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Abstract – An autonomous system we propose is a ring structure of a large number of van der Pol 
oscillators, which manifests cyclic propagation of the localized excitation with phase undergoing 
the expanding circle map transformation on each full revolution. Due to this, it is reasonable to 
suppose that attractor of Smale – Williams type occurs in the phase space of the system. Because of 
the slow spatial variation of the natural frequencies of the oscillators around the ring, it appears 
possible to exploit resonance mechanism for the excitation transfer; so, the system may have 
prospects for implementation of high-frequency chaos generators. 
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1. Introduction 
Uniformly hyperbolic strange attractors known in theory of dynamical systems have strong 

chaotic properties and allow for a far-reaching mathematical analysis. They are structurally 
stable, i.e. insensitive in respect to variations of functions and parameters in the governing 
equations [1-5]. Traditionally, in reviews and textbooks on nonlinear dynamics, the uniformly 
hyperbolic attractors (the Plykin attractor, the Smale – Williams solenoid) are illustrated by 
artificially constructed discrete-time evolution rules. An interesting problem is to find examples 
of such attractors in systems of physical or technical origin.  

Recently, several systems were suggested, in which the Poincaré map possesses an attractor 
of Smale – Williams type [6-8].  

Among them there are non-autonomous systems composed of two van der Pol oscillators, 
which become active turn by turn and pass the excitation each other. Transformation of the phase 
of oscillations on a whole cycle of due to the resonance excitation transfer in these systems gives 
rise to the expanding circle map that implies chaotic dynamics.  

In addition, autonomous systems were designed based on dynamics close to a heteroclinic 
contour [8]. Such system may be thought as a ring set of self-oscillators activated alternately 
because of appropriately chosen terms in the equations responsible for nonlinear saturation. The 
disadvantage of the models considered in Ref. [8] is a non-resonant nature of transfer of the 
excitation between the oscillators. On one hand, postulated in these constructions form of 
equations for a single oscillator in practice corresponds to description in terms of slow complex 
amplitudes, which implies assumption of relatively high natural frequency. On the other hand, 
the exploited non-resonance mechanism of transfer of excitation between the alternately active 
oscillators ensures the prescribed transformation for phases only at relatively low natural 
frequencies. These two conditions contradict each other; so, practical implementation of the 
scheme is questionable.  

One way to overcome the problem is to consider a large number of oscillators arranged in 
such way that the neighbors transferring the excitation each other possess close natural 
frequencies, which decrease gradually from the beginning to the end of the chain; the final stage 
of the excitation transfer at the closure of the chain is of a special kind been accompanied by 
doubling of the respective frequency and the oscillation phase to organize the expanding circle 
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map. In the present paper, this idea is implemented in a ring model composed of van der Pol 
oscillators. 

 
2. Equations and principle of operation 
As known, a single autonomous van der Pol oscillator is governed by a differential equation 
 , (1) 0)( 2

0
2 =ω+−− xxxAx &&&

where ω0 is the natural frequency. At negative values of the parameter A the only attractor is a 
fixed point at the origin. At positive A this point becomes unstable, and self-oscillations occur 
associated with the attractive limit cycle.  

Let us consider the following ring model composed of N+1 interacting van der Pol 
oscillators 
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The factors at the first derivatives may be rewritten in a form ∑
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structure ensures a situation that each given oscillator contributes to a strong suppression of all 
other partners, except one numbered with the next index. Due to the presence of the additional 
coupling characterized by parameter ε the excitation of each j-th oscillator is stimulated by 
oscillations from the (j-1)-th partner. Because of such structure, the system manifests cyclic 
propagation of the localized excitation around the ring in direction of increasing indices.  

Indeed, let us suppose that initially all N variables are relatively small, but, say, x1 is the 
largest. Then, it grows in accordance with the equations (2), reaches a level of order 1 and nearly 
saturates. Now, it suppresses strongly the variable x3, because x1 enters in the third equation with 
factor 2, but it does not restrain the growth of the variable x2, as x1 is present in the second 
equation with factor ½. On the next stage, the variable x2 grows, saturates, and suppresses the 
variable x1, but allows growth of x3, and so on. So, the elements become active turn by turn in 
cyclic order .  ...4321 →→→→ xxxx

Excitation of each next oscillator occurs in presence of stimulating force from the previous 
one, which corresponds to the right-hand part terms proportional to the coupling constant ε in 
Eqs. (2). As N is large enough, the natural frequencies of the neighbor oscillators are close, and 
the stimulation is practically resonance. Only at the edge of the chain, the transfer from N-th 
oscillator to 0-th one is arranged in other way: the first one has the natural frequency twice less 
that the last one, and the resonance stimulation is produced by the second harmonic presenting in 
the coupling term proportional  in the first equation of the set (2). It ensures doubling of the 
phase shift. Indeed, if 

2
Nx
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02

122 +ϕ+ω=ϕ+ω ttxN , 
where three dots mean a non-resonant term. Hence, the 0-th oscillator will accept the phase shift 

 at the next stage of activity. So, on successive bypasses of the ring by the excitation, 
the phase shifts will evolve in accordance with the expanding circle map, or the Bernoulli map  

const+ϕ2

 const21 +ϕ=ϕ + nn . (3) 

This is chaotic map with the Lyapunov exponent 693.02ln ≈=Λ ; so the described mode of 
operation corresponds in fact to chaotic attractor in the ring system.  
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3. Results of numerical simulation 
Figure 1 shows in panel (a) the time dependences for generalized coordinates of oscillators in 

the ring structure for N=14 in accordance with results of numerical computer solution of 
equations (2) after exclusion of the transients.  

In accordance with the idea of the design, the oscillatory excitation has to undergo doubling 
of phase with each bypass of the ring. This property is crucial for the realization of the attractor 
of Smale - Williams type, and it is highly desirable to illustrate it in the numerical computations. 

It is not so trivial to construct an appropriate Poincaré map: simple definitions appear to be 
unsuccessful for illustrating the desirable phase transformation. Indeed, a single van der Pol 
system is not so close to perfect symmetry intrinsic to the shortened amplitude equations [8], and 
it is problematic to locate the instant of the cross-section relatively to the envelope of the 
oscillations with inaccuracy essentially less then the period associated with the natural frequency 
and obtain good definition of the phases. To overcome the problem let us introduce an auxiliary 
variable z governed by the differential equation 
 . (4) 2
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Here the right-hand part is the difference of squared amplitudes for the oscillatory elements 
numbered 0 and 1, and γ is positive constant. The behavior of the variable z is illustrated by 
panel (b) of Fig.1 at particular γ=0.1. The value z grows during the epoch of activity of the 
oscillator 0, and then decreases below zero during the epoch of activity for the oscillator 1. Then, 
it decays nearly to zero until the next activation of the oscillator 0 occurs.  

 

 
Fig. 1. (Color on-line.) Time dependences for xj, j=0,…, N (a) and auxiliary variable z (b) used for 
construction of the return map obtained from the numerical computer solution of Eqs. (2) at 

. 2.0ε,π2ω,1,14 0 ==== AN

For the record of the system states and evaluation of the phases  we 
take sequence of the instants of the transitions from positive to negative values of the variable z. 
Fig.2 shows the diagram for ϕn+1 versus ϕn. Observe that it looks topologically corresponding to 
the Bernoulli map: one complete revolution for pre-image gives rise to two revolutions for 
image. Accounting strong compression in other directions in the phase space (excluding the 
cyclic phase variable and the neutral direction along the phase trajectory), it gives a reason for 
the conjecture that hyperbolic attractor does exist, which corresponds to suspension [1-5] for the 
Smale – Williams solenoid.  

)/arg( 2
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Figure 3 presents portraits of the attractor in projection onto the phase plane of oscillator 0. 
Panel (a) shows the attractor for the flow system in projection from the phase space of dimension 
2(N+1). In panel (b) attractor in the cross-section defined with the help of the auxiliary variable 
is plotted. The last one is in fact a picture of solenoid; the intrinsic fine transversal Cantor-like 
structure is not evident due to strong compression of the phase space. 
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Figure 4 shows portraits of the attractor for the flow system in projections on coordinate 
axes corresponding to neighboring oscillators in the ring. The first picture on the plane (xN, x0) is 
of a specific kind; all the rest ones are qualitatively similar to each other. It is so because just 
transfer of the excitation from the N-th oscillator to 0-th is arranged through the quadratic 
coupling term and the second harmonic; all others are stimulated directly by linear terms in the 
equations (2). 

 
Fig. 2. Iteration diagram for phases obtained in computations for the model (2) at 

2.0,2,1,14 0 =επ=ω== AN . The phases are determined at instants of each successive passage of the 
auxiliary variable z evolving in accordance with the equation (4), from positive to negative values.  

By means of the Benettin algorithm [9] applied to the set of equations (2) and respective 
variation equations, the larger Lyapunov exponents were evaluated: 
 K6318.0,3353.0,000002.0,003044.0 4321 −=λ−=λ=λ=λ   (5) 

The largest Lyapunov exponent is positive that means that dynamics is chaotic. Accounting that 
intersections of the axis of the auxiliary variable z=0 (see (4)) used in the analysis of the phase 
map occur in the present case with average time period Tav=227.85, it is worth considering 
normalization of the oldest Lyapunov exponent to this time interval that yields 

. This estimation corresponds well with the Lyapunov exponent of the 
Bernoulli map, that transforms the phases, 

6934.011 ≈λ=Λ avT
6931.02ln = . Therefore, we interpret the largest 

exponent as associated with cyclic coordinate in the phase space of dimension 2(N+1) along 
which the expansion takes place. The second exponent is close to zero, up to the numeric error, 
and should be related to the perturbations of a shift along the reference phase trajectory. The 
third exponent is negative, and its absolute value is large enough to ensure overall compression 
of the phase volume and sufficient to evaluate the Kaplan – Yorke dimension [10] of the 
attractor:  (in application to the flow system). Although the full spectrum of 
Lyapunov exponents contains 2(N+1) numbers, it seems not necessary to compute all of them 
because the rest ones correspond to strong compression in the phase space and do not influence 
the estimate of the dimension.  

009.2≈KYD

 4



 
Fig. 3. Attractor of the model (2) at 2.0ε,π2ω,1,14 0 ==== AN  in projection onto the phase plane 
of the oscillator 0 from the multidimensional phase space of the flow system (a) and in the cross-section 
constructed with using the auxiliary variable z as explained in the text (b).  

 
Fig. 4. Portraits of the attractor of the model (2) at 2.0,2,1,14 0 =επ=ω== AN  in projections from the 
multidimensional phase space of the flow system onto the planes of generalized coordinates of two 
neighboring oscillators in the ring structure: N and 0 (a), 0 and 1 (b), N–1 and N (c). For other 
neighboring pairs the diagrams look qualitatively similar to (b) and (c). 

In fact, the attractor is a kind of the Smale – Williams solenoid embedded in the multi-
dimensional phase space of the Poincaré map. Indeed, the cyclic coordinate ϕ undergoes the 
expanding transformation on each step of the dynamical evolution associated with bypass of the 
excitation around the ring, while in other directions in the phase space the phase volume 
undergoes compression. (As the compression is too small, and dimension is very close to integer 
number, the transverse fractal structure in of Fig.3b is not resolvable.)  
4. Conclusions 

The obtained results indicate occurrence of Smale-Williams solenoid in the phase space of 
the proposed system. The real device, based on this model, may be implemented e.g. in 
electronics or optics. In conclusion, we can assume that similar ring structures with other 
methods of introducing of coupling, may be implemented to organize the dynamics associated 
with the Arnold cat map and with hyper-chaotic attractors as well in similar way like it is done in 
Refs.[8] and [11].  
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