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Abstract—A model system is proposed, which manifests a blue sky catastrophe giving rise
to a hyperbolic attractor of Smale–Williams type in accordance with theory of Shilnikov and
Turaev. Some essential features of the transition are demonstrated in computations, including
Bernoulli-type discrete-step evolution of the angular variable, inverse square root dependence
of the first return time on the bifurcation parameter, certain type of dependence of Lyapunov
exponents on control parameter for the differential equations and for the Poincaré map.

MSC2000 numbers: 34C28, 34C23, 37D20, 37E99, 37G15, 37G35

DOI: 10.1134/S1560354710020206

Key words: attractor, bifurcation, Smale–Williams solenoid, Lyapunov exponent

Uniformly hyperbolic strange attractors have strong chaotic properties and allow for far-reaching
mathematical analysis [1–7]. They are structurally stable, i.e. insensitive in respect to variations of
functions and parameters in the governing equations. Traditionally, in reviews and textbooks on
nonlinear dynamics, the uniformly hyperbolic attractors are illustrated by artificially constructed
discrete-time evolution rules (Plykin attractor, Smale–Williams solenoid). An interesting problem is
search for examples of such attractors in systems of physical or technical origin [8, 9]. Certainly, one
possible direction of thought is consideration of scenarios of appearance of the hyperbolic chaotic
attractors in nonlinear dissipative systems under variation of their control parameters.1)

Possible occurrence of the hyperbolic strange attractors was discussed by Ruelle, Takens, and
Newhouse in a framework of generic phenomena accompanying destruction of quasiperiodic motions
on tori of dimension 3 and more [10, 11], but they did not present concrete examples. More recently,
Shilnikov and Turaev [12, 13] indicated a possibility of appearance of attractors of Smale–Williams
type in Poincaré section of continuous-time systems undergoing a kind of the so-called blue sky
catastrophe.

In the simplest version, a blue sky catastrophe occurs in three-dimensional phase space. At the
bifurcation, a saddle-node limit cycle takes place, from which the trajectories depart along the
unstable manifold, and return back to the same cycle from the opposite side. With a shift of a
value of the control parameter in one direction, the saddle-node cycle transforms to a pair of close
limit cycles, one stable and another unstable. With a parameter shift in the opposite direction,
the saddle-node cycle disappears; instead, an attracting large-scale limit cycle emerges containing
helical coils near the former saddle-node cycle.

Having initial angular coordinate ϕ near the saddle-node cycle, after a travel along the unstable
manifold and subsequent return, the angular coordinate is expressed by relation, which contains,
in general, an additive term mϕ; for the three-dimensional case, the integer m may be equal 0 or 1.
However, at higher dimensions, any integer can occur. In particular, m = 2 corresponds to a birth
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1)This matter certainly is different from the commonly known scenarios of transition to chaos (like Feigenbaum’s

one), which lead to the onset of non-hyperbolic attractors.
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of hyperbolic strange attractor represented by a Smale–Williams solenoid in Poincaré section. The
authors [12, 13] stress that due to such bifurcation, a system of Morse – Smale class with simple
dynamical behavior, immediately turns to a system with complex dynamics associated with the
structurally stable chaotic attractor.

To my knowledge, no concrete systems with the last variant of the blue sky bifurcation were
described in the literature. Known examples of the blue sky catastrophes relate to the three-
dimensional case, when the hyperbolic chaotic attractor cannot arise [14–16].

To construct an example with birth of the Smale–Williams attractor, one must have the phase
space dimension at least equal four. The phase-space flow has to be organized in such way that a
toroidal domain close initially to the saddle-node cycle, in the course of travel and return back to
that cycle would form a double-folded loop, with thinner coils. To do this, an idea advanced in our
previous work with Pikovsky [17] may be applied with certain modifications.

Let us start with a two-dimensional predator – prey system with an instant state specified by
two non-negative variables r1, r2:

ṙ1 = 2(1 − r2 + 1
2r1 − 1

50r2
1)r1, ṙ2 = 2(r1 − µ + 1

2r2 − 1
50r2

2)r2. (1)

These equations differ from those in Ref. [17] with additional nonlinear terms in the second
(“predator”) equation, and contain a control parameter µ. If the value of µ is slightly less than
µ0 = 31

8 , a picture of orbits on the phase plane r1, r2 looks like that shown in Fig. 1a. There are
four fixed points here, an unstable focus A, saddles B and C1, and a node C2. With increase of µ,
the fixed points C1 and C2 move to meet each other at µ = µ0, and then disappear (see the panels
(b) and (c), respectively). Instead of the former pair of fixed points, a domain of relatively slow
motion appears there, while the attractor is a limit cycle, which passes close to the origin and to
the saddle B.

Fig. 1. Phase portraits of the system (1) with increase of µ from (a) to (c). Two fixed points, a stable node
C2 and a saddle C1 (a) meet together at the bifurcation (b), and a limit cycle appears shown with a bold
curve (c)

.

Following [17], let us consider the quantities r1, r2 as squared absolute values of complex
amplitudes for two oscillators of some frequency ω0, namely, r1,2 = |a1,2|2. One can write down
a set of differential equations for the complex variables a1, a2, and add terms of certain form,
which introduce additional coupling between the oscillators. The equations read

ȧ1 = −iω0a1 + (1 − |a2|2 + 1
2 |a1|2 − 1

50 |a1|4)a1 + 1
2εIma2

2,

ȧ2 = −iω0a2 + (|a1|2 − µ + 1
2 |a2|2 − 1

50 |a2|4)a2 + εRea1,
(2)

where the added terms contain the coefficient ε. As a1, a2 are complex, in real dynamical variables
(Rea1, Ima1, Rea2, Ima2) this is a four-dimensional system.

At ε = 0, equations for r1,2 = |a1,2|2 derived from (2) coincide precisely with Eqs. (1). At ε small
enough, and at values of µ notably less than µ0, the sustained dynamics presented graphically on
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the plane r1, r2 is located close to the node C2. For nonzero ε, this is a limit cycle of such kind
that the second oscillator has some notable amplitude, while for the first one the amplitude is
very small. Besides, there is a close unstable limit cycle close to C1. With graduate increase of the
parameter, both cycles come closer, meet together and coincide at some µ = µc(ε) ≈ µ0, forming
a semi-stable limit cycle. At µ > µc(ε) it disappears. Now, motion of a representative point on
the plane r1, r2 follows approximately a closed large-scale path, like in Fig. 1c, visiting again and
again a neighborhood of the origin. Qualitatively, for each such passage, the following stages may
be specified: excitation of the first oscillator (i), excitation of the second oscillator (ii), damping of
the first oscillator (iii), and slower damping of the second oscillator (iv). Activation of the second
oscillator occurs in presence of driving from the partner, due to the coupling term proportional to ε
in the second equation, so, it inherits the phase from the first oscillator. During the damping stage of
the second oscillator, its residual oscillations initiate activation of the first one. The corresponding
term proportional to ε in the first equation contains squared complex amplitude, so, this transfer
of excitation is accompanied with doubling of the argument of the complex variable, representing
the phase of the oscillations. Then, the process repeats again and again. So, the transformation
of the phase at each next cycle of the excitation exchange corresponds to expanding circle map,
or Bernoulli map, ϕn+1 = 2ϕn + const. As known, this map gives rise to chaotic dynamics with
positive Lyapunov exponent Λ = ln 2 > 0.

These considerations suggest that at µ = µc a variant of blue sky bifurcation occurs, which
corresponds to the case m=2. So, in accordance with argumentation of Shilnikov and Turaev, it
should be accompanied by a birth of hyperbolic attractor, the Smale–Williams solenoid in the
Poincaré section.

Figure 2 shows portraits of phase trajectories in projection on the plane of real amplitudes of two
oscillators as obtained from numerical solution of Eqs. (2) by the Runge–Kutta method. Parameter
values in the computations are ω0 = 2π and ε = 0.5.

Taking into account configuration of the attractor, in the supercritical domain µ > µc it is
appropriate to define the Poincaré section with a hypersurface S in the for-dimensional phase
space by equation |a2| = c taking into account only crossings in direction of increase of |a2| (see
a horizontal segment and an arrow in panel (b) of Fig. 2). In the parameter range of interest, an
appropriate value of the constant is c=2.5. The Poincaré map was realized as a computer program
basing on numerical solution of differential equations (2) complemented with procedure of Hénon
[18], consistent in accuracy with the applied finite-difference scheme.

Fig. 2. A transient trajectory (gray) and the limit cycle (black) before the bifurcation at µ=3.14 (a), and
portrait of chaotic attractor after the bifurcation, at µ=3.1442 (b), projected onto a plane of real amplitudes
|a1| and |a2|. Other parameters are ω0 = 2π and ε = 0.5.

As mentioned in [13], near the bifurcation, the characteristic time of return of orbits at the
Poincaré section depends on the control parameter like T (µ) ∼ 1/

√
µ − µc. In computations, the

numerical data are found to be in good agreement with this relation. The evidence is delivered
by a plot of squared inverse averaged return time against parameter µ (Fig. 3). The bifurcation
threshold corresponds to intersection of the curve with the horizontal coordinate axis, and locally
the dependence is linear (see the dotted line). From extrapolation, the bifurcation is located with
high accuracy at µc ≈ 3.144196.
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Fig. 3. Squared inverse averaged time of returns at the Poincaré section for orbits on the attractor versus
control parameter µ. The blue sky bifurcation point corresponds to µc.

Diagrams in Fig. 4 illustrate evolution of phases at successive crossings of the Poincaré section S
in the course of motion on the attractor. The phase Φn relates to the first oscillator at t = tn, which
is the n-th crossing of the orbit with the hypersurface S in the correct direction. In computations,
it is determined as Φn = arg a1(tn). Observe that topologically the discrete-step evolution of phases
corresponds to Bernoulli map: one full revolution for pre-image Φn gives rise to two revolutions
for the image Φn+1. Such topological nature of the mapping persists in a wide parameter range
above the bifurcation threshold. It supports the qualitative argument that the case m=2 occurs
here, associated with presence of Smale–Williams solenoid in the Poincaré map. Fig. 5 shows the
attractor portrait in the Poincaré section in projection on the phase plane of the first oscillator.
Although it looks like a simple closed curve, a high enough zoom resolves intrinsic transversal
Cantor-like structure, which is essential attribute of the Smale–Williams solenoid.

Fig. 4. Diagrams for discrete-step evolution of phases for the first oscillator at passages of the Poincaré section
S. Parameters are ω0 = 2π, ε = 0.5, µ = 3.1442 (a) and µ = 3.15 (b).

Fig. 5. Attractor of the system (2) at µ=3.15 in the Poincaré section projected onto the phase plane of the
first oscillator. Transversal Cantor-like structure becomes visible at great resolution, as shown in the inset.

For computation of Lyapunov exponents, standard algorithm of Benettin [19] was used.
Numerical solution of Eqs. (2) on a sufficiently long time interval is performed for the dynamics on
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the attractor, together with collection of linearized equations for four perturbation vectors. After
some appropriately chosen time period, Gram – Schmidt process is applied to the vectors with their
subsequent normalization (reduction to the unit norms). Lyapunov exponents are obtained from
slopes of the straight lines approximating the accumulating sums of logarithms of the norms of the
vectors (after orthogonalization but before normalization), in dependence on a number of steps of
the algorithm.

In Fig. 6 a plot for the Lyapunov exponents is shown, as they behave under parameter variation
through the blue sky catastrophe, which occurs at µ = µc (see panel (a)). In the left part of the
plot, the largest Lyapunov exponent is zero, and three others are negative. Here attractor is a
stable limit cycle, like that in Fig. 2a. At the bifurcation, both two larger exponents meet at zero,
and two others remain negative. After the bifurcation, there is one positive exponent, which grows
with increase of µ. The second exponent remains zero, and two others are negative, with gradually
decreasing absolute value. Here the Smale–Williams attractor persist. In particular, at µ=3.15 the
Lyapunov exponents are

λ1 = 0.0434, λ2 = 0.0000, λ3 = −8.75, λ4 = −8.85.

The second exponent is zero (up to numerical error) and must be regarded as associated with
neutral infinitesimal perturbation along the trajectory on the attractor. Estimate of the attractor
dimension from the Kaplan–Yorke formula [20] yields DL = 2 + λ1/|λ3| ≈ 2.005.

Fig. 6. Lyapunov exponents of the system (2) plotted versus parameter µ (a), a magnified part for the largest
Lyapunov exponent near the bifurcation threshold in supercritical domain (b), and the plot for the Lyapunov
exponent of the Poincaré map (c). Observe that the Lyapunov exponent for the Poincaré map is approximately
constant close to ln 2 that corresponds to the Bernoulli map.

The growth of the positive Lyapunov exponent in the supercritical domain, µ > µc (see a separate
plot (b)) occurs because of decrease of the characteristic time scale observed with growth of distance
from the bifurcation point. In the supercritical domain, one can determine Lyapunov exponents
Λ1, Λ2, Λ3 for the Poincaré map as well. The zero-value exponent is excluded, and others are in
obvious relation with those for the differential equations, namely, Λ1 = λ1 < T >, Λ2 = λ3 < T >,
Λ3 = λ4 < T >. Here < T > is characteristic time of return at the Poincaré section, averaged over
orbits on the attractor. Observe that the positive exponent for the Poincaré map remains almost
constant in a wide parameter range (up to fluctuations because of the numerical inaccuracy). It is
close to ln 2, the value corresponding to the Bernoulli map (see panel (c) in Fig. 6).

In conclusion, this article presents an explicit four-dimensional dissipative system manifesting a
variant of blue sky catastrophe accompanied with birth of attractor of Smale–Williams type in the
return map. All features of the transition observed in the computations agree well with the theory
developed by Shilnikov and Turaev.

The model essentially supplements a collection of known examples of blue sky catastrophes [14–
16] restricted until now with transitions involving only regular attractors, the limit cycles. This
and similar model systems may be of interest for understanding variety of dynamical behaviors,
e.g. in neurodynamics: Indeed, some models with the blue sky catastrophes relate to this discipline
[15, 16], as well as a hypothetical example of a uniformly hyperbolic strange attractor suggested in
[21].
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