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In the tangent space of some spatially extended dissipative systems one can observe “physical” modes which
are highly involved in the dynamics and are decoupled from the remaining set of hyperbolically “isolated”
degrees of freedom representing strongly decaying perturbations. This mode splitting is studied for the
Ginzburg-Landau equation at different strength of the spatial coupling. We observe that isolated modes coin-
cide with eigenmodes of the homogeneous steady state of the system; that there is a local basis where the
number of nonzero components of the state vector coincides with the number of “physical” modes; that in a
system with finite number of degrees of freedom the strict mode splitting disappears at finite value of coupling;
that above this value a fussy mode splitting is observed.
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I. INTRODUCTION

Nonlinear dissipative spatially extended systems have,
from the formal point of view, infinitely many degrees of
freedom. But many important examples are known where the
chaotic solution of an extended system evolves in an effec-
tive manifold of finite dimension that is called the inertial
manifold �1�. H. Yang et al. �2� suggest that the tangent
dynamics of Kuramoto-Sivashinsky and Ginzburg-Landau
equations is essentially characterized by a well-defined set of
vectors called “physical” modes which are decoupled from
the remaining set of hyperbolically “isolated” degrees of
freedom. In this case the physical modes can be a local linear
approximation of the inertial manifold, while isolated modes
are orthogonal to this manifold and are responsible only for
transient processes.

The structure of the tangent space of a dynamical system
is characterized by Lyapunov exponents and associated with
them Lyapunov vectors. There are two orthogonal sets of
vectors called backward and forward Lyapunov vectors �3�.
They can be computed in the course of the standard proce-
dure of computation of Lyapunov exponents �4� in forward
and backward time, respectively �3,5�. These vectors are not
covariant with the tangent dynamics in a sense that the tan-
gent mapping, being applied to them, does not produce the
forward or backward vectors. Though the existence of the
covariant Lyapunov vectors �CLVs� was known for a long
time, they became available only recently thanks to effective
numerical algorithms �6,7�. These vectors are not orthogonal,
they are invariant under time reversal and covariant with the
dynamics. Because these vectors span Oseledec subspaces,
they allow access to hyperbolicity properties �6�. CLVs are
the generalization of the notion of “normal modes.” They are
reduced to the Floquet vectors if the flow is time periodic
and to the stationary normal modes if the flow is stationary
�7�.

In this paper, we study the mode splitting reported in Ref.
�2�. The motivating idea is very simple. Consider an ex-

tended dynamical system. When the spatial coupling is very
strong, the effective dynamics should be low dimensional
due to synchronization effects. It means that the number of
physical modes should also be small. But when the coupling
is very small, the spatial cells become almost independent. In
this case all degrees of freedom are important so that the
mode splitting can vanish. We study a chain of amplitude
equations that appear from the Ginzburg-Landau equation
when spatial discretization is introduced. The step size of the
discretization is used as a control parameter. Varying the step
we analyze the mode splitting at different intensities of cou-
pling.

The paper is organized as follows. In Sec. I the model
system is described. Section II is devoted to the case of
strong coupling when the system is close to the bifurcation
point. In Sec. III the strict mode splitting is analyzed that is
observed at moderate values of coupling. Section IV repre-
sents the case of a weak coupling when the strict splitting
disappears and a fussy splitting is observed instead. Finally,
in Sec. V we summarize the obtained results.

II. MODEL SYSTEM

Consider a one-dimensional �1D� complex Ginzburg-
Landau equation �ta=a− �1+ic��a�2a+ �1+ib��x

2a. To find so-
lutions of this equation numerically, we represent the second
spatial derivative as a finite difference. In this way, the par-
tial differential equation is transformed into a chain of N
amplitude equations

ȧn = an − �1 + ic��an�2an + �1 + ib���an�/h2, �1�

where an�an�t� �n=0,1 , . . . ,N−1� are complex variables, h
is a step size of the discretization, and c and b are real con-
trol parameters. We set c=3, b=−2 which corresponds to the
regime of so called “amplitude turbulence” �8�. Function
��an� determines the diffusive coupling and no flux boundary
conditions: ��an�=an−1−2an+an+1 �n=1,2 , . . .N−2�, ��a0�
=2�a1−a0�, and ��aN−1�=2�aN−2−aN−1�. We are interested in
the properties of this system at different strength of spatial
coupling. So, the step size h shall be our control parameter.
Treating the discrete space representation of the Ginzburg-
Landau equation as a chain of oscillators allows us to freely

*Corresponding author. Permanent address: Department of Infor-
matics, Saratov State Law Academy, Volskaya 1, Saratov 410056,
Russia; p.kuptsov@rambler.ru

PHYSICAL REVIEW E 81, 036214 �2010�

1539-3755/2010/81�3�/036214�6� ©2010 The American Physical Society036214-1

http://dx.doi.org/10.1103/PhysRevE.81.036214


change the step size h without taking care of the validity of
the numerical scheme.

To understand what happens when h tends to zero, we
perform the rescaling in Eq. �1� h→�h�, a→a /�, and
t→�2t. In the resulting equation ȧn=�2an− �1+ic��an�2an
+ �1+ib���an� / �h��2 the decreasing in � corresponds to the
decreasing of h in Eq. �1�. The � here can be treated as a
bifurcation parameter, controlling the stability of the homo-
geneous steady state �8�. This state becomes unstable at �
=0, and the system enters the regime of spatio-temporal
chaos at ��0. So, returning to Eq. �1�, we can say that when
h is small the system is just a little bit above the point of the
emergence of spatio-temporal chaos, and it has only a few
positive Lyapunov exponent. Increasing h results in chaotic
dynamics with an increasing number of positive Lyapunov
exponents.

III. ISOLATED MODES AND EIGENMODES

Consider covariant Lyapunov vectors �i of the system �1�.
When h is decreased and the system approaches from above
the bifurcation point where the homogeneous steady state
becomes unstable, CLVs converge to eigenmodes of this ho-
mogeneous steady state �in fact, these are the modes of Fou-
rier decomposition of the solution�. For no flux boundary
conditions the eigenmodes read gm�n�=sm�t��m�t�cos�k1mn�,
where k1=� / �N−1� and m=0, �1, ¯ � �N−2� ,N−1. The
total number is 2N−2, but because cosine is an even func-
tion, modes m and −m are identical and only N modes with
m�0 can be considered. sm�t� is a normalizing factor:
�ngm�n�2=1. �m�t� is a vector having two components which
can be computed using �i. Vector �i has N elements ��i�2n
corresponding to Re�a� and also N elements ��i�2n+1 for
Im�a�. At the bifurcation point each �i coincides with one of
the eigenmodes, say m. It means that dividing ��i�2n and
��i�2n+1 by cos�k1mn� we obtain a set of N identical couples
that are the components of �m�t�. Beyond the bifurcation
point, these couples are not identical, and we define the vec-
tor �m�t� as the average of them.

If the system is not far from the bifurcation point, �i
should not diverge too much from gm. To verify this, we
compute scalar products of each �i with each gm for many
time steps and find the average values. Both �i and gm are
normalized, hence, the scalar products are equal to cosines of
the angle between corresponding vectors. Two vectors of unit
length coincide when the cosine is equal to 1.

Figure 1�a� show average cosines at h=0.1 when the sys-
tem is close to the bifurcation point and has only one positive
Lyapunov exponent �1�0.084. A large part of the diagram is
occupied by the black points along the diagonal surrounded
by white area. �In fact, there are pale squares off the diago-
nal, but this is a numerical artifact.� It means that corre-
sponding �i indeed coincide with gm. Notice that the points
are grouped pairwise. This is a manifestation of the above
mentioned degeneracy of eigenmodes with m and −m. The
nondegenerated modes are orthogonal to each other and are
referred to as isolated modes �2�.

The degeneracy of isolated modes is associated with the
degeneracy of eigenmodes that, in turn, depends on the ge-

ometry of the system. In our case the no flux boundary con-
ditions leads for the Ginzburg-Landau equation to a degen-
eracy of the order two, while in �2� periodic boundary
conditions give rise to a fourfold degeneracy.

There is an area in the left bottom corner of Fig. 1�a�
where CLVs differ significantly from the eigenmodes. In
Ref. �2� such kind of vectors has been called physical. We
shall refer to them as active vectors. These vectors are dis-
cussed in the following section.

IV. STRICT MODE SPLITTING

A. Angles with eigenmodes

The number of active vectors at h=0.1 is small because
the system is close to the bifurcation point. In Fig. 1�b� h
=0.5 and the system has nine positive Lyapunov exponents.
We observe now a large area of active vectors that is clearly
separated from the set of isolated vectors. The isolated vec-
tors are represented by the diagonal structure. The diagonal
is not as sharp as in panel �a�, which means that now angles
between isolated vectors and corresponding eigenmodes,
though small, are not equal to zero. Correspondingly, these
vectors are not quite orthogonal to all other eigenmodes. But
nevertheless, the isolated vectors remain very close to the
eigenmodes. The split between isolated and active modes is
marked by the vertical dashed line at i=42. Also, the area of
active modes is bounded from above: the horizontal dashed
line is drawn at m=21. It means that the active vectors have
relatively small angles only with “their own” eigenmodes,
i.e., with eigenmodes with numbers corresponding to the ac-
tive vectors. The angles with the other eigenmodes are much
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FIG. 1. �Color online� Average cosines of the angles between
CLVs �i �horizontal axis� and eigenmodes gm �vertical axis�.
�a� h=0.1; �b� h=0.5, i=42 for the vertical dashed line and m=21
for the horizontal one; �c� h=0.8, i=77, and m=33.
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higher. Thus, the set of active vectors span approximately the
same subspace as the corresponding amount of the eigen-
modes.

There is another nontrivial structure at the right top corner
of Fig. 1�b�. The nature of this area is unclear yet, but we
conjecture that it consists of active vectors that become rel-
evant when time is reversed.

B. Fraction of DOS violation

The isolated modes do not have tangencies with the active
modes �2�. The method of detection of this strict mode split-
ting, suggested in Ref. �2�, employs a concept of domination
of Oseledec splitting �DOS� �9,10�. We recall that for almost
every time every vector in the tangent space S1�t� of a dy-
namical system grows asymptotically at rate given by the
first Lyapunov exponent �1 except those belonging to a set
S2�t� of measure zero. Similarly, almost every vector in S2�t�
asymptotically grows at rate �2 except those belonging to a
set S3�t� of measure zero relative to S2�t�, and so on. Col-
lection of sets Si�t� embedded one into another is called the
Oseledec splitting of the tangent space. The splitting is called
dominated if each Oseledec subspace is more expanded than
the next, by a definite uniform factor. Let �i�t ,	� be the i-th
local Lyapunov exponent computed at time t and averaged
over an interval 	. The Oseledec splitting is dominated at i if
�i�t ,	��� j�t ,	� holds for all j� i, and for all t with 	 larger
then some finite 	0 �2�. In particular, domination implies that
the angles between the Oseledec subspaces are bounded from
zero �10�.

Employing the ideas of numerical verification of DOS
suggested in Refs. �2,11–13� we define the fraction of DOS
violation in the following manner. Fix an interval 	 and com-
pute �i�t ,	� for some time t. The violation of DOS takes
place if �i�t ,	�
� j�t ,	� for j� i. Thus, for each i we check
this inequality at j� i and add 1 to the i-th site of an array if
it holds at least ones. Repeating this procedure for different
times and performing an averaging we obtain the fraction of
DOS violation at 	, which formally can be defined as �	

�i�

= 	��maxj�i�� j�t ,	�−�i�t ,	���
t, where ��z� is the step func-
tion and 	 . . . 
t denotes the time average.

In the case of multiplicity �i=�i+1, corresponding �	
�i� is

close to 0.5 because of fluctuations of local Lyapunov expo-
nents due to a numerical noise. Otherwise �	

�i� decays to zero
as 	 grows. In general, the decay is asymptotic, but if the
splitting is dominated at i, the corresponding fraction �	

�i�

vanishes at finite 	0. Unfortunately, there is no a well-
grounded algorithm of computation of 	0 except the straight-
forward observation of �	

�i� as a function of 	. Because the
law of the decay of �	

�i� is unknown a priori, there is no idea
how to extrapolate of �	

�i� to zero to verify if a finite 	0 exists.
But, anyway, in points of dominated splitting �	

�i� decays
much faster against 	 than elsewhere. It means that if 	 is
sufficiently large, a graph �	

�i� against i provides relevant in-
formation about locations of the splitting.

Figure 2�a� shows the fraction of DOS violation at h
=0.5. The sharp minimum of �	

�i� at i=42 coincides with the
position of the splitting found in Fig. 1�b�. This minimum,
presuming the vanish of �	

�i� at a finite 	, means that the

active modes are hyperbolically isolated from all the rest
ones. The active vectors, located to the left from the splitting
point, have sufficiently high �	

�i�. In this case �	
�i� vanishes

only asymptotically which, in turn, indicates frequent tan-
gencies between the active vectors. The isolated vectors are
represented by a series of sharp minima and maxima with the
period 2. Above we have shown that these vectors at h
=0.5 are very close to the eigenmodes gm. Because of the
degeneracy, the modes gm and g−m have identical growth
rates. Hence, there are couples of corresponding isolated vec-
tors �i with identical growth rates. In turn, this implies the
multiplicity of corresponding Lyapunov exponents. Indeed,
the spectrum of Lyapunov exponents demonstrates a step-
wise behavior to the right from the splitting point i=42 and
the step is 2, see Fig. 3. �The stepwise structure of the
Lyapunov spectrum corresponding to isolated vectors was
also reported in Ref. �2�.� Thus, the maxima of �	

�i� in Fig.
2�a� are associated with this multiplicity. The deep minima
indicate the absence of tangencies between isolated vectors
because of the orthogonality of corresponding eigenmodes.

The curve of �	
�i� in Fig. 2�a� demonstrates two more in-

teresting features. We observe another point of splitting at i
=19 where �	

�i� has a very deep minimum. The Kaplan-Yorke
�Lyapunov� dimension in this case is DL�18.2. Thus, we
can conjecture, that there are two types of active modes that
are hyperbolically isolated from each other, and the amount
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FIG. 2. �a� Fraction of DOS violation at 	=51.2 vs number of
Lyapunov exponent. �b� Average projection of the state vector onto
vector columns of Q vs the number of vector. Dotted vertical lines
marks from left to right: index of the first of two zero Lyapunov
exponents i=10, Kaplan-Yorke �Lyapunov� dimension rounded up
to the next integer i=19, and the number of active vectors i=42.
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FIG. 3. Lyapunov spectrum at h=0.5. The horizontal dashed
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of the first type modes is equal to the Kaplan-Yorke dimen-
sion rounded up to the next integer.

Also notice the sharp spike at i=10. To explain the emer-
gence of this spike we need to recall that the complex
Ginzburg-Landau equation with no flux boundary conditions
has two zero Lyapunov exponents �14�. There are nine posi-
tive exponents and �10=�11=0, so the spike at i=10 indi-
cates the multiplicity of two corresponding �i.

C. Projections of the state vectors

The split of CLVs onto active and isolated vectors should
have a clear and visible manifestation in the dynamics of a
system. The idea that the number of active vectors i is an
effective dimension of the system, suggested in �2�, pre-
sumes that there exists a local basis where the state vector
has only i nonzero components. We consider projection of
the state vector of the system at time t on the local basis
composed of backward Lyapunov vectors. These vectors are
orthogonal to each other and span the same subspaces as
CLVs �3�. The backward Lyapunov vectors can be computed
much faster then CLVs in the course of the standard proce-
dure of computation of the Lyapunov exponents �4�, because
the columns of orthogonal matrices Q converge to them
�3,5�. So, we multiply transposed matrices QT by corre-
sponding state vectors, accumulate absolute values of ob-
tained projections, and then average them over large number
of steps. �In general case, the homogeneous steady state
should be subtracted from the state vector before the multi-
plication to avoid an unnecessary shift. But for our system
the homogeneous steady state is 0.�

The average projection denoted as sQ is shown in Fig.
2�b�. We observe the curve that agrees good with �	

�i�. Pro-
jections onto active vectors are large, while they are almost
zero for the isolated vectors. These two parts of the curve are
clearly separated exactly at i=42. This clarifies the nature of
the discussed mode splitting: we indeed observe that the
number of active vectors can be an effective dimension of
the system. Also notice that the largest component of the
projection has an index which is equal to the Kaplan-Yorke
dimension rounded up to the next integer, as marked by the
middle dashed line in the figure.

The idea of using backward Lyapunov vectors in dimen-
sion reduction methods has already been considered and re-
jected as nonpromising in Refs. �15–17�. Indeed, the validity
of this basis is not so obvious. Reasoning formally, one can
imagine an attractor that has inappropriate orientation in the
phase space so that the decomposition fails to give correct
result. But on the other hand, let us assume that we have a
small spherical cloud of points that surrounds a homoge-
neous steady state in the phase space. When the points
evolve, the cloud is extended along the most unstable mani-
fold. In this case the most information about dynamics is
positively carried by the first several CLVs. We can guess
that this property survives later producing the split into ac-
tive and isolated vectors. Anyway, at least for the Ginzburg-
Landau equation this decomposition gives very appropriate
information concerning the mode splitting.

The picture illustrated in this section for h=0.5 is quite
generic. We can observe the strict splitting of active and

isolated modes as well as the Kaplan-Yorke mode splitting
for a wide range of h. But when h becomes sufficiently high,
the situation becomes quite different, as will be discussed in
the following section.

V. FUSSY MODE SPLITTING

As discussed above, exactly at the bifurcation point CLVs
coincide with eigenmodes and all of them are isolated, while
the set of active vectors is empty. There are 2N−2 isolated
modes. When h grows, the isolated modes are converted into
active ones and this conversion occurs at both ends of the
spectrum. �Compare small structures at the ends of the main
diagonal in Fig. 1�a� and the large areas in Fig. 1�b�.� At the
left end the isolated modes contribute to the set of active
modes, while at the right end they fill up the other set of
modes, which are, conceivably, relevant when time is re-
versed. Figure 4 shows that the number of active modes de-
pends on h almost linearly. Because we have a finite number
of modes, there is a finite h for which all isolated modes are
converted so that the splitting vanishes. If the conversion at
both ends of the spectrum takes place symmetrically, then the
isolated modes disappear when there are N−1 active modes.
In Fig. 4 the splitting of modes indeed disappears when the
number of active modes is close to 64 at N=65.

The value of h where the mode splitting disappears de-
pends on the number of eigenmodes, that, in turn depends on
the number of oscillators in the chain N. Taking into account
almost linear dependence of the number of active modes
against h we conclude that in a chain with an infinite number
of oscillators the mode splitting vanishes at infinite h. Thus,
the continuous system can have the mode splitting at any
strength of the spatial coupling. In particular, it gives a cri-
terion of correctness of a chain as a model of continuous
system: the chain can model a continuous system only if the
step size is below the point where the mode splitting van-
ishes.

Now we consider the tangent space above the point of
mode splitting vanishing. Figure 1�c� demonstrates angles
between CLVs and eigenmodes at h=0.8 �there are 17 posi-
tive Lyapunov exponents in this case�. One can see that this
figure differs much from the panels �a� and �b�. Sets of vec-
tors are still distinguishable, but their boundaries are not
strict. The isolated vectors are absent at all. The vertical
dashed line marks an approximate boundary between two
clusters of vectors and the horizontal one separate the spec-
trum of eigenmodes onto two halves. The vectors from the
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left cluster have relatively small angles with the first half of
the spectrum of eigenmodes, while the right cluster contains
the vectors that have relatively small angles with the second
half of the spectrum. In particular, it means that tangencies
within the clusters occur more often than between the repre-
sentatives of two clusters. It can be treated as a fussy mode
splitting: the left cluster is preliminary relevant to the for-
ward time dynamics, while the right one, though also in-
volved, but does not include much. In the reverse time the
roles of the clusters are exchanged.

Figure 5 shows the fraction of DOS violation and average
projections of the state vector onto backward Lyapunov vec-
tors at h=0.8. There is no series of sharp minima and
maxima representing isolated modes and also there is no
sharp step in the curve of projections. But the curve of pro-
jections indicates that the state vector still has preferable di-
rections inside the left cluster of CLVs, whose boundary is
marked by the vertical dashed line. In the other words, the
number of vectors in the left cluster can be considered as
approximate effective dimension of the system. The projec-
tions to vectors from the right cluster are much smaller.

Notice also that two other features of these curves sur-
vive. We still can see the minimum of �	

�i� and the maximum
of the projection corresponding to the Kaplan-Yorke dimen-
sion rounded up to the next integer, as well as the spike,
indicating degeneracy associated with two zero Lyapunov
exponents.

VI. SUMMARY

We studied the splitting of modes of perturbations, repre-
sented by the covariant Lyapunov vectors, into sets of active
and isolated modes �2�. We considered a chain of amplitude
equations obtained from the Ginzburg-Landau equation by
substitution of the second spatial derivative with its finite-
difference representation. The size of the step of spatial dis-
cretization was used as a control parameter while the number
of oscillators in the chain was held constant. When the step
size is asymptotically small, the system approaches from

above the bifurcation point where the homogeneous steady
state looses its stability, while increasing of the step results in
more independent dynamics of oscillators.

At the bifurcation point there are no active modes. All
modes are isolated and coincide with eigenmodes of the ho-
mogeneous steady state. Their spatial structure is determined
by the number of oscillators and boundary conditions. When
the system leaves the bifurcation point as the step size grows,
the isolated modes are converted into active ones so that the
number of active modes grows linearly with the step size.

For the considered system, the backward Lyapunov vec-
tors were shown to be an appropriate basis where a number
of essential components of the state vector is equal to the
number of active vectors. In other words, the number of ac-
tive vectors indeed plays the role of an effective dimension
of the system, as conjectured in �2�.

The active modes were found to be split into two subsets
that are hyperbolically isolated from each other. The coordi-
nate of the splitting point is equal to the Kaplan-Yorke di-
mension rounded up to the next integer. We conjecture that
this indicates the existence of two types of active modes. The
nature of these different types is unclear yet and more studies
are required.

At the right end of the spectrum we observed another set
of modes which is similar to the set of active modes. Its
nature is unclear yet, but we conjecture that these modes
become relevant when time is reversed.

At a certain finite value of the step size the strict mode
splitting disappears. Because this value depends on the num-
ber of oscillators in the chain, the vanish of the splitting
occurs only for a system with finite number of degrees of
freedom and probably cannot be observed, in particular, for
continuous systems. It can be used as an estimation of the
maximum step size of the spatial discretization. If a continu-
ous system has the strict mode splitting and its discrete
model does not have it, it means that the step size is too
large.

Above the point where the splitting vanishes the spectrum
of modes contains two clusters without strict boundaries.
This can be treated as a fussy mode splitting. The first cluster
contains formerly active modes, while the other one corre-
sponds, apparently, to the modes mainly involved when time
is reversed. The projection of the state vector on the back-
ward Lyapunov vectors indicates that the number of vectors
in the first cluster could be an approximation of an effective
dimension of the system.
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