law of the bifurcation sequence: In log-
arithmic scale, the points relating to Chua’s system
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Fig. 3. Portraits of attractors for Chua’s system (2) (left column), shown with the position of Poincaré section according
to Chua et al. [1986]. The right column shows figures appearing in the cross section. Note that the points on the Poincaré
section are located along narrow strips due to strong dissipation.
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Fig. 4. Topography of the parameter plane for Chua’s 1D map and iteration diagrams at some particular points. Colors in
the parameter plane represent distinct stable periodic regimes: green — period 2, yellow — 4, violet — 8, red — 16, pink - 6
and light blue — 12. Top iteration diagrams correspond to chaos (left) and threshold of chaos (right). The other diagrams
correspond to periodic motions.
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Table 1. Parameter @ values for period-
doubling bifurcations for Chua’s system

and 1D Chua’s map with o' = 0.622.

N 1D Chua’s Map  Chua’s System
2 3.666848032 3.665888963
4 3.953550920 3.952745109
8 4.020713819 4.019915529
16 4.035606822 4.034808200
32 4.038816816 4.038018012
64 4.039505438 4.038706590
128 4.039652968 4.038854110
256 4.039684567 4.038885706
Be 4.039693179 4.038894317
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Fig. 5. Illustration of Feigenbaum’s convergence law for lo-
gistic map (1) and Chua’s system (2): Doubling bifurcation
number versus logarithm of differences of subsequent bifur-
cation values.

and to the logistic map fall in parallel straight lines
(the slope is expressed through Feigenbaum’s 6).

Figure 6 shows the topography of the parame-
ter plane for the exact Chua’s equations (2). Two
small areas are shown with magnification to illus-
trate Feigenbaum’s scaling. One can see that the
same one-dimensional pattern appears when we in-
crease the magnification by a factor equal to 6. The
only difference consists of a doubling of time scales
for all observed regimes.

In Fig. 7(a), an iteration diagram is presented
for Chua’s 1D map calculated at its critical point.
A small inset of the picture is shown on the right
with a magnification equal to Feigenbaum’s univer-
sal factor 2.5029.... Observe that the configura-
tion of “strips” forming the attractor is self-similar

and repeats itself at each second step of magnifi-
cation. Actually, this is a Cantor-like set that was
studied by many authors. Its Hausdorff dimension
was found to be D = 0.538040. .. (See, for example,
Halsey et al. [1986).) In Fig. 7(b) a phase portrait is
shown for Egs. (2), calculated at the critical point
(the parameters a and § are slightly different from
the case of Chua’s 1D map). We see again the same
Cantor-like structure reproducing itself under mag-
nification. Apparently, the Hausdorff dimension of
this attractor is equal to D + 1. (An integer 1 is
added to D due to the presence of a longitudinal
direction, along the phase trajectories. For the cor-
responding set of points observed in the Poincaré
section the dimension would be equal to D.)

We restrict ourselves to this brief discussion of
Feigenbaum’s critical behavior. This is the simplest
and a well-studied type of period-doubling critical-
ity. For further references in this paper, we desig-
nate it by a symbol F. In particular, we will use
this subscript to denote the Feigenbaum’s universal
numbers.

3. Codimension-2 Critical Points
Intrinsic to 1D Bimodal Map
in Chua’s System

Let us return to Fig. 2 where the parameter plane
topography was shown for Chua’s system. Observe
that the boundary of chaos in the parameter plane
is a rather complicated object (see also [Komuro
et al., 1991, Carcasses et al., 1991; Kuznetsov
et al., 1993b]. There exist many cusps, and each
cusp gives rise to two emanating fold lines that cor-
respond to hard transitions (jumps). Along folds
narrow strips of periodicity penetrate far into the
black sea that is occupied by chaos.

What peculiarities of dynamics are responsible
for such a nature of chaos boundary? As we have
mentioned, the same picture (at. least, visually) is
demonstrated also by Chua’s 1D map. For 1D maps
such a picture appears typically if there are two ex-
trema in the region of the 1D state space where the
dynamics evolves. Such maps are called bimodal.
Looking at the plots of Chua’s 1D map (Fig. 4) one
can conclude that this is indeed the case.

Now let us review the principal ideas for an-
alyzing period-doubling in bimodal 1D maps. It
was developed by Fraser & Kapral [1984], MacKay
and van Zeijts [1988], and particularly for Chua’s
map by Kuznetsov et al. [1993b]. The so-called



Fig. 6.

double superstable cycles play an important role
here. These cycles occur at particular points in the
parameter plane at which the periodic orbit con-
tains both extremum points of the 1D map. If the
maximum is mapped to the minimum after p itera-
tions, and the minimum is mapped to the maximum
after ¢ iterations, then we call the orbit a (p, ¢)-type

b)

Iteration diagram for Chua’s 1D map (a) and portrait of attractor for Chua’s system at their Feigenbaum’s critical
points. A Cantor-like self-similar structure is seen under increasing resolution. The magnification factor for parts shown
separately is Jap| = 2.5029. The pictures reproduce itself at each second step.

double superstable cycle. Its period is evidently p+q.
The point in the parameter plane where such a cy-
cle exists may be obtained at the intersection of
two curves, u(p) and d(q). The curve u(p) is de-
fined by the condition that starting from the max-
imum the orbit arrives at the minimum after p it-
erations. Conversely, for the curve d(g), the orbit
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Fig. 7. One-parameter scaling in a neighborhood of Feigenbaum’s critical curve in the parameter plane of Chua’s system (2).
The magnification factor for parts shown separately is §r = 4.6692.

traverses from the minimum to the maximum after
g steps. Moving in the parameter plane from a point
of double superstable cycle along the curve u(p) we
observe along this curve a period-doubling bifurca-
tion, and after that we find a new point where again
a double superstable cycle appears. Its type will be
(p, p+ 2¢). In addition, moving along the curve
d(q) we should find a new double superstable cycle
of type (2p + ¢, q). Each of these two points again
gives rise to two new branches u and d, and so on.
Hence, in the parameter plane we obtain a binary
tree consisting of u and d curves. The branching
points of the tree correspond to double superstable
cycles. In Fig. 8 we show the configuration of this
tree, calculated numerically from Chua’s 1D map.

To deal with different itineraries on the binary
tree we introduce a coding system with two symbols
U and D. An itinerary with any arbitrary code
UDUDDU... corresponds to a unique route along
the binary tree. The double superstable cycles that
appear on this route are of the types that may be
found from the code according to the rule:

Pk4+1=pPk , qr+1=2qr+pi, if the subsequent symbol is U,
Pk+1=2pPk+qr , qit+1=¢qk, if the subsequent symbol is D.
(7)

For an infinite UD-string the double superstable
cycles obtained from this rule correspond to a se-

quence of points in the parameter plane that con-
verges to a certain codimension-2 critical point. The
law of period-doubling accumulation along the path
to such a point differs from that of Feigenbaum’s
route to chaos.

Universality and scaling properties for codi-
mension-2 critical points may be found from the RG
analysis developed by MacKay & van Zeijts [1988].
A simplified version based on a straightforward ex-
tension of Feigenbaum’s approach was considered in
our previous work [Kuznetsov et al., 1993b]. It is
summarized briefly in Appendix 2.

The simplest kind of codimension-2 critical be-
havior takes place for UD-codes having a tail with
a unique repeating symbol, U or D. Such codes
correspond to the so-called tricritical points which
were designated by a symbol T [Chang et al., 1981;
Fraser & Kapral, 1983; Kuznetsov, 1994]. It may
be concluded from the binary tree construction that
the tricritical behavior occurs when some iteration
of the original map accepts a quartic extremum
rather than a quadratic one. Tricritical points ac-
tually appear to be the end points of Feigenbaum’s
critical curves. Tricriticality is associated with cer-
tain (different from Feigenbaum’s) fixed point of
the RG equation (6) with a scaling constant ¢ =
—-1.6903.... In the parameter plane of the 1D
map two-parameter scaling takes place near a
tricritical point. This means that in appropriate
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Fig. 8. Location of the binary tree in the parameter plane of Chua’s 1D map superimposed upon the background of the

topography reproduced from Fig. 4.

coordinates the local topography reproduces itself
under a scale changed by certain factors, 6; =
7.284... and § = 2.857.... Under such magnifi-
cation we should see the same topographic pattern
but with a doubling time scale in all regimes.

If a code tail has a period K = 2, 3, 4... then
the behavior at the critical point is associated with
a saddle solution of the RG equation (A2.2) that is
a period-K cycle. In this case the parameter plane
also has a self-similar topography near the critical
point. Scaling factors depend on the UD-code, and
the similarity of the dynamics is observed for time
scales multiplied by a factor of 2%.

Finally, random UD-sequences correspond to
non-periodic saddle solutions of the RG equation.
They give rise to critical points that do not ex-
hibit a self-similar local topography in the param-
eter plane. Only scaling in a statistical sense may
be observed. We will not discuss such cases here.

It is important to note that a full set of period-
2% unstable cycles exists at the critical points.
These are the cycles that have appeared and lost
their stability during a period-doubling cascade

along a particular route in the parameter plane to-
wards a critical point. For Feigenbaum’s critical
points these cycles are characterized by the univer-
sal value of the multiplier ur = —1.6011913....
For codimension-2 critical points the behavior of
the multipliers for period-2* cycles depend on the
UD-code [Kuznetsov et al., 1993b]. Namely, each
pattern of K symbols U and D (one period of the
code) gives rise to a certain set of K universal mul-
tipliers for cycles of period-2¥, 2k+1 .. 2k+K (In
general, not all of these K numbers are distinct.)
Using the RG equation solution we obtain precisely
the following values of these universal multipliers:

— for tricritical codes, ...UUUU... and
...DDDD...
ur = —2.05094049 ... , (8
— for period-2 code ...UDUD...
py = —2.27516954 ... ,
(9)

iy = —2.27516954. . . ,
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— for period-3 code ... UUDUUD...

p1 = —2.14347576. ..,
p = —2.25392276. .. ,
ps = —2.27787495 . .. |

(10)

Now we are ready to address the main question
of this section: Do the non-Feigenbaum criticality
types survive when we use the exact Chua’s equa-
tions or the exact Poincaré 2D-map instead of the
approximate Chua’s 1D map?

It seems difficult here (if possible at all) to
adopt the search procedure for codimension-2 criti-
cal points that was used for 1D maps. So, we have
to find another approach. Let us construct arti-
ficially a map containing an additional parameter
g; for e = 0 the map must reduce to Chua’s 1D
map, and for ¢ = 1 it has to converge to the exact
Poincaré 2D map. Using notations (4) and (5) we
may write the new map as

X'=(1-e)G(X)+eG(X), Y =cF(X,Y).

(11)

Suppose we have found the parameter values o
and f for a codimension-2 critical point of Chua’s
1D map: So, we know (o, 3) for the map (11) at
€ = 0. Then we increase ¢ from 0 to 1 and try to
trace the critical point by tuning the control pa-
rameters « and (3. These parameters are selected
permanently to make the main multipliers for suffi-
ciently long period-2% and 2¥*! cycles equal to the
corresponding universal values. To be sure of the
result, it is desirable to repeat the calculations for
larger cycle periods and verify the convergence. Our
calculations show that this procedure works well for
codimension-2 critical points except the tricritical
ones.

From a formal point of view, introducing a sec-
ond dimension in our map (11) means that some
perturbation appears in the solution of the RG
equation. In general, we have to suppose that all
unstable eigenvectors (modes) are present in this
perturbation. If we have two unstable modes then
the perturbation may be compensated by an appro-
priate shift of two control parameters a and 8. In
other words, introducing a second dimension leads
in this case only to a small displacement of the crit-
ical point. In Table 2, we give the parameter values
for some critical points of Chua’s system. Figure 9
shows their location in the parameter plane.

We can carry out some calculations to demon-
strate that the scaling properties of the universality
classes intrinsic to bimodal 1D maps really occur at
the above critical points of Chua’s system.

In Table 2, the values of the main multiplier
are presented for cycles of period-2X at the codi-
mension-2 critical points. For sufficiently large K
we see that their behavior coincides well with that
expected from the RG analysis.

In Fig. 10 portraits of critical attractors are
shown for Chua’s system at the critical points
associated with period-2 and period-3 codes. We
demonstrate that the structure of “strips” forming
an attractor is reproduced under subsequent mag-
nification by corresponding factors obtained from
the RG analysis. We believe that the Hausdorff di-
mensions of these attractors are equal to D+1 with
D = 0.643 and 0.616, respectively (see Kuznetsov
et al. [1993b] where the results were given for Chua’s
1D map).

In Fig. 11, we show an example of self-similar
local topography near the codimension-2 critical
point having a period-2 code UDUDUD... (a¢c =
3.390136813, B¢ = 4.054379240). For this example
we use the following special scaling coordinates

a = ac + 0.54C1 + 0.67C,
B = Bc + 0.83C1 + 1.00C,

(The coefficients in (12) do not differ notably
from that used in Kuznetsov et al. [1993b], but the
difference in a¢ and B¢ is essential.) In each of
these pictures a critical point is located exactly at
the center. A small box enclosing this center is
marked and shown on the right side under mag-
nification. The magnification factors are chosen to
be equal to the eigenvalues found from the RG anal-
ysis (6; = 35.928... and 62 = 14.595...). Remark-
able reproduction of the topographic patterns un-
der magnification confirms the assumed nature of
the observed criticality.

Now, let us consider what is happening with
tricritical points. In this case the solution of the
linearized RG equation gives three essential eigen-
vectors (see Appendix 2). Since we have a bimodal
1D map, any variation of two control parameters
induces only perturbations that contain two modes
with eigenvalues 6; = 7.284... and 82 = 2.857...
[Kuznetsov, 1994]. But introducing a second di-
mension gives rise also to a third unstable mode
that has an eigenvalue 63 = —4.829.... It is impos-
sible to compensate for this contribution by varying
the parameters of the 1D map: They influence only

(12)
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Table 2. Codimension-2 critical points and multipliers of cycles in
Chua’s 1D map and Chua’s system.

Code UDUDUDUDU...

Chua’s 1D Map Chua’s System Universal
Cycle a = 3.39053346530 o = 3.39013681285 Multipliers
Period (3 =4.05493267746 (3 = 4.05437923971 from RG
2 —2.00625 —2.00619
—2.40316 —2.40306
8 —2.28483 —2.28479
16 —2.26394 —2.26396
32 —2.27732 —2.27732
64 —2.27538 ~2.27537
128 —2.27495 —2.27509
256 —2.27527 —2.27511
512 —2.27480 —2.27555 —2.27516954
Code UUDUUDUUD...
Chua’s 1D Map Chua’s System Universal
Cycle a = 3.4725066554 o = 3.47201051860 Multipliers
Period B = 4.1864354905 B = 4.18571434895 from RG
2 —2.11587 —2.11578
—2.18664 —2.18666
8 —2.17338 —2.17326
16 —2.24806 —2.24805
32 —2.27993 —2.27995
64 —2.14337 —2.14338
128 —2.25395 —2.25387 —2.25392276
256 —2.27887 —2.27781 —2.27787495
512 —2.14260 —2.14357 —2.14347576
Code UUUDUUDUUD. ..
" Chua’s 1D Map Chua’s System Universal
Cycle o =3.45202980985 o = 3.4514728976  Multipliers
Period B = 4.15724282857 B = 4.1564292083 from RG
2 —2.04008 —2.03986
—2.21220 —-2.21175
8 —2.25811 —2.25853
16 —2.15145 —2.15193
32 —2.25214 —2.25216
64 —-2.27836 —2.27828
128 —2.14349 —2.14348 —2.14347576
256 —2.25385 —2.25381 —2.25392276
512 —2.27683 —2.27665 —2.27787495
Code UDUUDUUDUU...
Chua’s 1D Map Chua’s System Universal
Cycle a = 3.38738457711 a = 3.3869901672 Maultipliers
Period 3 = 4.05035685993 B = 4.0498068716 from RG
2 —1.99745 -1.99740
—2.24976 —2.24969
8 —2.24186 —2.24186
16 -2.28851 —2.28849
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Table 2. (Continued)

Code UDUUDUUDUU...

Chua’s 1D Map Chua’s System Universal
Cycle a = 3.38738457711 o = 3.3869901672 Multipliers
Period B =4.05035685993 B = 4.0498068716 from RG

32 —2.14179 —2.14179

64 —2.25407 —2.25407
128 - =2.27778 -2.27777 —2.27787495
256 —2.14347 —2.14351 -2.14347576
512 —2.25511 —2.25495 —2.25392276

Code UDDUDDUDD...

Chua’s 1D Map Chua’s System Universal
Cycle a = 3.3523870919 o = 3.3520117584 Multipliers
Period 8 = 3.9963969715 B = 3.9958795311 from RG

2 —1.92006 —1.92000

4 ~-2.40030 —2.40012

—2.25962 —2.25966

16 —-2.13863 —2.13861

32 —2.25614 —2.25608
64 —2.27788 —2.27763 —2.27787495
128 —2.14351 —2.14255 —2.14347576
256 —2.25312 —2.24978 —2.25392276

4.7

UUDUUDUU..

UDUDUDU...
ﬁf”” UDDUDDUDD

3.5
0.62 o 0.64

Fig. 9. Sketch of the parameter plane of Chua’s system where the location of several codimension-2 critical points is shown.
The red square and triangles denote critical points corresponding to RG cycles of period-2 and -3, respectively.

the amplitudes of the first and second modes! So, Let us consider next the difference between
tricriticality does not survive. We have to conclude tricriticality and other codimension-2 types of
that it does not exist in an exact sense in Chua’s  critical behavior using a rather heuristic argument.
equations as a codimension-2 phenomenon. Let us suppose that we obtain some definite
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Fig. 10. Critical attractors of Chua’s system (2) at the codimension-2 critical points. Self-similarity of the attractor structure
is illustrated by showing separately parts of the pictures with increasing resolution, and seen under increasing resolution. The
magnification factors |a| are equal to 4.8626 ... and 8.03026 ... for (a) and (b), respectively.

codimension-2 critical situation in a 2D map F :
(z, y) — F(z, y). We can define the dynamics over
2% jterations as a composition of two maps, a p-
fold and g-fold iterated maps FP and F, respec-
tively, and the pair (p, ¢) is the kth term of the
sequence given by the rule (7). In the case of a dis-
sipative system it is reasonable to assume that the
Jacobian of the map F has an order of magnitude
b < 1. Then, the Jacobians of the maps F? and F*?
will be of order b? and b7, respectively. If both num-
bers p and q tend to infinity when k =— oo, both
Jacobians will tend to zero. This means that both
F? and F9 will tend to 1D maps. This is precisely
the case when the theory of bimodal 1D maps de-
scribes adequately the critical behavior of the orig-
inal system in the asymptotic situation as k — oo.

The above condition is, apparently, valid for all in-
finite UD-codes, except the tricritical ones.

On the contrary, in the tricritical case, when
we have a repeated symbol U (or D) in the code,
the number p (or ¢) remains constant with increas-
ing k. This means that one of the two maps F?
(or F9) retains a finite Jacobian b = b (or b = b%)
and does not reduce to a 1D map when & — oo.
We call this map a non-1D-component. In a large-
period asymptotic limit the dynamics is described
by the composition of the non-1D-component
and the 1D map. This composition itself appears
to be a 1D map, but in general its extremum will
not be quartic. {As an example, we may consider
a composition of two maps F : (z,y) — (z? -
by, z) and G : (z, y) — (%, x). The resulting map
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Fig. 11. The universal two-dimensjonal pattern of the parameter plane topography near the critical point with the period-2
code UDUDUD... for Chua’s system. The critical point is located exactly at the center of the pictures. Scaling coordinates
(C1, C3) are used (see text). The picture on the right shows a small box after magnification by §; = 35.928... and 6; =
14.595. .. along the horizontal and vertical axes, respectively. For the left picture: green — period 47, yellow — 8T, violet —
16T, red - 32T, pink — 127, light blue — 24T, where T is a basic period. For the figure on the right all periods corresponding

to the same colors are quadrupled.

FG: (z,y) — (z* — bz, z) is actually 1D, namely
z — z* —bz. But the quartic extremum, exists only
at b=0.)

However, let us consider a tricritical code which
has an alternating UD-string of r symbols in front
of the tail of repeating Us (or Ds). In such a case
the Jacobian of the non-1D-component is of the or-
der b, = bmi“(P’q), and for small b decreases with
r very rapidly. The perturbation of the multiplier
for a period-(p + ¢) cycle due to the presence of
the second dimension will be of the same order,
as well as the third mode amplitude in the solu-
tion of the linearized RG equation. During subse-
quent period-doublings this contribution increases
as by (63)%, where §3 = —4.829. .., and k is the num-
ber of doublings. But even for r = 2, 3, the initial
amplitude may be so small that one observes a very
large number of period-doubling bifurcations be-
fore a notable deviation from tricritical behavior ap-
pears. (The intrinsic sequence of period-doublings
begins only after the rth bifurcation because the
previous iterations are influenced by the initial por-
tion of the UD-code. Features of tricriticality must
not be expected at iteration numbers less than 27.)

We can estimate the number N, assuming
b-163)N =1, so

—log b,

N~ logbr
log |63

(13a)

or
N = min(p, q)N,, (13b)

where N, = (—log b)/(log|63|) is the characteristic
number of the period-doubling bifurcations corre-
sponding to the destruction of the “basic” tricriti-
cal situation with the code UUUUU.... The mean
value of the Jacobian for Chua’s system in the pa-
rameter area of our interest is & = 3.5 - 1074, so
N = 5. Then for some simple tricritical codes we
have:

UUUUUU..., b.=b, N==5:

UDDDDD..., b =), N=15;

UDUUUU..., b.=b, N==25;
and so on.

The following calculations may help illustrate
the destruction of two-parameter tricriticality. At
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first, we try to find such parameter values o and 3 to
make the main multipliers y; and pi4; for cycles of
period 2¥ and 25! equal to the universal tricritical
constant pr = —2.0574.... Then at the same point
we evaluate also the multiplier p42 for the period-
2k+2 cycle. The procedure is repeated for increasing
k to observe the behavior of the calculated pgs.
Only for a 1D map we find actually that these mul-
tipliers converge to the same ur (see Table 3). For
2D-maps an increasing deviation is observed from
this value, alternately up and down. Certainly, it
reveals a contribution of the third mode (with neg-
ative eigenvalues). Note that the order of N was
evaluated correctly.

However, in physical experiments it would be
unrealistic to speak about observations of more than
4-6 period-doubling bifurcations. So, from a prac-
tical point of view, the behavior of being observed
may not be distinguishable from tricriticality
(except maybe the code UUUU...). Moreover,

according to our evaluation, it may be difficult to
detect the destruction of tricriticality even in pre-
cise computer calculations. Tricritical behavior ap-
pears in these cases as intermediate asymptotics.
We call such behavior pseudo-tricritical. Note that
the parameter values for this situation may be de-
fined in principle only with a finite accuracy. Nev-
ertheless, this precision may be very high. With
this reservation we can speak of pseudo-tricritical
points. (In a pure sense they are not points: One
has to imagine rather a very small localized area in
the parameter plane and deal with such timescales
that do not resolve the interior structure of this
area.) In Fig. 12 we show an example of a pseudo-
tricritical attractor for Chua’s system at the point
o = 3.382469913, § = 4.043044760. We demon-
strate the fine structure of the attractor by show-
ing a number of pictures with increasing resolution.
The factor of magnification is taken equal to the tri-
critical scaling constant 1.6903.... We conjecture

Table 3. Multipliers of cycles: Convergence at tricritical points of Chua’s 1D map and

divergence from Chua’s system.

Code UUUUUUUUU. ..
Chua’s 1D Map

Chua’s System

k a B8 Mkt2 a I} Bki2
2 3.430079828 4.124595158 —1.52642 3.429592279 4.123886268 —1.50571
3 3.426890291 4.119881278 —=1.91796 3.426291905 4.119008902 —2.00741
4 3.426510760 4.119315946 -2.01283 3.426165396 4.118820467 —1.57859
5 3.426468878 4.119253404 —2.04010 3.425686367 4.118105199 —3.64479
6 3.426464561 4.119246952 —2.04775
Code UDDDDDDDD...

Chua’s 1D Map Chua’s System
k a g8 Pk+2 a B Bk+t2
3 3.326462742 3.957169248 —1.40226 3.326102885 3.956677005 —1.40282
4 3.324849419 3.954734357 —2.17048 3.324491683 3.954245421 —2.17045
5 3.324978268 3.954928594 —2.01965 3.324620425 3.954439488 —2.01966
6  3.324966741  3.954911224  —2.05821  3.324608908  3.954422134  —2.05821
7 3.324967612 3.954912537 ~2.05602 3.324609856 3.954423563 —2.04923
Code UDUUUUUUU. ..

Chua’s 1D Map Chua’s System
k a B P42 o ¢l Hi+2
3 3.383031029 4.043842842 —1.90629 3.382638800 4.043296428 --1.90643
4 3.382880433 4.043618446 —2.01094 3.382488416 4.043072356 -2.01079
5 3.382859737 4.043587442 —2.06470 3.382467651 4.043041250 —2.06471
6  3.382862527  4.043591627  —2.04485  3.382470442  4.043045437  —2.04479
7 3.382862111 4.043591002 —2.04741 3.382469991 4.043044761 —2.04738
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Fig. 12.

Attractor of Chua’s system at a pseudo-tricritical point. Self-similarity of the attractor structure is valid only up to

some finite level of resolution that is not achieved in the computations. Magnification factor |a| = 1.6903....

that this attractor has a self-similar structure only
up to a finite level of resolution which is not attained
in our computations. '

The above situation is more of a rule than an
exception in the world of fractals: Self-similarity
appears always in a restricted interval of scales. In
any case we have to emphasize the difference from
Feigenbaum’s criticality: The destruction of scaling
invariance in small scales appears to be due to pure
dynamical reasons.

4. Critical Behavior in a System
of Two Chua’s Circuits with a
Unidirectional Coupling

In previous works (see Kuznetsov et al. [1991,
1993a]) transition to chaos was investigated in a
system of two logistic maps with an unidirectional
coupling:

Tnt1=1—Axd, yn41 =1-Ay2 — Bz2, (14)

where z and y are dynamical variables, A and A are
control parameters for the first and second subsys-
tems, respectively, and B is the coupling constant,
assumed to satisfy 0 < B < A. In this paper we
shall deal with two interesting critical situations in
a system with unidirectional coupling. The first one
is the double Feigenbaum point DF and the second
is the bicritical point B.

For zero coupling (B=0)and A=A = )\¢c =
1.401155... both subsystems exhibit Feigenbaum’s

criticality. However, a question of interest is how
does the topography of the parameter space (A,
A, B) look near this double Feigenbaum point and
what are its scaling properties.

The bicritical type of behavior appears when
one tunes parameters A and A to reach a thresh-
old of chaos in both subsystems while keeping the
coupling constant. For example, taking B = 0.375
we have found that the bicritical point is located
at A = 1.401155..., A = 1.124981403 (Kuznetsov
et al. [1991]). A remarkable fact is that the scaling
properties of bicriticality do not depend on the par-
ticular value of coupling. They are universal and
relate to a definite fixed point of RG equations that
are a generalization of (6) for two systems with a
unidirectional coupling.

In Appendix 3, we describe briefly the RG anal-
ysis for DF and B types of critical behavior.

Now let us discuss in some detail the particular
nature of coupling in Egs. (14). We can rewrite
them in an equivalent form i

Tpy1 =1 — Az2,
P D
y‘n+1=1—Ayn—B(mn_yn)7

where A’ = A+B. It is clear that for A’ = ) the sys-
tem has an invariant set x = y. Let us consider the
evolution of small perturbations near the invariant
set. For the perturbation Z of the first subsystem
we have
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For the perturbation § = y — z, shifting the
second subsystem from the invariant set, we obtain
for A'= )

Gnt1 = —2(A — B)Znin . (17)

Observe that the ratio §7/Z decays as (1—-B/A)".
We see that the influence of coupling is a tendency
to equalize the instant states of both subsystems.
For this reason we call such couplings dissipative
(see Pikovsky [1984], Kuznetsov & Pikovsky [1986],
Kuznetsov [1985]).

How could we organize analogous couplings for
two systems governed by differential equations, say

dx d
_=f(x)y7z)7 —yzg(x,y,z),
dt dt
P (18)
Z
e 2= ?
dt h(x’ y’ Z) *

Let us add to all the equations of the second
subsystem similar dissipative-difference terms:

dx
_d—tl = f(xl’ Y1, 21) )
d
—dyt—l = g(-’EI, n, zl)a
dz
—d"zl_ = h(.’l’l, Yi, 21),
(19)
divz
T f(z2, y2, 22) + e(x2 — 71),
d
S = g(o2, v2, 22) +<(v2 — ),
dzy
It h(z2, y2, 22) + (22 — 21),

In some sense the properties of these equations
are very similar to those of the model maps (14).
Again we have an invariant set in the state space,
that is 27 = 3, y1 = Y2, 21 = z2. For a small
perturbation of the first subsystem z = (%1, 1, Z1)
we obtain i
xT ~
— = M(x)x
where M is a matrix of partial derivatives of the
functions f, g, h. In a similar way, for perturbations
of the second subsystem near the invariant set, y =
(xa — 1, Y2 — Y1, 22 — 21) we find
ay
— =M(X)y +¢€y.
7 (x)¥ + €y

(20)

(21)

Comparing Egs. (20) and (21) one can see that
y(t) = x(t) exp(—et). So, the coupling forces the
non-uniform perturbations to decay more rapidly.
This is just our basic criterion for dissipative cou-
pling. If the individual subsystem (18) exhibits
a period-doubling transition to chaos we may ex-
pect in the coupled systems (19) the same types of
behavior as in the coupled maps (14).

Now let us choose Chua’s circuit as an ele-
mentary cell and add coupling according to our
prescription:

dx

e _ —h ,
L),

d

'-"i%l— =T — Yy + 21,

dz

"Zﬁ}' =—-bin,

p (22)
x

—Jtz = ag(ys — h(x2)) + e(x2 — 71),
d

_d?jt_% =xz2—Y2+22+e(y2—11),
% = —fays +e(z2 — 21).

In practice the unidirectional coupling in an
electronic system can be easily implemented via an
operational amplifier in the connection circuit. (See
experimental works of Bezruchko et al. [1986];
Anishchenko et al. [1986]; Johnson et al. [1995]).

~We believe that the expected universal properties

of critical behavior will not depend essentially on
the particular method of coupling.

Now we turn to an investigation of the critical
behavior in Eqgs. (22). Choosing arbitrary g = 10
we find a sequence of period-doubling bifurcation
values o} in an individual subsystem (see the left
column of Table 5). The Feigenbaum critical point
is located at a¢c = 6.542725993. So, the parameter
values a3 = ag = a¢ and € = 0 correspond to the
double Feigenbaum point for #1 = 82 = 10. Accord-
ing to results of the RG analysis (Appendix 3) we
must observe similar dynamical regimes in a neigh-
borhood of the DF point in the 3D parameter space
(a1, ag, €) if we renormalize a; —ac and a2 —ac by
a factor equal to §p = 4.6692. .., and ¢ by a factor
equal to 2. In Fig. 13, we show a cross section of
the parameter space by a plane a2 = ac. Observe
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that the topography of this parameter plane near
the DF point is really reproduced well under the
above rescaling.

Now we turn to a procedure for searching a bi-
critical point. For the same £, = 3 = 10 we take
arbitrarily a constant coupling parameter ¢ = 0.2
and consider the parameter plane (a3, asz) (Fig. 14).
Evidently, period-doubling bifurcations in the first
system occur at the vertical straight lines a; =
a1k. These lines correspond to a loss of stability
of period-2* cycles in the first subsystem. There is
one multiplier 4; equal to (—1) that relates to the
perturbations of the first subsystem. At the same

Table 4. Terminal point sequence
converging to the bicritical point in
two Chua’s systems with a unidirec-
‘tional coupling (Egs. (22), £1,2 = 10,

time for small ay the second subsystem exhibits a
forced response with the same period. This regime
is stable with respect to perturbations of the sec-
ond subsystem, since the corresponding multiplier
{2 has an absolute value less than unity. Let us
move up in the parameter plane along one of the
lines ay = ajx: We increase ag and trace the mul-
tiplier p2. At some point we observe that us also
becomes equal to —1. This means that we achieve
a threshold of instability in the second subsystem.
This point where both gy = —1 and g = —1 we call
a terminal point. Taking another bifurcation num-
ber k + 1 we obtain the next terminal point, and

Table 5. Main multipliers of period-
2F cycles at the bicritical point of two
Chua’s systems with a unidirectional
coupling: a; = 6.542725993307, az =
6.64680875, f1,2 = 10, £ = 0.2.

£=0.2).
N ay o2
2  6.503682576  6.626251829
4 6.534427453 6.642445754
8  6.540951444  6.645142689
16  6.542345864  6.646282931
32 6.542644382 6.646585909
64  6.542708309  6.646734076
128  6.542722000  6.646774157
256  6.542724932  6.646795959
6.542725993 6.64680875

2 —1.6010262 —1.17244707

4 —1.6011441 —1.15905841

8 —1.6012009 —1.17877276

16 —1.6011899 —1.17302502
32 —1.6011915 —1.18246344
64 -1.6011913 —1.17417212
128 —1.6011912 —1.18249718
256 —1.6011909 —1.17602951
512 —1.6011893 —1.18288097
1024 —1.601i816 —1.17888254

Fig. 13. The universal pattern of the parameter space topography in the cross section by coordinate plane a; = a¢ =
6.542725... in the neighborhood of a double Feigenbaum’s point in two of Chua’s system with a unidirectional coupling,
1 = B2 = 10. The horizontal axis corresponds to the control parameter of the first subsystem and the vertical axis corresponds
to the coupling parameter. The picture on the right shows a small box after magnification by 6; = 4.6692... and 63 = 2...
along the horizontal and vertical axes, respectively. For the left picture: green — period 27T, yellow —~ 4T, violet — 8T, red -
16T, pink — 6T, light blue — 12T, where T is a basic period. For the picture on the right all periods corresponding to the same
colors are doubled.
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Fig. 14. Parameter plane for two Chua’s systems with a unidirectional coupling, 81 = 82 = 10, £ = 0.2. The horizontal and
vertical axes correspond to control parameters of two subsystems, o, and a2, respectively. The location of bicritical point B

is shown.

so on. Coordinates of the terminal points in the
parameter plane are listed in Table 4 and clearly
demonstrate convergence. Evaluating the limit of
this sequence we find the bicritical point

a1 = oqc = 6.542725993,
Qo = Q9 = 6.6468087, (fOI’ g€ = 0.2, ,31,2 = 10) .

Now we may produce numerical calculations
aimed at illustrating the scaling properties of the
bicritical behavior. At the bicritical point the cy-
cles of period 2¥ must have asymptotically universal
multipliers gy = —1.60119... and pu» = —1.178855
[Kuznetsov et al., 1991]. In Table 5, we present data
for the system (22) at the bicritical point. One can
see that the multipliers really show a tendency to
converge to the above universal values.

In Fig. 15 the phase portraits are shown for
the bicritical attractor. The figures (a) and (b)
relate to the first and the second subsystem, re-
spectively. It is interesting to compare their scaling
properties. In the first plot, the Cantor-like struc-
ture reproduces itself under scale change with the
Feigenbaum’s scaling factor ap = —2.5029 ... while
for the second subsystem the special bicritical factor
b= —1.505318... must be used.

In Fig. 16, a plot is shown for the largest
Lyapunov exponent of the second subsystem A
versus the control parameter ay while the first

subsystem is kept at Feigenbaum’s critical point
o1 = aic. The Lyapunov exponent is negative for
small a; and starts to take positive values for a;
larger than asc. Hence the bicritical point corre-
sponds precisely to the threshold of chaos both in
the first and second subsystems. Scaling proper-
ties of the Lyapunov exponent are illustrated by
comparison of the initial plot with its own magni-
fied parts. For the ap coordinate axis the magni-
fication factor is taken to be equal to the eigen-
value §; = 2.3927... known from the RG analysis
(Appendix 3). For the A axis, the scaling factor is
2 (a ratio of timescales for similar regimes).

Figure 17 shows a part of the parameter plane
(a1, 2) near the bicritical point. This picture
also demonstrates scaling and reproduces itself
under magnification by the factors §; = 4.6692...
and 8, = 2.3927... for the axes «; and oy,
respectively.

5. Conclusion

The idea that multi-dimensional dissipative nonlin-
ear systems must exhibit the same universal fea-
tures as 1D maps at the onset of chaos is accepted
as a sort of self-evident thing after the works of
Feigenbaum [1978, 1979], Collet et al. [1981] and
others. However, for other types of multi-parameter
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Fig. 15. Attractor portraits for the first (a) and the second (b) subsystems at the bicritical point. Self-similarity of the
attractor structure is illustrated by showing separately parts of the pictures with increasing resolution. The magnification
factors are equal to |a] = 2.5029... and |b] = 1.5053..., respectively. The patterns of strips are repeated at each second step

of magnification.

period-doubling criticality, the question is found to
be more complicated and subtle. In particular,
tricritical behavior easily observable in bimodal
1D maps does not survive as a codimension-2
phenomenon in more general systems. Neverthe-
less, we have shown that the tricriticality may be

considered as a realistic kind of behavior. Indeed,
in many cases the departure from tricritical scaling
would appear in such subtle details of long-period
dynamics that it is impossible to observe it in any
real experiment, or even in straightforward com-
puter calculations.
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Fig. 16. The Lyapunov exponent for the second subsystem versus its control parameter o2 for a1 = ac = 6.542725.. .,
B1 = B2 = 10, ¢ = 0.2. The next figures present the magnified parts of the first one inside the rectangles shown. The
magnification factors are equal to §; = 2.3927 for the horizontal axis and 2 for vertical axis.

.06

-.06
—.06

'{I‘I - EIIE

.06

Fig. 17. The universal pattern of two-dimensional topography in the parameter plane in the neighborhood of the bicritical
point aic = 6.542725..., asc = 6.646808. .. for two Chua’s systems with a unidirectional coupling, 1 = f2 = 10, € = 0.2.

The bicritical point is located exactly at the center of the pictures.

The picture on the right shows a small box after

magnification by 6, = 4.6692... and é3 = 2.3927... along the horizontal and vertical axes, respectively. For the left picture:
green — period 27, yellow — 4T, violet — 8T, red —~ 16T, pink — 67, light blue — 12T, where T is a basic period. For the picture
on the right all periods corresponding to the same colors are doubled.

We have presented in this paper numerical ev-
idence of several non-Feigenbaum period-doubling
critical situations in Chua’s system and its higher-
dimensional version, namely two cells with a unidi-
rectional coupling.

In conclusion we should emphasize one impor-
tant general concept of the critical attractor. We
can see now that critical attractors represent a
rather broad and interesting class of dynamical ob-
jects. The well-known Feigenbaum’s attractor at
the limit point of an ordinary period-doubling cas-
cade is only one member of this family. Figures 10
and 15 show some other representatives. All of them
have a similar Cantor-like structure but these struc-
tures have different quantitative characteristics.

It is well known that strange attractors corre-
sponding to developed chaos also have a fractal na-
ture. We note that the features of critical attractors
are essentially distinct. First, their fractal structure
in the Poincaré section is longitudinal rather than
transversal (as for strange attractors). Second, the
time scale multiplied by a power of 2 is responsi-
ble for each new level of the fractal structure. For
strange attractors a new level usually appears each
time the trajectory goes around the attractor, i.e.,
at the same characteristic period. For critical at-
tractors the known Kaplan—Yorke formula is not
valid. Fractal dimension is universal for a certain
type of criticality and relates to the nature of the
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RG equation solution, and not to the spectrum of
the Lyapunov exponents.

Acknowledgments

The work was supported in part by a NATO
Linkage High  Technology grant number
HTECH.L6930749, and by grant number
95-02-05818 of the Russian Fund of Fundamental
Research.

References

Anishchenko, V. S., Aranson, I. S., Postnov, D. E. &
Rabinovich, M. I. [1986] “Spatial synchronization and
bifurcation of the chaos development in a chain of con-
nected generators,” Sov. Phys. Dokl. 31(2), 169-171.

Bezruchko, B. P., Gulyaev, Yu. V., Kuznetsov, S. P. &
Seleznev, E. P. [1986] “New type of critical behavior
in coupled systems at the transition to chaos,” Sov.
Phys. Dokl. 31(3), 258-260.

Carcasses, J., Mira, C., Bosh, M., Simo, C. & Tatjer,
J. C. [1991] “Crossroad area — spring area transition.
Parameter plane representation,” Int. J. Bifurcation
and Chaos 1, 183-196.

Chang, S. J., Wortis, M. & Wright, J. A. [1981] “Iteration
properties of a one-dimensional quartic map. Criti-
cal lines and tricritical behavior,” Phys. Rev. A24,
2669-2684.

Collet, P., Eckmann, J.-P. & Koch, H. [1981] “Period
doubling bifurcations for families of maps on R™,” J.
Stat. Phys. 25, 1-14.

Chua, L. O., Komuro, M. & Matsumoto, T. [1986] “The
double scroll family. Parts I and II,” IEEE Trans.
Circuits and Systems CAS-33, 1072-1118.

Eckmann, J.-P., Koch, H. & Wittwer, P. [1982] “Exis-
tence of a fixed point of the doubling transformation
for area-preserving maps of the plane,” Phys. Rev.
A26(1), 720-722.

Feigenbaum, M. J. [1978] “Quantitative universality for
a class of nonlinear transformations,” J. Stat. Phys.
19, 25-52.

Feigenbaum, M. J. [1979] “The universal metric proper-
ties of nonlinear transformations,” J. Stat. Phys. 21,
669-706.

Fraser, S. & Kapral, R. [1984] “Universal vector scal-
ing in one-dimensional maps,” Phys. Rev. A25,
3223-3233.

Gambaudo, J. M., Los, J. E. & Tresser, G. [1987] “A
horseshoe for the doubling operator topological dy-
namics for metric universality,” Phys. Lett. A123,
60—64.

Genot, M. [1993] “Application of 1D Chua’s map from
Chua’s circuit: A pictorial guide,” J. of Circuits, Sys-
tems and Computers 3(2), 431-440.

Halsey, T. S., Jemsen, M. H., Kadanoff, L. P,
Procaccia, I. & Shraiman, B. I. [1986] “Fractal mea-
sures and their singularities,” Phys. Rev. A33,
1141-1151.

Helleman, R. H. G. [1980] “Self-generated chaotic behav-
ior in nonlinear mechanics,” in Fundamental Problems
in Statistical Mechanics, eds. Cohen, E. G. D. et al.,
vol. 5 (North-Holl. Publ., Amsterdam).

Johnson, G. A., Locher, M. & Hunt E. R. [1995] “Stabi-
lized spatiotemporal waves in a convectively unstable
open flow system: Coupled diode resonators,” Phys.
Rev. E51, R1625-R1628.

Komuro, M., Tokunaga, R., Matsumoto, T., Chua, L. O.
& Hotta, A. [1991] “Global bifurcation analysis of the
double scroll circuit,” Int. J. Bifurcation and Chaos
1, 139-182.

Kuznetsov, A. P., Kuznetsov, S. P. & Sataev, I. R. [1991]
“Bicritical dynamics of period-doubling systems with
unidirectional coupling,” Int. J. Bifurcation and Chaos
1, 839-848.

Kuznetsov, A. P., Kuznetsov, S. P. & Sataev, LR. [1993a]
“Variety of types of critical behavior and multista-
bility in period-doubling systems with aunidirectional
coupling near the onset of chaos,” Int. J. Bifurcation
and Chaos 3, 139-152.

Kuznetsov, A. P., Kuznetsov, S. P., Sataev, I. R. & Chua,
L. O. [1993b] “Two-parameter study of transition to
chaos in Chua’s circuit: Renormalization group, uni-
versality and scaling,” Int. J. Bifurcation and Chaos
3, 943-962.

Kuznetsov, A. P., Kuznetsov, S. P. & Sataev, . R. [1994a]
“From bimodal one-dimensional maps to Henon-like
two-dimensional maps: Does quantitative universality
survive?,” Phys. Lett. A184, 413-421.

Kuznetsov, A. P., Kuznetsov, S. P. & Sataev, I. R. [1994b]
“Three-parameter scaling for one-dimensional maps,”
Phys. Lett. A189, 367-373.

Kuznetsov, S. P. [1985] “Universality and scaling in be-
havior of coupled Feigenbaum’s systems,” Izvestija
vys. uch. zav. Radiofizika 28(8), 991-1007.

Kuznetsov, S. P. & Pikovsky, A. S. [1986] “Universality
and scaling of period-doubling bifurcations in a dissi-
pative distributed medium,” Physica D19, 384-396.

Kuznetsov, S. P. & Sataev, 1. R. [1992] “New types of
critical dynamics for two-dimensional maps,” Phys.
Lett. A162, 236-242.

Kuznetsov, S. P. [1994] “Tricriticality in two-dimensional
maps,” Phys. Lett. A169, 438—444. ‘
Lichtenberg, A. J. & Lieberman, M. A. [1982] Regu-
lar and Stochastic Motion (Springer, Heidelberg-New

York). '

MacKay, R. S. & van Zeijts, J. B. J. [1988] “Period-
doubling for bimodal map: A horseshoe for a
renormalization group operator,” Nonlinearity 1(1),
253-277.

Madan, R. N, ed. [1993] Chua’s Circuit: A Paradigm for
Chaos (World Scientific, Singapore).



Multi- Parameter Criticality in Chua’s Circuit at Period-Doubling Transition to Chaos 143

Pikovsky, A. S. [1984] “On the interaction of strange
attractors,” Z. Phys. B55, 149-154.

Appendix 1
Poincaré Map for Chua’s Circuit

Constructions for obtaining the Poincaré 2D map
have been implemented as a corresponding
computer procedure. It is based on analytical
integration of Egs. (2). It is possible because the
equations are piecewise-linear; so we avoid any
numerical techniques, like Runge-Kutta. The so-
lutions may be found easily for each domain of lin-
earity, and the only problem to be solved numeri-
cally is to find the intersections of an orbit with the
boundary planes.

We consider here only two domains of linearity,
D; (z > 1) and Dy (|z| < 1). It is sufficient because
of the obvious symmetry property: Equations (2)
are invariant under the transformation z — -z,
y — —vy, z — —z. Constructing the map in the
case when an orbit visits all three domains is still
straightforward, but an interpretation is much more
complicated. In this paper we are concerned only
with the situation where an orbit visits only two do-
mains. It corresponds to the Rossler-type attractor
of Chua’s circuit.

A.1. Preliminary Definitions

(a) Stationary points for domains Dy and D; are
X% =1{0,0,0} and X%, = {k, 0, -k}
(A1.1)

where k = (b —a)/(b +1).
(b) Vector field matrices for Dy and Dy domains

are
—a(l+a) a 07
Co = 1 -1 1
L 0 -3 0]
(A1.2)
—a(l+b) a 0]
and C1= 1 -1 1
L 0 -8 0

Eigenvalues of these matrices are obtained from
solving the characteristic equations
2+ [(1 +a)a+ 1)z’ + (ca + Bz
+(1+a)af=0 (Al.3a)

and

22+ [(1+ b)a + 1]z? + (ab + B)z
+{1+baf=0 (A1.3b)

For all parameter values considered in this pa-
per there exist two complex and one real eigen-
values both for Dg and D;; we denote them by
0; F jw; and #;, respectively, where ¢ = 0 or 1.

(c) By linear coordinate changes the vector field
matrices for the domains Dg and D; are trans-
formed to the real Jordan form

o; —w; 0

w; 0 0
0 0

A= . i=0,1. (Al4)

These coordinate transformations are given by
the relations A; = T;C;T; 1, where the T; ma-
trices are constructed according to the rules:

(i) the first column is the real part of the com-
plex eigenvector relating to o F jw;
(i) the second column is the negative imagi-
nary part of the same complex eigenvector;
(iii) the third column is the eigenvector corre-
sponding to . Explicitly:

8; (tili—q‘+17'i) sitigi  8; (ti_éi"':>
wi
Ti=|s (r.-l.~+q':1t;) 8irigi 8 (r.'+£t.'> ,1=0,1
=% 8; _:@-d;S.
wi i
(A1.5)
where
L = —qy... ,
i= —[(Cz +1)a+ 0'1] y
Wi
a, 1=0
d;=[c;+Da+v], ¢ ’
i = [+ Dot ’{mi=1
i+
qi = ‘—"“B—"“,
¢ b
= e,
VE+d
qi

T = —————,
ViE+d
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In the D; domain the old X and new X’
coordinates are related via X = T:X’' +
XG;. For Dy the transformation rule is
X =TeX'.

Using some arbitrariness in the defini-
tion of the eigenvectors, we have selected
the matrices T¢ and T; in such a way that
the U; plane under the normal coordinate
systems takes the same form

Uy:2'+y' =1 (A1.6)
in both domains, Dy and D;.

(d) Now we choose the semi-plane V : 3 = 0, 2/ < 0
in the D; domain to be that of the Poincaré
section. The coordinate system in this plane
coincides with the —z’ and 2’ axes.

A.2. Poincaré Map Computation

(a) Given an initial point (£, n) we obtain the initial
vector Xo : (xg = —¢&, 90 =0, 20 = 7).

(b) The solution of Egs. (2) in the normal coordi-
nate system is

[z
XW=|y|®
[ 2
(et cos(wit) —e'tsin(wyt) 0 Zo
= [ e“'*sin(wit) e“cos(wit) O J [yoJ
0 0 ent| | 2z
(A1.7)

Depending on initial values the orbit may re-
turn to the V plane without crossing the bound-
ary plane U; or may leave the D; domain. Nu-
merically the problem is to determine whether
the function

¢(t) = zoe” cos(wyt) + 20e™t =1  (AL.8)

has a root within the interval (0,27). One of
the possible ways to solve this problem is to
find the maximum of the function ¢(t), that is
to solve the equation ¢'(t*) = 0. If ¢(t*) < 0,
then the orbit returns to the V plane without
crossing the boundary plane U;. The Poincaré
map in this case is calculated as follows:

121r

2n 2
g =xpe” 1, n = zgeMwr. (A1.9)

(d)

(:c
X(t)= y] (t)

If ¢(t*) > 0, then the orbit starting at X will
hit the U; plane at some point X;. To find
this point we must solve the equation ¢(tp) =
0 and find ¢ in the interval (0, t*). To solve
the resulting transcendental equations one may
use any standard technique, such as Newton—
Raphson or others. Substituting the calculated
to to Eq. (A1.7) we obtain an intersection point
X 1=X (to).

The coordinates of X; in the normal coordinate
system in the Dy domain are calculated by ap-
plying two subsequent linear transformations:

X! =T;HT1X, + X§,) (A1.10)

Starting at the point X7’ : (z”, y”, 2”) the orbit
may then hit the plane Uj or U_; depending on
the sign of the 2" value.

(1) Let 2" > 0. The orbit

z

= [ e’ sin(wot) et cos(wpt) 0 y"
0 0 et

[ €70 cos(wpt) —e ™ sin(wpt) 0 :l [:1:”:,

Z”

(A1.11)

will hit the plane U; at some point X;. To
find this point we must solve the transcen-
dental equation

f(t1) = z"e7°" cos(wot1) — y"e”% sin(wpt;)
+ 2" —1=0 (A1.12)

and find the first return time ¢;. Then we
obtain X3 = X(¢;) from the Eq. (A1.11).
To localize the first return time we check
the sign changes of the function itself and
its derivative at least twice at period T =
2m/wo. If the sign of the function has
changed, then the root is localized. If the
sign of the derivative has changed from pos-
itive to negative, then the equation f/(t*) =
0 may be solved to find the point of ex-
tremum, and this point is checked as to
whether the sign of the function has
changed.
(2) If 2 < 0, then applying the inversion X" —
—X" and using the symmetry property of
Eqgs. (2) we reduce the problem to the case
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of 2" > 0. We have already mentioned, that
the interpretation of the iteration results is
more sophisticated in this case, because at
the end of each iteration we must identify,
what domain we have finished at.

(e) The coordinates of the point X, under the
‘normal coordinate system in the ID; domain are
calculated by applying two subsequent linear
transformations:
XV = T7HToX2 — X51) (A1.13)
(f) The trajectory starting at the point X3 will hit
the plane V at the point Xj:

/ o1t " vt
(XS':" :l.ll2+y112€ 1 2,y3:0, 23=2 e 2)’

(A1.14)

where ty = (7 — arctg(y3/z3)) /w1
(g) Finally, the Poincaré map is calculated as
follows:

f'=-z3, n'=2z. (A1.15)

The flow defined by the vector field (2) pro-
vides a one-to-one correspondence between the
initial and the first return points at the plane
V, thus we obtain the 2D map:

1
= F(¢,
§=F&m) (A1.16)
n=GE ),
which is defined by the relation (A1.15) together

with (A1.9).

The typical value of the 7; eigenvalue is
~ —3. Hence the trajectories contract towards
the plane 2’ = 0 strongly. The dynamics of the
Poincaré map evolves in a narrow band near
the z' axis. We may assume 23 = 0 and then
obtain the approximate 1D map for Chua’s sys-
tem, which is defined by the equation

¢ =F(0).
This enables us to use the homotopy (11).

(A1.17)

Appendix 2
RG Analysis of Period-Doubling
Critical Behavior for 1D Maps

Consider a 1D map X,,4+; = G(X,) having at least
one extremum (maximum for definiteness) at X =

Z. At first, we translate the origin to this point and
obtain the redefined map

Tnt1 = go(Zn), (A2.1)
where z = X — 7, f(z) = G(x +Z) — Z. Let us
apply this map twice and rescale the x variable in
such a way that the new mapping is normalized to
unity at the origin.: gnew(z) = ago(go(x/a)), where
a = 1/go(go(0)). This is Feigenbaum’s RG trans-
formation or doubling transformation [Feigenbaum,
1978, 1979]. Repeating this procedure many times
we obtain the recurrent functional equation

gk+1(x) = argr (gk (%))

1
%= 9e(gr(0)

The original map go(z) is an initial condi-
tion for this equation. If this is a 1D map at
Feigenbaum’s critical point (say, the logistic map
(2) at A = 1.401155...) then a functional sequence
(A2.2) converges to a certain limit. This limit is
Feigenbaum’s universal function

(A2.2)

-

where

(A2.3)

9(z) = gr(z) = lim fi(x)
=1—1.5276z% + 0.10482% + --- (A2.4)

and

= —2.502907876. ..
(A2.5)

a=ap=limak=gF(1)

Apparently, g(z) is a fixed point of the func-
tional equation, i.e.

s=20(o(2))

Let us turn to another case and consider bi-
modal map go(z). Assuming that it depends on
two control parameters we may find the binary tree
in the parameter plane and localize a codimension-
2 critical point for a certain UD-code. If we take
the map go(z) at this point as the initial condition
for Eq. (A2.2) we observe that the behavior of the
functional sequence gi(z) depends on the UD-code.

For codes with a tail consisting of letters U, the
sequence of functions gx(z) converges to the new

(A2.6)
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fixed point of the RG equation that corresponds to
the tricritical point [Chang et al., 1981]:

9(z) = gr(z) = lim fi(z)
=1-1.83412* +0.013028 + ... (A2.7)
and

= —1.69030297...
(A2.8)

a=aT=limak=g—T}65

The function gr(z) is as universal as
Feigenbaum’s function. The corresponding univer-
sality class is related actually to 1D maps with a
quartic extremum. This behavior appears also if
the quartic extremum occurs in an iteration of the
original map.

Codes with tails consisting of repeated D’s also
give rise to tricritical behavior. In this case, how-
ever, the sequence gx(z) converges to the function
gr(z) = [gr(v/7)]?. The gr(zx) function could also
be found if we take the origin at the minimum rather
than at the maximum.

If the UD-code has a tail of period-K then the
sequence fi(z) tends asymptotically to the same
period for large K. Thus, the period-K cycle of the
RG equation (A2.2) is responsible for the dynamics
at this critical point. To find the universal functions
gr(r) we may search for fixed points of the K-fold
iteration of the RG equation

g(z) = ag" (2) , N=2, (A2.9)

where N = 2% and a is a product of factors aj, over
all K members of the cycle. Particular solutions are
[Kuznetsov et al., 1993b):

for UDUDUD..., K = 2,

9(z) =1 - 2.6594z% — 0.4571z* + 2.99902° + - - . |
a = —4.8626451. .. ; (A2.10)

for UUDUUD..., K = 3,

g(z) =1 - 2.3258z% — 0.4318z* + 1.7697z5 + - - -
a = 8.0302676. .. ; (A2.11)

and so on.

For critical points with random UD-codes the
sequences gx(x) behave chaotically. In this case the
result looks like chaotic functional sequences (“RG-
chaos”), but we do not deal with such cases here

(see Gambaudo et al. [1987], MacKay & van Zeijts
[1988]).

The next step consists of investigation of the
perturbed solutions for the RG equation.

Let us take a solution of the general equation
(A2.9) for some K > 1 and add a small perturba-
tion: fr(x) = g(z) + h(z), |h(z)|] < 1. We may
select such a function h(z) that accepts only a con-
stant multiplier § after a K-fold RG transformation
(A2.9).

In linear approximation we obtain the following
eigenproblem

Sh(z) = Mh(x), (A2.12)
where M is the linear operator

Mh(x)=a{Fé"‘l(w)h (5) Y R (gi (%))

wE @)}

N—i-1
FiN—l(z):{d[g (é‘)] }
& £=g+1(x/a)

K=1,2,3...

(A2.13)

N=2K

(Dealing with fixed points we must substitute
K=1)

The essential eigenvalues § that are larger than
unity in absolute value must be found for each type
of criticality. Their number determines the num-
ber of control parameters necessary to restore the
perturbed criticality. In other words, this is the
codimension of the critical situation.

For Feigenbaum’s fized point, the unique essen-
tial eigenvalue 6 = 6 = 4.669201 ... exists and was
found from the numerical solution of the eigenprob-
lem [Feigenbaum, 1978, 1979).

For the tricritical fized point, there are three es-
sential eigenvalues [Chang et al., 1981; Kuznetsov,
1993], namely

8 = 7.284686217..., 63 =a%, &3 =ad?,
(A2.14)
where a = —1.6903.... The first two eigenvectors

relate to the even subspace (hyo(x) = hyo(—2));
the third one has a non-vanishing odd part (h3(z)—
ha(=2) (g (z) /2.

For all cycles of the RG equation with periods
K > 2 we have only two essential eigenvalues both
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of which appear to be related to the even subspace.
In particular,

for UDUDUD..., K =2,

61 = 35.9286114, 6, = 14.5957450, (A2.15)
for UUDUUD..., K =3,
81 = 244.768707, &y = 46.2910330. (A2.16)

Appendix 3
RG@G Analysis of Two Period-Doubling
Systems with a Unidirectional Coupling

Let us consider the model mapping

(A3.1)

Znt1 = 90(Zn), Yn+1 = fo(Zn, ¥n)-

We can identify two subsystems: The first one
(variable z) acts onto another (variable y), but the
backward influence is absent. It is supposed that
both functions go(x) and fo(z, y) may be controlled
by some parameters. To be definite, we will inves-
tigate the particular system (14) which belongs to
this class.

Let us apply the mapping twice and change the
scales of both variables x and y to normalize the
new functions to unity at the origin. This will be
a generalization of Feigenbaum’s RG transforma-
tion for systems with a unidirectional coupling. A
repetition of this procedure gives the recurrent RG
equations [Kuznetsov et al., 1991, 1993a]

9r+1(T) = akgk (gk (%)) :

fer1(z, y) = befe (gk (i) » Jk (:—k, Zy;)) ;

(A3.2)
where
a ——-~————~1 b, = !
* T 0e(@e(0))” F T Fil(ge(0), £(0,0))
(A3.3)

For fixed points of the RG equation that may
be responsible for the critical behavior, Eqs. (14)

yield
g(z) = ag (9 (%)) ;
few=b(s(2).7(% ).

(A3.4)

and
1 1

= PTIa

The first equation coincides with (A2.6), so we
may choose the known Feigenbaum’s solution

(A3.5)

g(z) = gr(z), a=ar=-25029... (A3.6)

A simple particular solution of the second
equation may be found if we suppose that the
function f(z, y) does not depend on the first ar-
gument. Then the equation for f also reduces to
Feigenbaum’s form, and we obtain

b=ap=-2.5029.... (A3.7)

f(xa y)EgF(y) )

Evidently, we have obtained the fixed point
of the RG equations that corresponds to a double
Feigenbaum’s point DF.

Now let us turn to bicriticality. Using the model
map (14) at the bicritical point as an initial condi-
tion, we observe that a sequence of function pairs
{gk, fr} converges to a fixed point of the RG trans-
formation [Kuznetsov et al., 1991]:

g(z) = gr(z) = lim gx(x)
=1-1.5276z% + 0.1048z* + - - -

f(z) = fB(z, y) = lim fi(z, y)

A3.8
=1 - 0.5969z% — 0.8556y> (A3.8)
—0.0322z* — 0.30292%y*
— 04317y +---,
a=lim ax =ar = —-2.5029...,
S (A3.9)

b= lim by = bp = —1.505318159...

This solution may be found directly from
Eqgs. (A3.4) without any reference to the particu-
lar original map. So, bicriticality is a universal type
of behavior in period-doubling systems with a unidi-
rectional coupling.

Next, we have to study small perturbations of
the RG equation solution near the fixed points
(A3.6, A3.7) and (A3.8, A3.9). It is important to
note that we consider here only perturbations which
do not violate the unidirectional nature of coupling.

For the double Feigenbaum’s point we
substitute

{gk(x)a fk(‘rv y)}:{g(m)-{—éku(x), g(y)+6kv(x, y)}7

g(z)y=gp(z), ar=br=a=ar,



148 A. P. Kuznetsov et al.

and obtain the following eigenproblem:
wer=ele (o 5))+ () ++ ()]
(v(z, y)) = a [gf (g (%)) . (2, %)
(o (3)o ()]

Since both equations are decoupled, they
give independent contributions to the eigenvalue
spectrum.

The first equation is known from Feigenbaum’s
theory and gives a unique essential eigenvalue § =
0F = 4.6692.... The eigenfunctions of the second
equation may or may not depend on x. Among the
second class we have again one essential solution
with the eigenvalue §r. There exist two solutions
that depend on both arguments z and y [Kuznetsov,
1985]; they have eigenvalues ar = —2.5029... and
2. The first eigenfunction v(z, y) contains a nonzero
odd part. Hence, it does not appear in the pertur-
bations arising in system (14) when we tune pa-
rameters away from the DF point. The second
eigenfunction

(A3.10)

v(z, y) = 1.0587z% — 1.0587y2 — 0.0905z*
+ 0.035822%y2 + 0.0548y% + - - -
(A3.11)

is even and relevant. We conclude that in sys-
tem (14) the DF point appears as a phenomenon
of codimension-3. The eigenvalues responsible for
scaling properties of the parameter space near this
point are §; = é2 = ép and 83 = 2.

For the bicritical point we search for the per-
turbed solution of Eqs. (A3.2) in the form

{9k(2), fr(z, v)} = {g(z) + 6*u(z), f(z, v)
+ 6*v(=, y)},

f(xi y)=fB(x’ y),
by =b=0bp.

9(z) = gp(z),

ak=a=ayp,

Then we obtain the following linearized RG equa-
tions for the 4 and v components:

e =arly (o))« (2) ++ (6 ()]

su(z, y)=b[f!,, (g< ) (m %))"(2)
~4(6(2) 1 3) G D)
w6 )1(E2)]

where f; and f, are derivatives of the function
f(z,y) to the first and the second arguments,
respectively.  This eigenproblem was found to
have two essential solutions. The first has a non-
vanishing wu-component; it is the Feigenbaum’s
eigenfunction with eigenvalue §; = 6. It relates ev-
idently to a perturbation of the control parameter in'
the first subsystem. Another relevant solution has
a zero u-component and appears due to the param-
eter shift in the second subsystem. Numerical solu-
tion of the second Eq. (A3.12) gives the eigenvalue
0y = 2.39272443 [Kuznetsov et al, 1991]. There-
fore, in the class of systems with a unidirectional
coupling, the bicritical situation has a codimension-
2. The scaling factors for the parameter space near
the bicritical point are the calculated values §; = ép
and 6, = 2.3927....

(A3.12)



