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The ring-loop oscillator consisting of two coupled klystrons which is capable of generating hyper-
bolic chaotic signal in the microwave band is considered. The system of delayed-differential equa-
tions describing the dynamics of the oscillator is derived. This system is further reduced to the
two-dimensional return map under the assumption of the instantaneous build-up of oscillations in
the cavities. The results of detailed numerical simulation for both models are presented showing
that there exists large enough range of control parameters where the sustained regime corresponds
to the structurally stable hyperbolic chaos. © 2010 American Institute of Physics.
�doi:10.1063/1.3494156�

Klystrons are well-known vacuum electron tubes widely
used in communication and radar systems, particle accel-
erators, etc. In this paper, we consider the ring-loop os-
cillator consisting of two coupled klystrons which is ca-
pable of generating hyperbolic chaotic signal in the
microwave band. The first klystron doubles the phase of
the input signal. In the second klystron the second har-
monic signal is mixed with the reference signal represent-
ing a periodic sequence of pulses with the third harmonic
carrier frequency with subsequent extraction of the dif-
ference frequency signal. As a result, the transformation
of the signal phase during the pulse period of the refer-
ence signal is described by a chaotic Bernoulli map. In a
large enough range of control parameters the oscillator
produces robust structurally stable chaotic signal insen-
sitive to small variation of parameters. This is important
for possible application in chaos-based communication
and radar systems.

I. INTRODUCTION

The hyperbolic chaos is known as the strongest type of
the chaotic behavior when the strange attractor is composed
exclusively of trajectories of saddle type.1 Such attractors
possess the property of structural stability that implies insen-
sitivity of the system dynamics and the attractor structure to
variations of parameters and functions describing the system.
Recently an approach for design of radio frequency oscillator
with hyperbolic attractor has been proposed.2,3 The operation
principle of such system is alternating excitation of two
coupled oscillators so that the transformation of the signal
phase is described by chaotic Bernoulli map, which is a clas-
sical example of system with hyperbolic attractor.1 Such gen-
erators are of practical interest for novel communication and
radar systems using chaotic signals.4,5

In Ref. 6 we extended this principle to the microwave
band using two coupled klystrons, which are widely used in
communication and radar systems, particle accelerators,
etc.7–9 The scheme of the oscillator is presented in Fig. 1.

The input cavity of the first klystron is tuned to the frequency
of �, while the output one is tuned to frequency of 2�. Thus,
the first klystron doubles the frequency of the input signal.
The output signal of the first klystron is fed to the input
cavity of the second klystron via a wide-band dispersionless
transmission line containing a phase shifter and an attenua-
tor, which allow the signal phase and amplitude to be ad-
justed. In the second klystron, this signal is mixed with a
reference signal, which represents a periodic sequence of
pulses with carrier frequency of 3�. Thus, in the second
klystron there is a mixing of the signals of the second and
third harmonics. In the output cavity of the second klystron a
signal on a difference frequency of � is separated and fed to
the input cavity of the first klystron, thus closing the feed-
back circuit. The preliminary results of the numerical
simulation6 showed that at certain values of control param-
eters the generation of the hyperbolic chaotic signal is pos-
sible.

In this paper, we present the results of detailed analysis
of the klystron microwave generator of hyperbolic chaos. In
Sec. II a system of time-delayed differential equations de-
scribing the oscillator dynamics is derived. Under the as-
sumption of the instantaneous build-up of oscillation in the
cavities this system is reduced to a two-dimensional �2D�
map for complex amplitude of the field. Numerical results
for both models are presented in Secs. III and IV. We found
the domain of control parameters where hyperbolic chaos is
observed. In this domain, the dynamics of the phase of the
oscillations is approximately described by the Bernoulli map,
and as believed in the phase space an attractor of Smale–
Williams type exists. To prove the hyperbolic nature of the
chaotic signal, we calculate the largest Lyapunov exponent,
which is almost insensitive to variation of parameters.

II. BASIC EQUATIONS

In Ref. 6 a system of dimensionless delay-differential
equations �DDEs� describing the dynamics of the oscillator
was presented

Ḟ1
� + F1

� = �2ei�2F2
�/�2, �1�a�Electronic mail: ryskinnm@info.sgu.ru.
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Ḟ1
2� + �F1

2� = 4�1J2�2�F1
��t − ����e2i��1

��t−��−	0�, �2�

Ḟ2
2� + �F2

2� = �2�1ei�1F1
2�, �3�

Ḟ2
� + F2

� = 2�2e−i	0 �
m=−





imJ3m+1��F2
2��t − ����

�J2m+1��F2
3��t���e−i�3m+1��2

2��t−��. �4�

Here Fj
k��t� are dimensionless slowly varying complex am-

plitudes of the signals in corresponding cavities, � j
k�

=arg�Fj
k��, the subscripts j=1,2 henceforth indicate the

number of klystrons, the superscripts �, 2� denote the reso-
nance frequencies of the cavities �see Fig. 1�; F2

3��t� is the
normalized amplitude of the reference signal at third har-
monic; � is the normalized delay parameter; 	0 is the unper-
turbed electron transit angle in the drift space; parameter
�=2Q� /Q2� defines the ratio of Q-factors of the cavities
operating at frequencies � and 2�; parameters � j and � j are
attenuations and phase shifts in the coupling transmission
lines, respectively; Jn is nth order Bessel functions of the first
kind. The excitation parameters � j, which can be treated as
the normalized dc electron beam currents, most significantly
influence the oscillator dynamics. Equations �1�–�4� are de-
rived in a similar way as for other klystron-type delayed
feedback oscillators.10,11 Detailed derivation and description
of parameters are presented in the Appendix.

Let the reference signal at the third harmonic frequency
F2

3��t� be supplied from an external driving source in the
form of a sequence of pulses with constant amplitude F0 and
a repetition period equal to the time of signal passage via the
feedback circuit 2�. Assuming that the oscillation build-up in
the cavities is fast in comparison with delay time one can
neglect the derivatives in Eqs. �1�–�4� and obtain

F1
� = �2ei�2F2

�/�2,

�F1
2� = 4�1J2�2�F1

��t − ����e2i��1
��t−��−	0�,

�F2
2� = �2�1ei�1F1

2�,

F2
� = 2�2e−i	0 �

m=−





imJ3m+1��F2
2��t − ����

�J2m+1�F0�e−i�3m+1��2
2��t−��.

From these equations, it is easy to express all the variables
through F1

� getting a single time-delayed equation �func-
tional map�. If one considers the variables in discrete mo-
ments of time tn=2n�, the functional map is reduced to the
2D iterative map,

Fn+1ei�n+1 = �2ei��2−	0� �
m=−





imJ3m+1��1J2�2Fn��

�J2m+1�F0�e−i�3m+1���1+2��n−	0��, �5�

where Fn= �F1
��tn��, �n=arg�F1

��tn��, �1=4�2�1�1 /�2, and
�2=�2�2�2. Such discrete iterative maps obtained from
DDEs in the limit �1 are known as singular limit maps.12

In Eq. �5� the right-hand side has the form of infinite
series that is not convenient. However, in the case �1�1,
that can be achieved by a strong signal attenuation in the
coupling transmission line ��1�1�, one can retain only one
term with m=0 in the right-hand side of Eq. �5�,

Fn+1ei�n+1 = rJ2�2Fn�ei��−2�n�. �6�

Here r=�1�2J1�F0� /2, �=�2−�1+	0. Moreover, one can
split Eq. �6� into the amplitude and phase parts,

�n+1 = � − 2�n, �7�

Fn+1 = rJ2�2Fn� . �8�

One can see that the phase dynamics obeys the Bernoulli
map that demonstrates the hyperbolic chaotic dynamics with
a positive Lyapunov exponent of �=ln 2. The parameters
�1,2, 	0 enter Eq. �7� as the combination � that determines
only the constant component of a signal phase shift and does
not influence the dynamics. Thus, the system dynamics is
defined by a single control parameter r.

III. NUMERICAL RESULTS: ITERATIVE MAP

First consider a simplified iterative map �6�. Its ampli-
tude part �8� has a fixed point Fn=0, that is stable at any
values of r �Fig. 2�. Indeed, since J2�2Fn�	Fn

2 /2 at Fn�1,
one can see that the multiplier of the fixed point is equal to
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FIG. 1. Scheme of the proposed chaos generator based on coupled drift
klystrons. 1—electron guns, 2—electron beams, 3—collectors, 4—variable
attenuators, 5—phase shifters.
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FIG. 2. Iterative diagram for the map �8� at different values of r:
1—r�rc; 2—r=rc; 3—r�rc.
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zero. With the increase of r, a pair of fixed points arises via
tangent bifurcation. One of these points, Fs, is stable while
the other, Fu, is unstable. A bifurcation value of r is esti-
mated analytically,

rc =
F�

J2�2F��
	 2.778,

where F�	1.15 is the root of the equation
F�J2��2F�� /J2�2F��=1.

The stable fixed point is associated with the attractor
locating on a circle. The angular coordinate of the attractor
obeys the Bernoulli map. Thus, the phase dynamics is cha-
otic while the amplitude remains constant. This means that
the oscillator generates a sequence of pulses with constant
amplitude and the phase varying chaotically from pulse to
pulse, similar to the systems considered in Refs. 2 and 3. An
unstable fixed point is associated with an unstable invariant
curve on which the dynamics of the angular coordinate is
also described by the Bernoulli map. This curve serves as the
boundary between areas of attraction for two coexisting at-
tractors.

With further increase of r a sequence of period doubling
bifurcations takes place and at r	4.4 transition to chaos
occurs. Now not only the phase, but also the amplitude of the
signal varies chaotically. At r=rc	5.02 the attractor col-
lapses with the border of its attraction basin resulting in the
oscillation failure. Recall that this attractor always coexists
with the stable zero fixed point. In Fig. 3 the bifurcation tree
is shown illustrating the behavior picture described above.

In Fig. 4 projections of the attractors of the map �6� on
the plane of a complex variable Fn are shown illustrating the
period doubling scenario. The parameter � defines only a
constant component of phase shift and has no significant
influence on the dynamics of the system. Therefore, further
all figures are plotted at �=� when a constant component of
phase shift is equal to zero. The chaotic attractor in the Fn

plane in the regime of the cycle of period 1 looks like a
cycle, in the regime of the cycle of period 2 as a double
cycle, etc., while the phase dynamics is always described by
the Bernoulli map �Fig. 5�.

To confirm the hyperbolicity of the attractor we have
calculated the Lyapunov exponents. As known, the uniformly
hyperbolic attractors are structurally stable. It means that a
variation of parameters, or functions, in the definition of the
evolution operator does not destroy the intrinsic topology of
the set of trajectories in the phase space as the perturbation is
not too large. A more precise formulation is as follows.1 For
the perturbations small in the class of continuous functions
with first derivatives �of class C1�, the system allows reduc-
tion to the original form by a homeomorphism that is a con-
tinuous invertible change of variables �of class C0�. In other
words, the modified system is topologically equivalent to the
original one. The Lyapunov exponents, generally speaking,
are not invariant under the mentioned variable change, which
is continuous, but not necessarily smooth. �Indeed, they are
obtained from the variational equations derived from linear-
ization near the reference trajectory, which implies the use of
the differentiation.� Nevertheless, due to the structural stabil-
ity, one can expect that the variation of the Lyapunov expo-
nents will be as small as the perturbation; in particular, the
largest exponent remains strictly positive while the topologi-
cal equivalence takes place. In our case, it is supposed that
by a variable change the dynamics on the hyperbolic attrac-
tor is reducible to that associated with the expanding circle
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FIG. 3. The bifurcation tree for the map �8�.
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FIG. 4. Projections of the attractors of the map �6� on the plane of the
complex variable Re F−Im F plotted at various values of r: �a� r=2.85, �b�
r=4.15, �c� r=4.3, and �d� r=4.6.
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map for the angular coordinate along the attractor with ex-
pansion factor of 2. Hence, the largest Lyapunov exponent
has to remain close to the constant value ln 2.

Calculations of the spectrum of Lyapunov exponents for
different values of the control parameter r show that the
largest Lyapunov exponent is really nearly independent of
the parameter and approximately equals to ln 2 �Table I�. At
r�4.4, when the dynamics of the amplitude is also chaotic,
there are two positive Lyapunov exponents, i.e., the hyper-
chaos regime is established.

Now consider the dynamics of the more rigorous model
�5� when amplitude and phase of the signal are inseparable.
Proceeding from the results mentioned above, choose
F0=1.84 when J1�F0� reaches maximum, and suppose �
=�2−�1+	0=�. Let us study the dynamics of the map with
variation of the parameters �1,2. Figure 6 shows the domain
of chaotic dynamics on the ��1 ,�2� plane. Since the Bessel
functions at small values of the argument rapidly decreases
with increase of the order, usually it is enough to retain in
Eq. �5� only two terms with numbers m=0 and �1. In Fig. 6
the borders of the chaos domain are plotted taking into ac-
count five terms with m=0; �1; �2 �solid lines� and two
terms �circles� coinciding with each other. Also, in Fig. 6 the
borders of chaos calculated for the simplified map �6� are
presented �dashes�. Since for the map �6� the borders are
defined by r=const, on the ��1 ,�2� plane they are repre-
sented by hyperbolas. One can see that the borders for both
maps are very close to each other; the lesser �1, the better the
agreement. Outside the chaotic domain, one observes the de-
cay of oscillations, since the only one existing attractor is the
stable fixed point at the origin.

Figure 7 shows projections of the attractors of the map
�5� in the Re F−Im F plane plotted at �1=0.25 and the vari-
ous values of �2. The values of �2 are chosen so that the
parameter r takes on the same values as in Fig. 4. As well as
for the simplified map �6�, the phase dynamics for all cases is
qualitatively the same as for Bernoulli map �Fig. 8�; how-
ever, a small distortion of the iterative curves is observed that
occurs due to contribution of the term with m=−1. The more
�1, the stronger this contribution and the stronger the distor-
tion of iterative curves. However, due to coupling between
the amplitude and phase dynamics, now we cannot observe
period doubling bifurcations, which occur for the simplified
model �6� �cf. Fig. 4�.

In Table II the values of the Lyapunov exponents are
listed for different values of �2. Similar to Eq. �6�, the largest
Lyapunov exponent is almost independent of the control pa-
rameter. With the increase of �2 the second Lyapunov expo-
nent becomes positive. The values of �1,2 for Eqs. �5� and
�6� are rather close.

TABLE I. Spectrum of Lyapunov exponents for the map �6� at various
values of r.

r=2.85 r=4.15 r=4.3 r=4.6
�1=0.692 �1=0.692 �1=0.692 �1=0.692
�2=−0.492 �2=−0.410 �2=−0.324 �2=0.269

TABLE II. Lyapunov exponents for the map �5� at �1=0.25 and various
values of �2.

�2=39.2 �2=57.1 �2=59.1 �2=63.3
�1=0.690 �1=0.690 �1=0.692 �1=0.691
�2=−0.479 �2=−0.310 �2=−0.063 �2=0.346
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��������

��������

FIG. 6. The borders of the areas of the hyperbolic chaos for a map �5� taking
into account two �circles� and five �solid lines� terms of a series. Dashed
lines are the borders for the map �6�.
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FIG. 7. The projections of attractors of the map �5� on the Re F−Im F plane
plotted at various values of �2: �a� �2=39.2, �b� 57.1, �c� 59.1, and �d� 63.2.
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Figure 9�a� shows the chart of the largest Lyapunov ex-
ponent �1 on a ��1 ,�2� plane. Here the values �1 are en-
coded by grayscale, white color corresponds to the theoreti-
cal value for the Bernoulli map �1=ln 2. In the chaotic
domain the largest Lyapunov exponent is almost constant;
however, it smoothly decreases with the increase of �1 that is
associated with increasing contribution of the term with
number m=−1. Outside the chaos domain there exists only
single fixed point attractor in the origin. Since its multiplier
is equal to zero, the largest Lyapunov exponent
�=ln �=−
. However, when the value of �1 becomes suf-
ficiently large, the contribution of term with m=−1 becomes
significant and the hyperbolicity condition disrupts. In
Fig. 9�b� the chart of the largest Lyapunov exponent is plot-
ted for greater values of �1 then in Fig. 9�a�. In this compu-
tation five terms of the series in Eq. �5� were taken into
account. The results reveal violation of the hyperbolicity for
�1��max
2.

IV. NUMERICAL RESULTS: DELAYED-DIFFERENTIAL
EQUATIONS

Since the singular limit map is only an approximate
model for qualitative description of the DDE behavior, we
perform numerical integration of the system �1�–�4� using
the fourth-order Runge–Kutta method adopted for DDEs.13

According to the results of numerical simulations of a sim-
plified map �5� �Sec. III�, we take into account only two
terms with numbers m=0, �1 of infinite series in Eq. �4� that
is enough in the region of parameters where the hyperbolic
chaos exists.

Similar to Sec. III, we choose F0=1.84 and �=�2−�1

+	0=�. The calculations show that the parameters �1,2 and
	0 do not influence strongly the dynamics of the system and
define only a constant component of phase shift, as was ob-
served above for the iterative maps. The values of other pa-
rameters approximately correspond to the parameters of the
millimeter band oscillators described in Refs. 11 and 14.
Suppose that the second harmonic cavity is designed by the
scale-down of the fundamental frequency cavity and using
well-known formulas for the cavity Q-factor,15 one can esti-
mate �=2�2.

As shown in Sec. III, for generation of hyperbolic chaos
the signal of second harmonic in the second klystron input
cavity should be sufficiently small. Therefore, we choose the

attenuation parameters in the transmission lines as �1=0.1,
�2=1.0, and investigate the dynamics of the generator de-
pending on the excitation parameters �1,2. In the simulations
we tried different shapes of the third harmonic pulses: rect-
angular pulses, pulses with smoothed fronts, and cos2�t /T�
pulses. The results are quite similar for all cases; thus, further
the results for the case of rectangular pulses are shown. The
pulse length was chosen equal to 0.35T, where T is the pulse-
repetition interval. Due to finite transient time of oscillation
build-up in the cavities, the pulse-repetition interval should
slightly exceed 2�.

The results of numerical simulation show that the dy-
namics of a system �1�–�4� is qualitatively similar to the
dynamics of the map �5� if the pulse-repetition period of the
reference signal exceeds the transit time of oscillation
build-up in the cavities. In the used normalized variables the
transit time is 
1 for cavities of the first harmonic and 
�
for the second harmonic cavities. The pulse-repetition inter-
val is determined by the delay time �, which can be made as
large as is needed by including the additional delays in the
coupling transmission lines. Further we take �=5 that is
large enough to provide generation of hyperbolic chaos.

In Fig. 10, the domain of hyperbolic chaos on the
��1 ,�2� plane for the system �1�–�4� is shown. Also the bor-
ders of hyperbolic chaos for the map �5� are shown by
dashed lines. Good qualitative agreement of the results for
both models is observed in rather wide range of parameters.
In Fig. 11, the plots of largest Lyapunov exponent of the
hyperbolic attractor versus �1 for two different values of �2

are shown. For comparison with the results of Sec. III, we
calculated the Lyapunov exponent for the stroboscopic
Poincaré map �t=nT�. The largest Lyapunov exponent is al-
most independent from the parameter and approximately
equal to ln 2 that indicates structural stability of the chaotic
attractor.

Figure 12 shows the typical waveform of the amplitude
in the input cavity of the first klystron in the regime of hy-
perbolic chaos. One can see that the signal has the form of
pulse sequence with nearly constant amplitude. However, the
phase of the signal varies irregularly from pulse to pulse2,3

providing robust chaotic signal. This is confirmed by Fig. 13
where typical examples of iterative diagram for the phase of
subsequent pulses and projection of the attractor onto the
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FIG. 9. Charts of the largest Lyapunov exponent for the map �5� on the
��1 ,�2� plane.
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FIG. 10. The domain of hyperbolic chaos for a DDE system �1�–�4�
�shaded� and for the map �5� �dashed lines� on the ��1 ,�2� plane.
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Re F1
�−Im F1

� plane are presented. For this plots we take the
values of the variables at the moments of time when the
amplitude �F1

�� reaches its local maximum. The plots in Fig.
13 are similar to those obtained for the iterative map �cf.
Figs. 7�a� and 8�. With the increase of �1 projection of the
attractor on F1

�, complex plane exhibits similar transforma-
tions, as shown in Fig. 7. The attractor has a topology of the
Smale–Williams solenoid, which is typical for the systems
with hyperbolic chaos.

V. SUMMARY

In this paper, we present the results of detailed numerical
simulation of the klystron-type microwave oscillator capable
to generate signal possessing main features of hyperbolic
chaos. The output signal has the form of sequence of pulses
with chaotic phase dynamics approximately governed by the
Bernoulli map. Three kinds of mathematical models are stud-
ied: the DDE system �1�–�4�, its singular limit map �5�, and
the simplified map �6� obtained in the approximation that the
signal arriving at the input of the second klystron is small.
The results of simulations for all the three models are quali-
tatively similar and indicate that in rather broad range of the
control parameters the regime of hyperbolic chaos is ob-
served. The chaotic attractor has a topology of the Smale–
Williams solenoid. The largest Lyapunov exponent smoothly
depends on parameters and is close to theoretical value for
the Bernoulli map �	 ln 2 that confirms robustness of the
chaotic attractor. Moreover, at certain values of parameters
the second exponent becomes positive, i.e., hyperchaos
arises.

Despite of the hypothesized hyperbolic nature of the
chaotic attractor, the considered scheme of the generator is of
interest itself, since it reveals an opportunity to obtain robust
structurally stable chaos at microwave frequencies. This
property is very important for possible applications in chaos-
based communication and radar systems.
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APPENDIX: DERIVATION OF THE BASIC
EQUATIONS

A mathematical model of the proposed generator is de-
rived similar to other klystron-type delayed feedback
oscillators.10,11 Consider the voltages in the cavities as quasi-
harmonic signals with slowly varying amplitudes Vj

k��t�
=Re�Aj

k�eik�t�. Henceforth, the subscripts j=1,2 indicate the
numbers of klystron, the superscripts k�, k=1,2 ,3, corre-
spond to the resonance frequency of the cavities. Let I0j, V0j,
and v0j denote dc beam currents, voltages, and unperturbed
electron velocities of the corresponding klystron, respec-
tively. Following the theory of klystron,8,9 introduce bunch-
ing parameters Xj

k�=Mj
k��Aj

k��	0j /2V0j, where Mj
k� are the

gap modulation factors �0�Mj
k��1�, 	0j =�lj /v0j are the

unperturbed electron transit angles, and lj are the distances
between the input and output cavities, � j

k�=arg�Aj
k��.

In the input cavity of the first klystron, the electrons
obtain velocity modulation,

v 	 v01�1 +
M1

��A1
��

2V01
cos��t1 + �1

��� , �A1�

where t1 is the time of electron departure from the input
cavity.

Integrating Eq. �A1� one can write down an expression
for the phase of the electron entering the output cavity of the
first klystron,

����������������������	��	
��������
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���
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FIG. 11. Largest Lyapunov exponents of the hyperbolic
attractor vs �1 at different values of �2: �a� �2=23.0
and �b� �2=15.0.
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FIG. 12. Waveform of the field amplitude in the input cavity of the first
klystron in the regime of hyperbolic chaos.
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�t2 = �t1 + 	01 − X1
� cos��t1 + �1

�� , �A2�

where t2 is the time of electron arrival to the output cavity.
Using Eq. �A2� one can obtain the complex amplitudes of the
harmonics of the bunched electron current,8,9

I1
n� =

I01

�


−�

�

e−in�t2d��t1� = 2I01Jn�nX1
��e−in�	01−�1

�−�/2�.

�A3�

Here n is the number of the harmonic. Since the output cav-
ity is tuned to the 2� frequency, it is excited by the second
harmonic, the complex amplitude of which is

I1
2� = − 2I01J2�2X1

��e−2i�	01−�1
��. �A4�

From Eq. �A4� one can see that the phase of the second
harmonic “inherits” the double phase of the modulation volt-
age 2�1

�. Equations �A1�–�A4� are well known in the theory
of klystrons.8,9,16

In the second klystron the beam is modulated by two
modulating cavities. Assume that the distance between the
cavities is negligible �Fig. 1�. Thus, the velocity of an elec-
tron in the second klystron can be written down as follows:

v = v02�1 +
M2

2��A2
2��

2V02
cos�2�t1 + �2

2�� +
M2

3�A2
3�

2V02
cos 3�t1� .

�A5�

Integrating Eq. �A5� one can write down an expression for
the phase of the electron entering in the output cavity of the
second klystron,

�t2 = �t1 + 	02 − X2
2� cos�2�t1 + �2

2�� − X2
3� cos 3�t1.

�A6�

Since the output cavity of the second klystron is tuned to a
frequency of �, it is excited by the first harmonic, the com-
plex amplitude of which is

I2
� =

I02

�


−�

�

e−i��t1+	02−X2
2� sin�2�t1+�2

2�+�/2�−X2
3� sin�3�t1+�/2��

�d��t1� . �A7�

Using the well-known formula exp�iX sin�t��
=�k=−



 Jk�X�exp�ikt�,17 we rewrite Eq. �A7� as follows:

I2
� =

I02

�
e−i	02

−�

�

e−i�t1 �
n,k=−





Jn�X2
3��Jk�X2

2��

�ei��2k+3n��t1+k�2
2�+�n+k��/2�d��t1� . �A8�

In the integral all terms of series for which 2k+3n−1�0 are
equal to zero. Hence, Eq. �A8� becomes

I2
� = 2I02e

−i	02 �
2k+3n=1

Jk�X2
2��Jn�X2

3��ei�k�2
2�+�n+k��/2�, �A9�

where k= �1−3n� /2. Since k is an integer, n should be an odd
number. Set n=2m+1 �m�Z� that yields k=−�3m+1�.
Then,

I2
� = 2I02e

−i	02�
m

�− i�mJ2m+1�X2
3��J−�3m+1��X2

2��

�e−i�3m+1��2
2�

. �A10�

Using the property of the Bessel function J−k�X�=Jk�−X�
= �−1�kJk�X�,17 the complex amplitude of the first harmonic
can be written down as follows:

I2
� = − 2I02e

−i	02�
m

imJ3m+1�X2
2��J2m+1�X2

3��e−i�3m+1��2
2�

.

�A11�

Substituting Eqs. �A4� and �A11� into the nonstationary
equations of cavity excitation,16 we obtain excitation equa-
tions of the output cavities,

dA1
2�

dt
+

�A1
2�

Q1
2� = 2�K1

2�M1
2�I01J2�2X1

��t − l1/v01��

�e−2i�	01−�1
��t−l1/v01��, �A12�

dA2
�

dt
+

�A2
�

2Q2
� = �K2

�M2
�I02�

m

imJ3m+1�X2
2��t − l2/v02��

�J2m+1�X2
3��e−i�3m+1+	02��2

2�
. �A13�

Here Kj
k� are the cavity shunt impedances and Qj

k� are the
loaded Q-factors. Note that the right-hand sides of Eqs.
�A12� and �A13� contain terms with delayed argument be-
cause of finite time of electron propagation in the drift
spaces.

Following Refs. 10 and 11, we write down the equations
for the input cavity excitation by the signals coming from the
output cavities via the transmission lines,

dA1
�

dt
+

�

2Q1
�A1

� =
�

2Q2
��2

�2ei�2A2
�, �A14�

dA2
2�

dt
+

�

Q2
2�A2

2� =
�2�

Q1
2� �1ei�1A1

2�. �A15�

Here � j and � j are the attenuations and phase shifts of the
output signals, respectively.

Obtain dimensionless form of Eqs. �A12�–�A15�. For
simplicity, assume that the parameters of both klystrons are
equal, i.e., I0j = I0, V0j =V0, 	0j =	0, etc. Introduce the normal-
ized time t�=�t /2Q� and the normalized complex ampli-
tudes,

F1,2
� = A1,2

� M�	0/2V0,

�A16�
F1,2

2� = A1,2
2�M2�	0/2V0.

Then Eqs. �A12�–�A15� rearrange in the form �1�–�4� where

�1 = I0K2��M2��2	0Q�/2V0,

�A17�
�2 = I0K��M��2	0Q�/2V0

are the excitation parameters. In the derivation of the basic
equations it was supposed that the voltage amplitudes of os-
cillations in the input cavities are small, �A1

�� , �A2
2���V0, and
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the output voltage amplitudes do not exceed the accelerating
voltage, �A1

2��, �A2
���V0, otherwise backward motion of the

electrons occurs.
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