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Control of chaos in nonautonomous systems with quasiperiodic excitation
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A procedure is suggested for controlling chaos in quasiperiodically excited systems by stabilizing
an unstable torus, or creating a new one by means of a small action. For this purpose the
controlled system is synchronized with one which is similar but in a state of stable quasiperiodic
motion. The method is illustrated for a quasiperiodically perturbed logistic mapping and a
Duffing oscillator. © 1999 American Institute of Physics.@S1063-7850~99!02608-7#
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1. INTRODUCTION

Controlling chaos is one of the most practically releva
directions in nonlinear physics. The most common meth
is the Ott–Grebogi–Yorke method of stabilizing unstable
riodic orbits1 and various modifications of this.2,3 Its effi-
ciency has been demonstrated for many autonomous an
riodically excited systems. However, the problem of cont
in systems exposed to more complex multifrequency ac
has been left to one side. The present paper is devote
searching for methods of solving this problem in the simpl
case of a biharmonic action with two nonmultiple freque
cies.

We shall analyze some characteristic features which
imposed on the control problem by the quasiperiodicity
the action. Primarily, this results in the absence of unsta
periodic orbits which could be stabilized. The way out he
is to use an unstable torus which can exist in the phase s
of these systems. This is created as a result of bifurcat
such as ‘‘doubling’’ and loss of torus symmetry and afte
transition to chaos, is embedded in a chaotic attractor
exists outside it. However, the standard control proced
either requires a knowledge of the orbit being stabilized
the presence of an oscillator which generates a suitable
erence signal.1,2 A torus is a topologically more comple
object than a cycle and a model of the global dynamics of
system is required to reconstruct it. The construction of s
a model and the search for an unstable torus is in itse
fairly complex problem. Hence it is more productive
search for a suitable reference oscillator. As a reference o
to stabilize an unstable torus, it seems reasonablea priori to
use a torus evolutionally coupled with it, which existed in t
system for other parameters~before loss of stability!. The
aim of the present study is to demonstrate the possibility
implementing this idea. A procedure is describing for sta
lizing an unstable torus or creating a new orbit in its vicin
by locking the controlled system to one which is similar b
in a state of stable quasiperiodic motion. This is illustra
for a quasiperiodically perturbed logistic mapping and a D
fing oscillator.
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2. STABILIZATION OF AN UNSTABLE INVARIANT MAPPING
CURVE

We shall analyze the two-dimensional mapping

xn115 f ~xn ,un!5l2xn
22« cos 2pun ,

un115un1v, mod 1, ~1!

where v5(A521)/2 is the ‘‘golden cross section.’’ This
mapping demonstrates a torus doubling bifurcation an
transition to a strange nonchaotic attractor and chaos.
unstable invariant curve generated by the torus doub
x5w(u), 0<u<1 is embedded in a chaotic attractor~Fig.
1a!. In order to stabilize the invariant curve, we can mod
the mapping~1! as follows:

xn115 f ~xn ,un!1g~xn ,un!,

un115un1v, mod 1, ~2!

where the functiong(x,u) is the control action which mus
satisfy the following two constraints:

g~w~u!,u!50,

E
0

1

lnu f x8~w~u!,u!1gx8~w~u!,u!udu,0.

The first constraint implies that as the trajectory a
proaches the invariant curve, the control action tends to z
while the second implies that the average Lyapunov ex
nent along the invariant curve is negative and the invari
curve becomes stable. The functiong(x,u) may be taken in
the standard form of a proportional control action

g~x,u!5C~x2w~u!!,

whereC is the coupling parameter. Then, in accordance w
the fundamental idea of the method we note that the inv
ant mapping curves~1! in different regions of paramete
space are fairly similar, as we can see from Fig. 1b where
thin line x(u) is the unstable torus of the mapping~1! from
the chaos region, andy(u) is a stable torus from some othe
region. It is easily seen that the following relation holds:

x~u!'Sy~u1t!1B,
© 1999 American Institute of Physics
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FIG. 1. a — Chaotic attractor and unstable torus
mapping~1! embedded in it~1! (l51.2, «50.2); b —
thin line x(u) — unstable torus from region of chaoti
dynamics of parameter space being stabilized (l51.2,
«50.2), thick liney(u) — stable torus of mapping~1!
used as reference trajectory for control (l50.85,
«50.2); c — thin line — unstable torus of mappin
~1!, thick line — torus of mapping~3.1, 3.3! obtained
from ~1! by using the control procedure~for the same
values of the parameters!.
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and the curve from its region of stability can be reduced
the form of an unstable curve from the chaos region with
fairly high degree of accuracy, by means of a proportio
contraction/expansion along thex axis and a shift parallel to
the coordinate axes. The functiong(x,u) thus has the form

g~xn ,un!5C~xn2Syn~un1t!2B!,

where the parametersS and B determine the contraction
expansion and the parallel shift of the invariant curve, ant
is the phase shift. Finally, the mapping can be written in
form

xn115l12xn
21« cos 2pun1C~xn2Syn2B!, ~3.1!

yn115l22yn
21« cos 2p~un1t!, ~3.2!

un115un1v, mod 1, ~3.3!

wherel1 is the value of the parameter for which chaos a
an unstable torus exist in the mapping~1!, and l2 is the
value for which a stable torus exists, which is used as
reference trajectory.

The results of applying the stabilization algorithm a
plotted in Fig. 1c. The thin line gives the unstable invaria
mapping curve~1! and the thick line gives the stable toru
obtained as a result of applying the control procedure. Th
last two lines are almost matched. The accuracy of th
matching depends on the successful choice of paramete
the reference mapping~3.2–3.3! and the coupling param
eters. The dependence of the controlling action decreases
level which is no more than 5% of the variation in the p
rameters needed to transfer the controlled mapping to
region of regular dynamics, which suggests that the con
problem has been solved.
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3. FLUX MODEL

Since a one-dimensional irreversible logistic mapping
not a Poincare´ cross section of any flux, we need to demo
strate separately that the proposed control method can
applied to models in the form of a system of different
equations. As such we take a biharmonically excited Duffi
model, which has many physical analogs:

ẍ12l ẋ1x1x35 f 1 cosv1t1 f 2 cosv2t, ~4!

where v1 /v25(A521)/2. Since a Duffing oscillator pos
sess a symmetric potential, the transition to chaos in
system should be preceded by symmetry-loss bifurcation
the torus. The resulting unstable torus is embedded in a
otic attractor~Fig. 2a!. To stabilize this, we modify Eq.~4!
by adding a control action in a form known as continuo
proportional feedback:2

ẍ12l ẋ1x1x35 f 1 cosv1t1 f 2 cosv2t1g~x,t !, ~5!

g~x,t !5C~x2Sy~ t !!,

wherey(t) is a reference signal obtained by integrating E
~4! numerically for values of the parameters corresponding
the stable symmetric torus regime. These parameters are
termined by trial and error: we decrease the amplitude of
fundamental-frequency signalf 1 until we enter the symmet
ric torus regime, after which finer tuning is achieved by va
ing the amplitude off 2. As a result of the symmetry of the
system, the parametersB and t @see Eq.~3!# are zero and
because of the low sensitivity of the torus to variations in
parameters,S is close to unity.

The results of applying the control procedure are plot
in Fig. 2b. It can be seen that the torus and reference orbi
not agree at all, However, the control action does not exc
8% of the variation in the principal control parameterf 1
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FIG. 2. Cross section of chaotic attractor and unstable to
of biharmonically excited Duffing oscillator(f 1578, f 2

55, l50.1, v151.5) ~a!. Results of applying the contro
procedure: thin line — cross section of reference tor
thick line — stabilized~for the same parameters as a an
b!. Fragment of the cross section of the parameter spac
a biharmonically excited Duffing oscillator (l50.1, v1

51.5) ~c!. 1 — symmetric torus,2 — asymmetric torus,
3 — chaos, and4 — region in which control is possible.
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needed to transfer the system to a state with regular dyn
ics and thus, in this case we can talk of chaos control.

The extent of the region of applicability of the propos
control method can be estimated from Fig. 2c. In regionA
this control procedure can be applied. In regionB this is
impeded by the increasing deformation of the unstable to
since this region is extremely far from the region of existen
of a stable symmetric torus. In regionC, control cannot be
applied because of the device characteristics of the param
space imposed by the quasiperiodicity of the action. The
furcation line of the torus symmetry loss truncates at poinT,
which is the critical point of codimensionality 2. Thus,
transition to chaos can take place in the system without
of symmetry and the creation of an unstable torus~above
point T). Thus, the region of chaos is divided into two se
tions: A–B ~with an unstable torus! andC ~no torus!. These
sections are divided by the linel on which the unstable toru
is disrupted by~preferably! internal contact between the ch
otic attractor boundaries. Thus, in regionC there is no object
to which the stabilization procedure can be applied.

CONCLUSIONS

These results indicate that the proposed chaos con
procedure of stabilizing an unstable torus is effective in s
tems exposed to a quasiperiodic action.
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The proposed method can be used to control chao
real physical systems because of the universal nature of
structures of bifurcation sets of quasiperiodically excited s
tems of various types, which was demonstrated in Ref. 4
a quasiperiodically excited logistic mapping and a dio
resonator in the vicinity of the critical end point of the toru
doubling bifurcation line. Universality implies the presen
of identical regions of existence of regular and chaotic d
namics, unstable orbits, and bifurcation transitions. T
means that the method described can be applied to a sy
of two unidirectionally coupledLR-diode circuits.
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