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A procedure is suggested for controlling chaos in quasiperiodically excited systems by stabilizing
an unstable torus, or creating a new one by means of a small action. For this purpose the
controlled system is synchronized with one which is similar but in a state of stable quasiperiodic
motion. The method is illustrated for a quasiperiodically perturbed logistic mapping and a
Duffing oscillator. © 1999 American Institute of PhysidsS1063-785(09)02608-1

1. INTRODUCTION 2. STABILIZATION OF AN UNSTABLE INVARIANT MAPPING
CURVE

Controlling chaos is one of the most practically relevant
directions in nonlinear physics. The most common method
is the Ott—Grebogi—Yorke method of stabilizing unstable pe-  x,, ;= f(x,,60,)=\—X2—& cos 276,
riodic orbits and various modifications of thfs Its effi-
ciency has been demonstrated for many autonomous and pe- On+1=0+w, mod1, @
riodically excited systems. However, the problem of Contm'wherew:(\/g—l)/z is the “golden cross section.” This
in systems exposed to more complex multifrequency actiomapping demonstrates a torus doubling bifurcation and a
has been left to one side. The present paper is devoted t@ansition to a strange nonchaotic attractor and chaos. The
searching for methods of solving this problem in the simplestnstable invariant curve generated by the torus doubling
case of a biharmonic action with two nonmultiple frequen-x=¢(6), 0<6=<1 is embedded in a chaotic attrac(®ig.
cies. 1a). In order to stabilize the invariant curve, we can model

We shall analyze some characteristic features which arthe mapping1) as follows:
|mpose_d on the cpntrol_ problem _by the quasiperiodicity of Xoe 1= (X, 00)+9(X0,0,),
the action. Primarily, this results in the absence of unstable
periodic orbits which could be stabilized. The way out here 0n41=0,+w, mod 1, (2

is to use an unstable torus which can exist in the phase spacc?1 . . . .
. . . where the functiorg(x, #) is the control action which must
of these systems. This is created as a result of bifurcatio

_ ngatisfy the following two constraints:
such as “doubling” and loss of torus symmetry and after a

transition to chaos, is embedded in a chaotic attractor or g(¢(6),0)=0,
exists outside it. However, the standard control procedure
. . . . L 1
either requires a knowledge of the orbit being stabilized or f In|f.(¢(6),0)+g.(e(0),0)]do<0.
the presence of an oscillator which generates a suitable ref- 70

erence signal” A torus is a topologically more complex The first constraint implies that as the trajectory ap-
object than a cycle and a model of the global dynamics of thyroaches the invariant curve, the control action tends to zero,
system is required to reconstruct it. The construction of suclyhile the second implies that the average Lyapunov expo-
a model and the search for an unstable torus is in itself aent along the invariant curve is negative and the invariant
fairly complex problem. Hence it is more productive to curve becomes stable. The functigfx, ) may be taken in
search for a suitable reference oscillator. As a reference orbitie standard form of a proportional control action
to stabilize an unstable torus, it seems reasonalgeori to
. ms reasonafigori t 9(x,6)=C(x~o(6)),

use a torus evolutionally coupled with it, which existed in the
system for other parametetbefore loss of stability The  whereC is the coupling parameter. Then, in accordance with
aim of the present study is to demonstrate the possibility ofhe fundamental idea of the method we note that the invari-
implementing this idea. A procedure is describing for stabi-2nt mapping curvesl) in different regions of parameter
lizing an unstable torus or creating a new orbit in its vicinity SPace are fairly similar, as we can see from Fig. 1b where the
by locking the controlled system to one which is similar butthln line x(6) IS the unstable torus of the mappifd) from
. Lo . o dthe chaos region, ang ) is a stable torus from some other
in a state of stable quasiperiodic motion. This is illustrate . : . . . ]

N . ) region. It is easily seen that the following relation holds:
for a quasiperiodically perturbed logistic mapping and a Duf-
fing oscillator. X(0)~Sy( 6+ 7)+B,

We shall analyze the two-dimensional mapping
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FIG. 1. a — Chaotic attractor and unstable torus of
mapping(1) embedded in if1) (A\=1.2,£=0.2); b —
thin line x(#) — unstable torus from region of chaotic
dynamics of parameter space being stabilizee (.2,
£=0.2), thick liney(6) — stable torus of mappingL)
used as reference trajectory for contral =0.85,
£=0.2); ¢ — thin line — unstable torus of mapping

X X (1), thick line — torus of mapping3.1, 3.3 obtained
4 1 from (1) by using the control proceduréor the same
values of the parameters
x(8) 1
0.5 05

and the curve from its region of stability can be reduced t@. FLUX MODEL
the form of an unstable curve from the chaos region with, a _ _ _ _ . - .
fairly high degree of accuracy, by means of a proportional Since a one-dimensional irreversible logistic mapping is

contraction/expansion along theaxis and a shift parallel to N0t @ Poincareross section of any flux, we need to demon-
the coordinate axes. The functiggx, 6) thus has the form strate separately that the proposed control method can be
applied to models in the form of a system of differential

9(Xn, 0n) = C(Xn— S¥n(6n+ 7)—B), equations. As such we take a biharmonically excited Duffing
model, which has many physical analogs:

where the parameterS and B determine the contraction/

expansion and the parallel shift of the invariant curve, and

is the phase shift. Finally, the mapping can be written in thevhere w,/w,=(\/56—1)/2. Since a Duffing oscillator pos-

X+ 2AX+x+x3=f, coswt+ f, COSw,t, (4)

form sess a symmetric potential, the transition to chaos in this
system should be preceded by symmetry-loss bifurcations of
Xn+1=N1—Xi+& C0S2m0,+C(X,—Sy,—B), (3.1  the torus. The resulting unstable torus is embedded in a cha-
otic attractor(Fig. 2g. To stabilize this, we modify Eq4)
yn+1=)\2—yﬁ+s CoS 2 (6,+ 7), (3.2 by adding a control action in a form known as continuous

proportional feedback:
On+1=6,+w, mod1, (3.3

X+ 2AX+x+x3=f, cosw t+ f, coswot +g(x,t), (5

where\ , is the value of the parameter for which chaos and _
an unstable torus exist in the mappid), and \, is the g0y =Cx=Sy)),
value for which a stable torus exists, which is used as thevherey(t) is a reference signal obtained by integrating Eq.
reference trajectory. (4) numerically for values of the parameters corresponding to

The results of applying the stabilization algorithm arethe stable symmetric torus regime. These parameters are de-
plotted in Fig. 1c. The thin line gives the unstable invarianttermined by trial and error: we decrease the amplitude of the
mapping curve(l) and the thick line gives the stable torus fundamental-frequency sign&] until we enter the symmet-
obtained as a result of applying the control procedure. Thesec torus regime, after which finer tuning is achieved by vary-
last two lines are almost matched. The accuracy of theiing the amplitude off,. As a result of the symmetry of the
matching depends on the successful choice of parameters system, the parameteB and 7 [see Eq.(3)] are zero and
the reference mappin3.2—-3.3 and the coupling param- because of the low sensitivity of the torus to variations in the
eters. The dependence of the controlling action decreases tgparametersS is close to unity.
level which is no more than 5% of the variation in the pa- The results of applying the control procedure are plotted
rameters needed to transfer the controlled mapping to thim Fig. 2b. It can be seen that the torus and reference orbit do
region of regular dynamics, which suggests that the controhot agree at all, However, the control action does not exceed
problem has been solved. 8% of the variation in the principal control parametgr
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20 — — -8 ——r— —r— FIG. 2. Cross section of chaotic attractor and unstable torus
-6 -5 -4 -3 -2 53 515 -5 485 AT of biharmonically excited Duffing oscillatof(=78, f,
a b =5,1=0.1, »;=1.5) (a). Results of applying the control

procedure: thin line — cross section of reference torus,
thick line — stabilized(for the same parameters as a and
b). Fragment of the cross section of the parameter space of
a biharmonically excited Duffing oscillatorA&0.1, w4
=1.5) (c). 1 — symmetric torus2 — asymmetric torus,

3 — chaos, andl — region in which control is possible.

needed to transfer the system to a state with regular dynam- The proposed method can be used to control chaos in
ics and thus, in this case we can talk of chaos control. real physical systems because of the universal nature of the
The extent of the region of applicability of the proposed structures of bifurcation sets of quasiperiodically excited sys-
control method can be estimated from Fig. 2c. In regfon  tems of various types, which was demonstrated in Ref. 4 for
this control procedure can be applied. In regBrthis is g quasiperiodically excited logistic mapping and a diode
impeded by the increasing deformation of the unstable torugesonator in the vicinity of the critical end point of the torus
since this region is extremely far from the region of existenceyq, pjing bifurcation line. Universality implies the presence

of a_stable symmetric toru;. In regidn c_:ontrol cannot be of identical regions of existence of regular and chaotic dy-
applied because of the device characteristics of the paramaﬁémics unstable orbits, and bifurcation transitions. This
space imposed by the quasiperiodicity of the action. The bi- ’ '

furcation line of the torus symmetry loss truncates at pojnt means th?t. the.method described F:an be. ap'plled to a system
which is the critical point of codimensionality 2. Thus, a of two .unldlrectlonally coupled R-diode CII’.CUItS. .
transition to chaos can take place in the system without loss Th's work was supported by the Russian Foundanon“for
of symmetry and the creation of an unstable tofasove BaS|c.Research Grant No. 96-02-16755 and also by the “In-
point T). Thus, the region of chaos is divided into two sec-tegration” Federal Program, Grant No. 696.3.

tions: A—B (with an unstable torysand C (no torus. These

sections are divided by the lideon which the unstable torus

is disrupted by(preferably internal contact between the cha-

otic attractor boundaries. Thus, in regiGrthere is no object
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