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1. Introduction 
Chaotic dynamics in nonlinear dynamical systems can emerge due to different scenarios among 
which the route via an infinite period-doubling cascade is the most prominent one. It was found 
to appear in many model and realistic systems (see, e.g., [1] for references). Feigenbaum proved 
that this route is universal for dissipative systems possessing a quadratic nonlinearity and derived 
the scaling behaviour for successive period-doubling bifurcations [2, 3]. Later it was demon-
strated that conservative systems can also exhibit universal period-doubling behavior, but with a 
different manifestation of self-similarity in parameter space in the vicinity of the critical point as 
well as in phase space at the critical point (see [4, 5] for detailed description and references). 
This point is also called Hamiltonian critical point (H-point, or H-type critical point). From the 
point of view of renormalization group analysis, the H-point corresponds to a codimension 2 
critical point in dissipative systems and to a codimension 1 critical point in conservative systems 
[6–8]. This has been shown for the Hénon map [8], where this codimension 2 point appears at 
the intersection of the line of zero dissipation and the Feigenbaum critical line of the transition to 
chaos. However, it was also demonstrated that in systems with constant dissipation even a small 
damping destroys the corresponding Hamiltonian scaling behaviour, and the period doublings 
begin to obey the Feigenbaum scaling law for the dissipative case [9–11]. Hence, the study of 
systems with constant dissipation revealed that the observation of an H-type critical point is only 
possible if the dissipation is exactly zero, which can not be realized in a physical experiment. 
Therefore, the only way to obtain such a type of critical behaviour is to construct more general 
systems with non-constant dissipation. It will be also interesting from the theoretical point of 
view to find the H-type critical point in such systems, because to the best of our knowledge it has 
been so far only observed in conservative systems. 
The idea to obtain a realistic physical situation possessing H-type critical scaling behaviour is to 
take a self-oscillating system and try to compensate the energy loss in average over the oscilla-
tion period by means of an external forcing. The aim of this paper is to propose such a system 
which can be physically realized. To this end we employ the van der Pol oscillator, which is a 
classical model in nonlinear dynamics. Its analysis allows us to obtain results which can be con-
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sidered to be rather general. For simplicity we apply δ-pulses as the external forcing on the sys-
tem and expect that at a certain combination of damping and nonlinearity parameters the Hamil-
tonian critical behavior could be observed. 
The paper is organized as follows: Section 2 introduces the model of investigation and demon-
strates how to derive the approximate map from the differential equations. Section 3 and 4 dis-
cuss the dynamics of this map for negative and positive nonlinear dissipation respectively. 
Moreover, they highlight the commonalities and the differences between the two parameter re-
gions. Finally, Section 5 is devoted to the search of the critical point of Hamiltonian type. 
We would like to note that all bifurcation curves shown in this paper were obtained by means of 
the software CONTENT [12]. 
2. System under investigation 
Let us consider the van der Pol oscillator driven by external δ-pulses: 

∑ −=+−−
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Here x is the dynamic variable, while ε and µ are the parameters related to dissipation. The pa-
rameter ε characterizes the strength of the linear dissipation whereas µ is responsible for the 
nonlinear dissipation. For positive values of these parameters the system demonstrates a stable 
limit cycle of size µε≈ /r  in the absence of the external driving, while for negative parameter 
values the limit cycle is unstable. The sum on the right hand side of equation (1) corresponds to a 
forcing in form of δ-like pulses applied at time intervals T. The amplitude of these pulses is 
modulated by the function F(x) which depends on the dynamic variable itself. 
To simplify the analysis let us construct an approximate discrete map for system (1). Let us de-
note the values of the dynamical variables x and xy &=  before the n-th pulse to be xn and yn. 
Hence just after the pulse these variables will have the values  

)(, 00 nnn xFyyxx +== ++      (2) 
Now let us consider the time instant of this pulse as t=0 and construct an approximate solution 
for xn+1 and yn+1 using the van der Pol averaging method which implies the representation of the 
dynamical variables as a combination of a high frequency oscillating part and a slow amplitude 
a,  

itit eaaex −+= * , itit eaaeyx −−== *ii& .           (3) 
Here the additional condition 0* =+ −itit eaea &&  is used. Further time averaging of the system 
equations over the period of the high frequency oscillations leads to a differential equation de-
scribing the time evolution of the slow amplitude a between two subsequent pulses [13]: 
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Using the initial condition (2), we obtain 
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Equation (5) at t=T will give us the amplitude just before the (n+1)-th pulse, and it will allow us 
to find the coordinate and velocity: 

[ ]

[ ] ,
))((1
cos))((sin

,
))((1

sin))((cos

221

221

nnn

nnn
n

nnn

nnn
n

xFyxC
TxFyTxBy

xFyxC
TxFyTxBx

+++

++−
=

+++

++
=

+

+

   (6) 

where the new parameter TB ε= 2
1exp  depends nonlinearly on the value of linear dissipation, 

and TTTC ε−εµ= 4)1(exp  is proportional to the strength of nonlinear dissipation. 
Let us choose )14(2 += π kT  with k=0,1,2,… for simplicity. In this case the map (6) transforms 
into 
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Now we have to choose a specific form of the function F(x) modulating the pulse amplitude. 
Note that in the case of zero nonlinear dissipation C=0 the denominator in both equations (7) is 
equal to 1 so the form of the function F(x) determines the nonlinear properties of the system in 
this case. We now choose the most simple quadratic function for the amplitude modulation 

21)( xxF λ−= . In this case the map (7) turns into the Hénon map with renormalized parameters. 
Finally, the map will take the form 
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and can be considered in some sense as the parametrized version of the Hénon map. 
The structure of the parameter plane of system (7) at C=0 is shown in Figure 1. The line B=1 
corresponds to the conservative Hénon map. Along this line we find a period doubling cascade 
possessing the well-known Hamiltonian scaling behaviour. The terminal point of this period 
doubling cascade is therefore an H-type critical point. This point is exactly the intersection of the 
line of zero dissipation (B=1) and the line of Feigenbaum points – the accumulation points of the 
period doubling cascade for B<1. For B>1 the trajectories diverge. 
Depending on the sign of C our system can demonstrate two different regimes: (i) For C<0 the 

nonlinear dissipation is negative (µ<0) and acts therefore like an additional forcing. In this case 
the system possesses the subcritical Hopf bifurcation leading to an unstable limit cycle. For ε<0 
there exists a stable equilibrium at the origin and an unstable limit cycle, while for ε>0 the equi-
librium in the origin becomes unstable. (ii) C>0 corresponds to a positive nonlinear dissipation. 
Hence system (1) turns into the usual van der Pol system with a supercritical Hopf bifurcation at 
ε=0. Let us consider these two cases separately. 
3. System with negative nonlinear dissipation 
Let us analyze the structure of the parameter plane spanned by the parameter related to the linear 
dissipation B and the nonlinearity in the pulse amplitude λ. Figure 2 represents areas of the exis-

Figure 1 (colour online). The structure of the parameter plane of map (7) with the function
21)( xxF λ−=  at C=0. Areas of different colour correspond to regions of existence of cycle of 

certain periods (see numbers in the figure). The black area corresponds to non-periodic motion. 
The black cross marks the location of the critical point of H-type [8]. “Infinity” here and fur-
ther denotes the area where trajectories diverge. 



This is an electronic version of an article published in Dynamical Systems ©2012 Taylor & Francis as http://www.tandfonline.com/doi/abs/10.1080/14689367.2011.653328. Dynamical Systems 
is available online at:http://www.tandf.co.uk/journals/cdss. 

tence of different dynamical regimes on the plane (λ, Β). As one can see, in this case the area, in 
which trajectories escape to infinity grows dramatically compared with the linear dissipation 
case (cf. Figure 1). To emphasize the important bifurcations we show additionally the structure 
of the bifurcation lines in Figure 3. Areas of periodic regimes are bounded by lines of Neimark-
Sacker (NS) bifurcations indicating the transition to quasiperiodic motion. The Neimark-Sacker 
bifurcations can be either super- or subcritical leading to stable or unstable quasiperiodic motion 
respectively. The type of the bifurcation (super- or subcritical) changes with the transition to the 
next period, when the line of the corresponding period doubling is crossed (see Figure 2b). Lines 
of Neimark-Sacker bifurcations and period-doubling lines intersect in the resonance 1:2 – point 
with double multiplier -1 (R2) (in the terminology of [14]). Such structure of the bifurcation 
lines reflect the results of the mathematical analysis in the vicinity of the R2 point (see again 
[14]) and it repeats for all periods of the period-doubling cascade. However it is important to 
note that at each subsequent period doubling bifurcation the type of the NS bifurcation changes 
from super- to subcritical and vice versa. This sequence of codimension 2 bifurcation points 
where period doubling and Neimark-Sacker bifurcations meet converges to a certain limit whose 
properties will be discussed in detail below. 

Let us now turn to the analysis of the quasiperiodical area and the synchronization tongues which 
bifurcate from the regime of period 2 (see magnification of the corresponding part of the parame-
ter plane in Figure 4). The form of these synchronization tongues differs from the “classical” Ar-

Figure 2 (colour online). The structure of the parameter plane of map (8) at C=-0.9. Areas of 
different colour correspond to regions of existence of cycle of certain periods (see numbers in
the figure). The black area corresponds to non-periodic motion. The black cross marks the lo-
cation of critical point of H-type (see discussion in Section 5).  

Figure 3. Structure of the bifurcation lines for map (8) at C=-0.9 and its magnification. NS –
line of Neimark-Sacker bifurcation, PD – period doubling line, R2 – resonance 1:2 point, H –
critical point. The dashed line corresponds to the subcritical NS bifurcation, the solid line de-
notes the supercritical one. 
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nol’d tongues. A detailed investigation by means of bifurcation analysis shows that their struc-

ture is much more complicated. Here we will show the results concerning the tongue of period 
10, but the described structure is rather general and applies to the other tongues as well. The 
lower border of this synchronization area is formed by a saddle-node (fold) bifurcation, which 
ends up in a cusp point on the line of NS bifurcation of the period 2 orbit. The upper part of the 
synchronization tongue consists of two parts. The first one close to the cusp point is formed by a 
second fold line. The second part is build by a Neimark-Sacker bifurcation for the period 10 cy-
cle. The NS bifurcation turns out to be subcritical, and, hence, plays the role of the border of the 
synchronization area. There exists also a region where the period 2 cycle and the invariant curve 
bifurcated from it coexists with the period 10 cycle. On a certain line in parameter space the in-
variant curve undergoes a homoclinic bifurcation colliding with the saddle period 10 cycle. 
Phase portraits illustrating this process are shown in Figure 5. Here we mention that this syn-
chronization tongue corresponds exactly to the one described in [15] for another 2D pa-
rametrization of the Hénon map – the generalized Hénon map [16]. 

4. System with positive nonlinear dissipation 
Now let us turn to the analysis of system (8) when the autonomous system in (1) is the van der 
Pol oscillator with the stable limit cycle. The chart of dynamical regimes of the map (7) in this 
case is shown in Figure 6 together with the one for the initial system (1). In contrast to the previ-
ously examined case of negative nonlinear dissipation, the area of existence of periodic regimes 

Figure 4 (colour online). Magnification of the parameter plane (a) and parameter plane with 
bifurcation lines overlayed (b) for map (8) at C=-0.9. Areas of different colour correspond to 
regions of existence of cycle of certain periods (see numbers in the figure). The light gray area
corresponds to non-periodic motion. NS – line of Neimark-Sacker bifurcation, PD – period 
doubling line, FL – fold line. 

Figure 5 (colour online). Basins of attraction in different dynamical regimes. C=-0.9, λ=3.3, 
values of parameter B: (a) 0.7439, (b) 0.7452, (c) 0.74615. Dark gray (indigo online) corre-
sponds to the divergence to infinity, white point marks the location of one of the points of the
period-10 saddle cycle. The white curve in (b) and (c) denotes the invariant curve. 
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grows in size. Additionally we observe the appearance of the area of quasiperiodic motion with 
embedded synchronization tongues near the axis λ=0 which corresponds to the van der Pol oscil-
lator subject to external δ-pulses with fixed amplitude. These findings fit well to known results 
for such systems. Another difference which one can easily detect is disappearance of the area of 
unstable dynamics (diverging trajectories). In place of it the region of period 1 appears. How-
ever, comparing Figures 6(a) and 6(b), it becomes obvious that this regime is nonphysical and 
appears just due to the approximations made when deriving the map. 
In the case of positive nonlinear dissipation (C>0) the lines of NS bifurcation again change their 
type (super- to subcritical and vice versa) at the transition to the next period in the period-
doubling cascade, but their type is now opposite to the one they had in the previous case (C<0). 
In contrast to the case of negative C we now obtain a supercritical bifurcation for the stable fixed 
point, while for the cycle of period 2 a subcritical bifurcation is observed (see enlarged frag-
ments of the parameter plane with the superimposed bifurcation lines in Figure 7). As a conse-
quence, the lines of NS bifurcation change their type when crossing the line of C=0. This resem-
bles the situation at C=0 in the autonomous system in (1), where the Hopf bifurcation also 
changes its type. 
Here we also have to mention that in case of positive nonlinear dissipation points of R2 type also 
form a converging sequence. 
Now let us turn to the more detailed analysis of the properties of these sequences. 
5. Search of the critical point of Hamiltonian type 
As it has been mentioned above, points with double -1 multiplier (R2-points) form a sequence in 
both cases of negative and positive nonlinear dissipation respectively. These sequences are given 
in Tables 1 and 2 correspondingly. From these tables one can see the convergence of these se-
quences to limit points. These points have the same properties as the terminal points of the pe-
riod-doubling lines in Hénon map – they also have double -1 multipliers. Moreover, at these 
points the NS bifurcation changes its type. Normally, the change of type of NS bifurcation, 
which occurs at the Chenciner bifurcation point, corresponds to the neutral nonlinear stability of 
the fixed points [14], which, in turn, is also a feature of conservative systems. Hence, we con-
clude, that our system obeys some properties of conservative systems when moving along this 
route. As a consequence this sequence of R2 points has to end up in a critical point of Hamilto-
nian type. To illustrate this result we have calculated the scaling constants as the eigenvalues of  
 
 
 

Figure 6 (colour online). Structure of the parameter plane of map (8) at C=0.1 (a) and of the 
original system (1) at µ=0.5. Areas of different colour correspond to regions of existence of
cycle of certain periods (see numbers in the figure). The white area corresponds to non-
periodic motion. The black cross marks the location of the critical point of H-type (see discus-
sion in Section 5). For system (1) the scale of the ε axis is nonlinear and corresponds to the lin-
ear scale for parameter B in map (8). 
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Table 1. Sequence of resonance 1:2 points for map (8) at C=-0.9. n denotes the period. 
n λ B 

16 4.019218352 0.739364303 

32 4.019398386 0.739368355 

64 4.019419057 0.739368905 

128 4.019421426 0.739368962 

256 4.019421697 0.739368969 

 4.019421… 0.73936896… 

Table 2. Sequence of resonance 1:2 points for map (8) at C=4. n denotes the number of period. 
n λ B 

16 3.752589280 1.768497964 

32 3.752754648 1.768491542 

64 3.752773535 1.768490657 

128 3.752775706 1.768490565 

 3.75277… 1.768490… 

Figure 7 (colour online). Magnifications of the parameter plane for map (8) at C=4 and struc-
ture of bifurcation lines. Areas of different colour correspond to regions of existence of cycles
with certain periods. The white area corresponds to non-periodic motion ( in (c) also period 16, 
where it is marked). NS – line of Neimark-Sacker bifurcation, PD – period doubling line, R2 –
resonance 1:2 point, H – critical point. The dashed line corresponds to the subcritical NS bifur-
cation, the solid line denotes the supercritical one. 



This is an electronic version of an article published in Dynamical Systems ©2012 Taylor & Francis as http://www.tandfonline.com/doi/abs/10.1080/14689367.2011.653328. Dynamical Systems 
is available online at:http://www.tandf.co.uk/journals/cdss. 

the matrix Γ, which links the intervals of existence of two subsequent cycles of the period-
doubling cascade in the parameter plane: 
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Using this method, we have obtained for the case C=-0.9 δ≈8.7211 and for the case C=4 
δ1=8.72109, which is in very good correspondence with the theoretically known value 
δ=8.7210972…. 

But it is impossible to evaluate the second scaling constant correctly using this sequence of 
points, because the second scaling number is responsible for the scaling of the damping, and we 
are already on the route without dissipation. In order to calculate this second scaling constant we 
have to find another sequence of points with certain scaling properties. Such a sequence is given 
by points in the parameter plane where periodic orbits of period n and 2n have equal multipliers. 
This eigenvalue-matching method [17] is based on the fact that while getting close to the critical 
point multipliers of all unstable cycles from the period-doubling cascade tend to some fixed val-
ues, which are the universal constants for the certain type of critical point. The sequence of 
points in the parameter plane with equal multipliers of cycle of original and double period have 
to converge to the critical point rather quick, and their multipliers have to converge to the univer-
sal values. Scaling constants in this case can be found as the eigenvalues of the matrix Γ, now 
determined by the following relation: 
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where Sn and Jn are the trace and the determinant of the monodromy matrix (Jacobi matrix) of 
the period-n cycle in this point, respectively. 

The coordinates of the points of the specified sequence and the values of cycle multipliers are 
given in the Table 3. The scaling constants estimated using these data are listed in the Table 4. 
One can see that these points demonstrate a rather good convergence to the limit point, and mul-
tipliers and scaling constants are in rather good correspondence with the known universal values 
for this type of critical behavior: δ1=8.7210972…, δ2=2, µ1=–2.0574783..., µ2=–0.4860318...[8] 
Table 3. Sequence of points with equal multipliers for cycles of the original and the doubled pe-
riod for map (8) at B=4. n denotes the period of the original cycle while 2n denotes the doubled 
period. 
n 2n Λ C µ1 µ2 

16 32 2.641979414 22.21231986 –2.057641674 –0.486079481 

32 64 2.641972827 22.21235779 –2.057456301 –0.486025619 

64 128 2.6419732641 22.21235527 –2.057481305 –0.486032664 

128 256 2.641973235 22.212355441 –2.057477956 –0.486031738 

Table 4. Scaling constants estimated using the data from Table 3. 
n 2n δ1 δ2 

16 32 8.721435908 2.000128521

32 64 8.721042264 1.998814272

64 128 8.721096857 1.999608640

128 256 8.721095561 2.002160475
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6. Conclusions 
In the present work we have considered a self-oscillating system, the van der Pol oscillator, 
driven by a periodic train of δ-pulses whose amplitude depends on the dynamical variable in a 
nonlinear way. We have investigated the dynamics of an approximate discrete map derived for 
this system using averaging methods. This map exhibits different behaviour for negative and 
positive nonlinear dissipation, respectively. The most interesting feature of this map is the given 
by the existence of a sequence of vertex points in which the period doubling bifurcations end in a 
Neimark-Sacker bifurcation (Figures 3, 6, 7). These vertex points are additionally accompanied 
with a change in the type of Neimark-Sacker bifurcation from super- to subcritical and vice 
versa. This sequence of points is related to a double multiplier -1 and converges to the critical 
point of Hamiltonian type. The H-type critical point was found both as a limit of sequence of 
points with double -1 multiplier and with equal multipliers of two consecutive cycles from the 
period-doubling cascade. This result shows that this critical point can not only be found in con-
servative systems but also in systems with dissipation which effectively depends on the values of 
the dynamical variables†. The H-type critical point appears as a codimension 2 point in the pa-
rameter plane or as a line in the 3D parameter space. In the vicinity of such point one can obtain 
not only period-doublings, but also quasiperiodical regimes. Such a critical point can be found in 
different dynamical regimes of the system, namely when the autonomous system has a stable or 
an unstable limit cycle, respectively. Though in the present work we discuss only the results for 
just one value of the external period forcing, the general structure of the parameter space does 
not change with a change of the period. We believe that all results discussed above are valid to 
the original ODE system (1) too. Although our system (8) is not the precise Poincaré map for 
system (1), one can construct another ODE system corresponding to map (8) which will demon-
strate all described phenomena. Since critical phenomena are universal and we studied a system 
of rather general type, one can expect that the picture of the critical behaviour as well as the bi-
furcation lines for the reconstructed and the original ODE systems will not differ dramatically. 
Moreover, one can expect that the qualitative features of the parameter space structure and quan-
titative scaling relations in the vicinity of the critical point will exist independently on the spe-
cific details of the structure of the system, e.g., the external influence on the oscillator could be 
modeled in form of finite length pulses or a continuous signal.  
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