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Abstract

Pulsed driven system of two coupled Van der Pol oscillators in
the regime of amplitude death is researched. The existence of islands
of quasiperiodic regimes on the parameter plane period amplitude
of external action in the radiophysics experiment are shown. The
different types of oscillations in this system are illustrated.
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1 INTRODUCTION

Recently, the study of coupled nonlinear dynamical systems has gained ex-
tensive attention. Natural systems are rarely isolated, and thus studies of
coupled dynamical systems of different nature (physical, chemical, social,
etc.) are important for many areas of science [1, 2]. Interaction of coupled
self-oscillatory systems leads to new phenomena such as synchronization,
hysteresis, phase multistability, etc. So, one of the important phenomenon,
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which can occur in coupled self-oscillatory systems is amplitude death (os-
cillator death) [3]-[10]. Amplitude death can occur when interaction of oscil-
lators causes a fixed point to become stable and attracting. First observed
of this effect was experimentally in chemical systems [3]. Now, the effect of
amplitude death is studied from various aspects in many papers [3]-[10].

The simplest case when in the system can occur the effect of amplitude
death is dissipatively coupled self-sustained oscillators with different base
frequencies. The coupling between oscillators has to be enough strong, as it
introduces in each oscillator additional damping, which cant to be compen-
sated for energy of another oscillator. A theoretical analysis of this effect
was given in [1, 4]. Also it was observed in the series of physical systems, for
example, in a coupled thermo-optical oscillators [5].

In [6] showed that amplitude death can occur in identical systems if the
coupling is nonlinear or the interaction is delayed. For coupling systems
with delay this effect can occur not only when the autonomous subsystems
demonstrate periodic behavior, but also for oscillators in chaotic regime. The
effect of amplitude death observed for chaotic Rossler and Lorenz systems [7].
Note that this effect observed for coupling multi-type systems, for example,
Van der Pol oscillator and brusselator or Van der Pol oscillator and generator
of Kislov-Dmitriev [8].

Thus, the effect of amplitude death is common for systems of coupled
self-sustained oscillators. It prove the fact that this effect was revealed in the
experimental works for systems of different natures: chemical [4], physical
[5], electro-chemical and electro-biological [9].

The question about dynamics of coupled oscillators in the regime of am-
plitude death driven external force is enough interesting. It seems that the
system in the regime of amplitude death under periodic action will be sim-
ilar a nonautonomous dissipative oscillator. It turns out that it is not. In
[11] was showed, that adding external force can lead not only simple regular
oscillations, but it can initialize quasiperiodic regimes. In the present work
we characterize in detail this regimes. In Section 1 we produce the results of
numerical simulation for system of two couple Van der Pol oscillators driven
periodic force. In Section 2 we represent the results of experimental study-
ing of two coupled Van der Pol oscillators driven periodic pulsed force and
comparison of numerical and experimental results.
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2 NUMERICAL SIMULATION

Let us consider the system of two coupled Van der Pol oscillators driven
pulsed action:

ẍ− (λ− x2)ẋ + x + µ(ẋ− ẏ) = A
∑

δ(t− nT ),

ÿ − (λ− y2)ẏ + (1 + ∆)y + µ(ẏ − ẋ) = 0,
(1)

Here x, y are dynamical variables of each oscillator, λ is parameter character-
izing increase under threshold of Andronov-Hopf bifurcation in the uncoupled
oscillators; ∆ is frequency detuning of the second oscillator relative of the
first oscillator for uncoupled systems; µ is the coefficient of dissipative cou-
pling ; A is amplitude; T is period of external force. External force we choose
such short pulses, it can be represented by the sequences of δ-functions.

Let us consider a chart of dynamical regimes on the parameter plane of
the period and amplitude of external force (T , A) shown in Fig. 1. This
chart constructed in the next way: in each point of parameter plane using
stroboscopic section of Poincare we determined period of regime, realizing in
the system. In corresponding with it each point of parameter plane colored in
different colors. Non-periodic regimes (including quasiperiodicity and chaos)
are shown in gray. Other colors are chosen in dependence on the period of
oscillations. Light green color designates the regimes of period 1:1.

In Fig. 1a we can see the chart of dynamical regimes for the next parame-
ter of system (1): λ = 1, µ = 1.3, ∆ = 4. In this case in autonomous system
realized regime of synchronization 1:1. Fig. 1b correspond situation when
in autonomous system realized regime of oscillator death (λ = 1, µ = 1.3,
∆ = 6). We can notice some features of this pictures. When autonomous
system demonstrate regime of self-oscillations, the parameter plane (T , A) is
similar for case when single Van der Pol oscillator driven pulsed action [12].
There is set of synchronization tongues (main resonances and subharmonic
resonances), outside tongues we can observe quasiperiodic regimes.

Transition of coupled oscillators to the area of amplitude death regime
(Fig. 1b) is accompanied by occurrence amplitude threshold of initiation of
quasiperiodic regimes. In this case area of quasiperiodic regimes has form
isolated islands. Subharmonic resonance tongues transform to some narrow
periodic windows, which intersect the island of quasiperiodicity. In Fig. 2
stroboscopic section of Poincare for this periodic window, corresponding 2-
cycle (In Fig.2 it marks by arrow and Letters P1, P2) and invariant curve
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Figure 1: Charts of dynamical regimes for system (1) on the parameter plane
period T - amplitude A of external force: a) autonomous system demon-
strates regime of synchronization: λ = 1, µ = 1.3, ∆ = 4; b) autonomous
system demonstrates regime of amplitude death: λ = 1, µ = 1.3, ∆ = 6.

(T). We can see, that periodic regimes are the result of synchronization in
invariant curve (for full system is torus).
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Figure 2: Projections of stroboscopic sections of Poincar on planes (x, ẋ)
and (y, ẏ). T invariant curve for quasiperiodic regime; P1, P2 fixed points
of 2-cycle.

Let us turn to analyze of Lyapunov exponents. The graphics of depen-
dence of two largest Lyapunov exponents on period of external force is given
in Fig.3. Since the system (1) is nonautonomous, the dimension of its phase
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space N = 5, correspondingly, it has five Lyapunov exponents, one of them
equal zero always, and two smallest exponents are negative always. Depen-
dence of two residual largest exponents on period of external force determi-
nates the regime realizing in the system. In Fig.3 first (the largest) Lyapunov
exponent colored in gray, second Lyapunov exponent colored in black; the
area when first and second exponents are equal marks by the points. In Fig.3
we can see that both of Lyapunov exponents are negative always, but the firs
become zero in some interval of parameter T . This fact proves that observed
regime is quasiperiodic. Also, we can see the interval where both Lyapunov
exponents are negative, this interval correspond tongue of synchronization of
period-2.
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Figure 3: Dependence of two largest Lyapunov exponents on period of ex-
ternal force T at line of constant amplitude A = 4.3; λ = 1, µ = 1.3, ∆ = 6.

At further advance to the area of amplitude death in the system (1)
without external force, i.e. increasing of frequency detuning of oscillators ,
in nonautonomous system (1) the islands of quasiperiodic regimes gradually
decrease in size and disappear on the parameter plane period amplitude of
external signal.

3 EXPERIMENTAL STUDYING

Now let us turn to experimental studies of two coupled Van der Pol oscilla-
tors driven pulsed action. A schematic of experimental system is shown in
Fig.4. It include two self-generators: generator 1 (G1) and generator 2 (G2).
Each generator consist of: oscillatory circuit, formed by inductance coils L1,
L2 and capacitors C1, C2; nonlinear elements represented back-to-parallel
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semiconductor diodes (D1−6), excitation of self-oscillations was carried out
by negative resistance (−r), assembled on the basis of operational amplifier
(OA4 and OA7). The coupling between generators was provided by variable
resistor RC , included between identical points of generators. Generator 1
was driven by external force represented short rectangular pulses of positive
polarity formed standard generator G5-54. Operational amplifier OA1 was
used to bypassing pulses generator G5-54 and scheme. Amplifiers OA2 and
OA3 was used to bypassing measuring devices. Amplifiers OA5 and OA6
was used to differentiation the output signals of self-generators.
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Figure 4: Scheme of experimental circuit for two coupled Van der Pol oscil-
lators driven pulsed force.

Switches K1 - K3 and capacitors C2 - C4 were used to hard (stepwise)
frequencies tuning of generator 2 and capacitor of variable capacity C5 was
used to smooth frequencies detuning. The parameters of corresponding ele-
ments of generators (inductance of oscillator circuits, parameters of diodes,
elements of negative resistance, differential amplifiers) were closer.

In Fig. 5 shows reduced schema of experimental circuit. Writing Kirch-
hoffs law for points, marked U and Ũ in Fig. 5, and supposing that diode
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Figure 5: Reduced scheme of experimental circuit shown in Fig. 4.

characteristics described by the equation: f(U) = I0(e
U
ϕ −1), where I0 is sat-

uration current of diode, ϕ = kT
e

is temperature voltage, after some algebraic
transformations we can lead to:

Ü − 1
C1

((1
r
− 2I0

3ϕ
)− I0

27ϕ3 U
2)U̇ + 1

C1L
U + 1

RCC1
(U̇ − ˙̃U) = A

∑
δ(t− nT ),

C2

C1
¨̃U − 1

C1
((1

r
− 2I0

3ϕ
)− I0

27ϕ3 Ũ
2) ˙̃U + 1

C1L
Ũ + 1

RCC1
( ˙̃U − U̇) = 0,

(2)
where A = V0

C1L
is amplitude of pulsed signal. Thus we get the equations

similar Eqs. (1) but in dimensional form.
In the experiment we could change coefficient of coupling oscillators, vary-

ing resistance RC , frequency detuning, varying capacity of capacitors. Also
we could change the parameters of external signal: rms voltage, applied by
pulses generator V , from which we could calculate voltage, applied to the
generator 1 (amplitude of external signal) V0 = V τ

T
; period of pulses T

and pulse length τ , which was chosen enough small respect period of pulses,
τ = 150mks.

Let us investigate autonomous system of two coupled Van der Pol oscil-
lators without external action. In the experiment the main parameters was:
r = −410kOm, C1 = 20000nF , L = 0.947Hn, common resistance RC vary-
ing from 1 to 50 kOm, and capacitance C2 varying from 1.5 nF to 4 nF .
As a frequency detuning parameter was used ∆ = lg(C1

C2
) and as a parame-

ter of coupling was used µ ≈ 1
RC

. The experimentally chart of dynamical
regimes on the parameter plane frequency detuning - coefficient of coupling
is given in Fig. 6, here you can see area of enough large frequency detuning
of oscillators.

This chart contain the same character areas, that you can find in ana-
lytical and numerical studying [1, 4]: area of synchronization 1:1, area of
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Figure 6: Experimental chart of dynamical regimes for system of two coupled
self-generators without external force.

quasiperiodic regimes and area of amplitude death. One of the differences
is narrow band of synchronization 1:1 between area of amplitude death and
area of quasiperiodic regimes. The presence of this band due to the effect of
broadband synchronization in the system of two dissipativelly coupled non-
identical Van der Pol oscillators [10]. Though the oscillators were assumed
to be identical by control parameter (parameter λ), but the realization of
condition of identicality in experiment is enough difficult problem. In Eqs.
(2) the parameter responsible for frequency detuning ∆ = C1

C2
stand before

the second derivative. If the capacities of generators are different, it is nec-
essary to introduce frequency detuning for manifesting of amplitude death
effect, then automatically to the second term of Eqs. (2) nonidenticality is
added. Thus, we get two nonidentical by negative resistances generators.
That was why the parameters of negative resistances were choose so that the
band of broadband synchronization by coefficient of coupling was as narrow
as possible.

Let us fix parameter of frequency detuning, i.e. capacity of capaci-
tors: C1 = 20000nF , C2 = 3nF , choose the value of coupling parameter
RC , so that autonomous system demonstrate synchronous self-oscillations
(RC = 8.5kOm), and add external force. The experimental chart of dynami-
cal regimes on the parameter plane (T , V0) for mentioned parameters is given
in. Fig. 7a.

Fig. 7a we should compare with Fig. 1a. As seen from comparison,
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Figure 7: Experimental charts of dynamical regimes for system of two cou-
pled self-generators driven pulsed force: a) autonomous system demonstrates
regime of synchronization RC = 8.5kOm; b) autonomous system demon-
strates regime of amplitude death RC = 10kOm.

the main features of synchronization picture for experimental system is keep.
At the small value of amplitude of external signal we can observe the set of
synchronization tongues embedded in the area of quasiperiodic regimes. Also
the subharmonic tongues of synchronization, for example tongues of period-
4 and period-5 and large tongue of period-2, are observed. At increasing
amplitude of external force on the parameter plane the regimes of period 1
is dominated, but there are several islands of quasiperiodic regimes.

Now let us increase the value of the coupling parameter RC so that we turn
to the area of amplitude death. Experimental chart of dynamical regimes on
the parameter plane of external force for this case is given in Fig.7b. Let
us compare Fig. 7b and Fig.1b. As seen from comparison, the transition
of autonomous system to the area of amplitude death is accompanied by
occurrence of threshold of initializing of quasiperiodic regimes. The areas
of quasiperiodic regimes form isolated islands on the parameter plane of
external force. The narrow tongues of higher order intersect the islands of
quasiperiodic regimes. The islands, which we observe in Fig. 7a, decrease in
size.

Examples of phase portraits for the system of two coupled Van der Pol
self-generator under periodic pulsed action photographed from the oscillo-
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scope screen is given in Fig.8. In left column there are the phase portraits
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Figure 8: Projections of phase portraits for the system of two coupled self-
generator driven pulsed force photographed from the oscilloscope screen: a)
quasiperiodic regime; b) regular regime of period-5.

on the variable plane (Ũ , ˙̃U) of generator 2, bright points mark stroboscopic
section of Poincar. In experiment the section of Poincar is visualized in the
next way: the pulse inputs to ”Z”, controlling brightness of electronic beam
of oscilloscope. As a result, on the screen a picture corresponding to attrac-
tor in stroboscopic section was formed. Introduction of time shift between
acting and brightening pulses allowed to displace section of attractor in the
projection. In right column the Lissajous figures (U , Ũ) are showed. In phase
portrait in Fig. 8a we can see closed invariant curve in the stroboscopic sec-
tion of Poincar, it proves that realizing regime is quasiperiodic. Fig. 8b
correspond regular regime of period-5, it is clear illustrated by number of
fixed points in the stroboscopic section of Poincare. There is some feature:
phase trajectories are enough complex orbits containing a large number of
turns despite its small period in the section of Poincare. It illustrate com-
plex character of moving of coupled oscillators in the regime when dissipative
coupling suppresses self-oscillations.
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At further increasing of coupling parameter RC , island of quasiperiodic
regimes disappear. For example, at RC = 12kOm coupled oscillators driven
pulsed signal demonstrate only regime of synchronization 1:1 (period-1 in the
section of Poincar).

4 CONCLUSION

The effect of amplitude death in dissipatively coupled self-oscillatory oscil-
lators is character general effect. As the radiophysics experiment and nu-
merical simulations are showed the external force for system in this regime
can initiate quasiperiodic oscillations. In this case on the parameter plane
of external force occur islands of quasiperiodic regimes which are intersected
by the set of small-scale areas of periodic regimes. The occurrence of qua-
siperiodic regimes has threshold character by amplitude of force. At further
advance to the area of amplitude death in autonomous system, islands grad-
ually disappear. Phase trajectories of oscillators for such regimes is enough
complex orbits, containing a large number of turns despite its small period
in the section of Poincar.

The work has been supported by RFBR, grant No 09-02-00426.
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