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Abstract

We consider a chaos generator composed of two parametrically coupled oscillators whose
natural frequencies differ by factor of two. The system is driven by modulated pump source
on the third harmonic of the basic frequency, and on each next period of pumping the ex-
citation of the oscillator of doubled frequency is stimulated by the signal from the oscillator
of the basic frequency undergoing quadratic nonlinear transformation and time delay. Using
qualitative analysis and numerical results, we argue that chaotic dynamics in the system cor-
responds to hyperbolic strange attractor. It is a kind of Smale-Williams solenoid embedded
in the infinite-dimensional state space of the stroboscopic map of the time-delayed system.
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1 Introduction

According to mathematical theory of dynamical systems, chaotic attractors, possessing perfect
structural stability are those relating to the class of uniformly hyperbolic attractors [1, 2, 3,
4]. Formal examples are Smale-Williams solenoid, Plykin attractor, and a number of other
mathematical constructions suggested mainly in 1960th - 1970th. In such attractors, all phase
trajectories are of one and the same saddle type, combining stability in a sense of approach
of the nearby trajectories to the attractor and instability on the attractor resulting in chaotic
nature of the dynamics. For this class, deep and comprehensive theory was developed, providing
a complete mathematical description, and chaotic nature of the dynamics was proven rigorously.

Traditionally, the structural stability of dynamical phenomena is regarded as significant
both for motivations of theoretical studies and for the practice [5, 6, 7]. Indeed, the structural
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stability implies robustness that means insensitivity of the dynamics to interferences, technical
fluctuations, variation of parameters etc. Surely, the robustness is highly desirable for chaotic
dynamical systems considered in the context of their possible applications (chaos communication,
random number generation, noise radar, cryptography) [8, 9].

However, chaotic attractors, which normally appear in real-world systems, do not fall in
the uniformly hyperbolic class [6, 10, 11, 12], which looks as an obvious contradiction with the
above mentioned principle of significance of structurally stable systems. This inconsistency is
overcome to some extent recently after introducing a number of specially elaborated physically
realizable systems with hyperbolic attractors [13, 14, 15]. A fruitful approach to their design is
manipulating with phases for two or more alternately exciting and damping oscillators in such
way that the phase shifts at the successive stages of activity evolve chaotically in accordance
with expanding circle map [13, 14].

The same idea may be accomplished even with a single oscillatory element by means of
appropriately arranged delayed feedback providing stimulation of the excitation on each next
stage of activity by signal emitted on a previous such stage [17, 18]. In a frame of mathematical
description, for the systems with the time delay the state space dimension appears to be formally
infinite, but physically (say, in electronics, acoustics, or nonlinear optics) implementation of such
setup may be easy and justifiable.

Next, as indicated e.g. in Refs. [19, 20], a good opportunity for using the principle of phase
manipulation is its application to systems of parametric oscillators; indeed, for them one can
naturally exploit specific intrinsic relations for frequencies and phases of the involved oscillatory
components.

In the present article we combine both two mentioned hints: a use of the parametric oscil-
lations and of the time-delay feedback. On this way it appears possible to compose a simple
and elegant scheme of parametric generator of robust chaos, which may be of interest from a
practical point of view. Less pragmatic but more fundamental motivation is that we supply
one more appealing example to a collection of physically realizable systems (not so numerous
at the present moment) whose structurally stable chaotic dynamics occurs due to the uniformly
hyperbolic attractors. As we suppose, it contributes to enrichment of fundamental concepts
of the dynamical system theory, namely, the hyperbolic theory [1, 2, 3, 4], with the physical
content.

2 Model, principle of operation, and the basic equations

In a commonly known type of parametric generator [21], two oscillators are connected by a
reactive element characterized by time-dependent oscillating coupling coefficient. The oscillation
frequencies ω1 and ω2 and the driving pump frequency ω3 are related by the parametric resonance
condition ω1 + ω2 = ω3. Both oscillators constituting the system excite simultaneously; the
instability can be saturated, say, by nonlinear damping.

Consider a system of this type schematized in Fig.1 with the frequencies selected in such way
that ω2=2ω1, ω3=3ω1 (note that the parametric resonance condition is satisfied). The oscillator
of frequency ω2 is affected by the delayed signal from the oscillator of frequency ω1 transformed
by a quadratic nonlinear element (signal squarer). By virtue of the assumed relation between the
frequencies, the second harmonic of the signal is just in resonance with the driven oscillator. The
pump source with the main frequency ω3 is modulated slowly in such way that the parametric
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oscillations alternately arise and decay. The ratio of the period of the pump modulation T and
the time delay in the feedback loop τ must be chosen in such way that each next excitation of
the system is stimulated by the signal emitted at the previous stage of activity (particularly,
τ = T/2 is appropriate). Hence, the oscillation phase is doubled after each next excitation
transfer. As a result, the system generates, with the modulation period, a sequence of pulses
whose carrier phase chaotically varies from pulse to pulse. The chaotic dynamics in this mode
of operation is supposed to be associated with a uniformly hyperbolic attractor; for the map
governing transformation of the system state over a modulation period this is a kind of Smale
– Williams solenoid [6, 1, 2, 15].

Figure 1: Block diagram of the parametric chaos generator. Blocks labeled as ω1 and ω2

represent oscillators with these frequencies; the block labeled with a waveform is a reactive
element characterized by the coupling parameter oscillating due to the pump source with the
carrier frequency ω3, and the block marked with x2 is the quadratic nonlinear element (the
signal squarer).

To simulate the proposed device, consider a model set of delay-differential equations

ẍ1 + ω2
1x1 = κx2f(t) sinω3t− α1ẋ1 − β1ẋ

3
1,

ẍ2 + ω2
2x2 = κx1f(t) sinω3t− α2ẋ2 − β2ẋ

3
2 + εx21(t− τ),

(1)

where x1 and x2 are the generalized coordinates of two oscillators. Parameter κ quantifies the
pump intensity, and the function f(t) determines the slowly varying periodic amplitude of the
pump. Concretely, throughout the present article we set

f(t) = cos2(πt/T ). (2)

Parameter ε is the transmission coefficient for the squared signal of the first oscillator in the
feedback loop with the time delay τ . Parameters α1,2 and β1,2 characterize, respectively, linear
and nonlinear damping of the oscillators; the last is needed for saturation of the parametric
instability and for existence of the attractor. To get perfectly periodic coefficients in the equa-
tions, we set the modulation period to be equal to a multiple of the high-frequency carrier period:
T = 2πN/ω3, where N is an integer.
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When N ≫ 1, the method of slow amplitudes can be used for description of the dynamics
[7, 21, 22, 23]. To apply this method, we set

xj = Aje
iωjt +A∗

je
−iωjt,

ẋj = iωjAje
iωjt − iωjA

∗
je

−iωjt, j = 1, 2,
(3)

where A1(t) and A2(t) are slowly varying complex functions of time subjected the conditions

Ȧje
iωjt + Ȧ∗

je
−iωjt = 0, j = 1, 2. (4)

Substituting these relations into (1), multiplying the equations for A1 by e−iω1t and for A2 by
e−iω2t, averaging the resulting equations over the carrier period, and using the assumed relation
between the frequencies ω1,2,3, we obtain

Ȧ1 = − κ
4ω1

f(t)A∗
2 −

1

2
α1A1 −

3

2
ω2
1β1A1 |A1|

2 ,

Ȧ2 = − κ
4ω2

f(t)A∗
1 −

1

2
α2A2 −

3

2
ω2
2β2A2 |A2|

2 − i ε
2ω2

e−2iω1τA2
1(t− τ).

(5)

In the case ε =0, α1,2 = β1,2 = 0, and f(t) ≡1, the equations are solvable. The general
solution is A1 = C+e

κt/4
√
ω1ω2+C−e

−κt/4
√
ω1ω2 , A2 = −

√

ω2/ω1(C
∗
+e

κt/4
√
ω1ω2+C∗

−e
−κt/4

√
ω1ω2),

where C+ = Reiϕ and C− are complex constants determined by initial conditions. Since the
second terms decay, the long-time asymptotic expressions are A1

∼= R · eiϕeκt/4
√
ω1ω2 and A2

∼=
−
√

ω2/ω1R·e−iϕeκt/4
√
ω1ω2 , which correspond to x1 ∼= 2R·eκt/4

√
ω1ω2 cos(ω1t+ϕ) and x2 ∼= −2R·

√

ω2/ω1e
κt/4

√
ω1ω2 cos(ω2t−ϕ). Thus, the phase shifts for the parametrically excited oscillators

at the frequencies ω1 and ω2 are characterized by one and the same constant ϕ depending on
initial conditions. When the nonlinear damping is taken into account, the oscillation amplitudes
saturate, yet the phase relation is preserved.

Now, consider qualitatively a mode of operation when the pump is periodically switched on
and off in the system with ε 6= 0 and with damping. In this case the oscillator of frequency
ω2 = 2ω1 is excited by the second harmonic of the signal, which is emitted on the previous
stage of activity from the oscillator of frequency ω1. It is produced by a signal squarer and
transmitted through the delayed feedback loop (with a correctly chosen relation of the delay
time and the modulation period). The phase shift for this harmonic is 2ϕ (as seen from the
identity cos2(ω1t+ϕ) = cos 2(ω1t+ϕ)+off-resonant term). Supposing that the rest oscillations
from the previous epoch of excitation have time to decay till the beginning of the next activity
stage, the doubled phase shift in the second harmonic will be passed to the oscillator of frequency
ω2 as it stimulates its excitation. Thus, on the current stage of activity we will have ϕnew =
−2ϕ+const ( mod 2π). For the cyclic variable ϕ it is a Bernoulli-type expanding circle map with
chaotic dynamics characterized by a positive Lyapunov exponent Λ =ln2 ≈ 0.693.

Dealing with the non-autonomous time-delayed system, it is appropriate to consider a con-
struction analogous to the stroboscopic Poincaré map in periodically non-autonomous ordinary
differential equations [23, 24, 15]. The description may be formulated in terms of a stroboscopic
functional map

Xn+1(t) = F [Xn(t)] . (6)

Here the vector functions Xn(t) are defined on an interval of length τ as Xn(t) = x(t +
nT ), where x(t) is a vector of original variables x(t) = {x1(t), ẋ1(t), x2(t), ẋ2(t)} or x(t) =
{ReA1, ImA1,ReA2, ImA2}.
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In the state space of our system, which is the space of the functions Xn(t), one can introduce
a cyclic coordinate ϕ, which undergoes, as explained, the doubling transformation with each
iteration of the map while in all other directions of this space compression of the phase volume
takes place. (It follows from computations of the Lyapunov exponents discussed in the next
section.) It suggests that the attractor of the map (6) is a kind of Smale-Williams solenoid
embedded in the infinite-dimensional state space of this map.

3 Chaotic dynamics of the system. Numerical simulation

We simulate dynamics of the system setting ω1 = 2π, ω2 = 4π, and ω3 = 6π (in other words,
accept a convention to measure time in units of a natural period of the first oscillator). Figure 2
shows samples of waveforms x1 and x2 obtained from numerical integration for the model (1)
using the second-order finite-difference method adopted for the delay-differential equations. The
plots relate to a sustained regime (transients are excluded ). The parameter values are

T = 20, τ = 10, κ = 35, ε = 1, α1,2 = 1, β1,2 = 0.0015. (7)

Observe that the waveform of each oscillator is a train of pulses following with the pump
modulation period, and the carrier frequencies correspond to the respective natural frequencies.
However, the waveforms are not strictly periodic: the carrier phases vary irregularly from pulse
to pulse. Figure 3 illustrates nature of the long-time dynamics of the system, which is not
so obvious from the previous diagram. Here we present graphically the time series for the
coordinate variable relating to the first oscillator x; it is sampled with the time step equal to
the modulation period at the instants tn = nT . Obviously, a chaotic behavior is observed from
the diagram.

It occurs that the amplitude equations (5) deliver remarkably good description for the dy-
namics, at least in the parameter range we consider here. Figure 4 shows plots for amplitudes
and phases versus time obtained from numerical solution of the averaged equations (5) at the
parameter values assigned in accordance with (7).

Figure 5 shows the empirically obtained maps for the phases in successive epochs of activity.
Here, the abscissa and the ordinate correspond to the phases at tn = nT and at tn+1. Plots in
Figs. 5a and 5b are obtained by computing Eqs. (1) and Eqs. (5), respectively, and calculating
the phases as ϕn = arg[x1(tn) + ẋ1(tn)/iω1] and ϕn = argA1(tn). Note that the phase is well
defined only within a time interval of active stage (when the output amplitude does not approach
zero). As seen from Fig. 4, as ϕn varies from 0 to 2π, the phase ϕn+1 rounds the unit circle
twice in the opposite direction; i.e., the map is topologically equivalent to the Bernoulli-type
map ϕnew = −2ϕ + const (mod2π). The minor splitting of the branches on the plots may be
regarded as unimportant and can be neglected.

Figure 6 shows phase portraits of the attractor in the Poincaré section obtained by projection
onto the phase plane of oscillator 1. Panel (a) corresponds to the original model (1) while the
picture on the panel (b) is obtained from the amplitude equations (5). Both diagrams look
similar; in particular, transversal fractal structure is visible that is a characteristic feature of the
Smale-Williams solenoid. (Some visible relative turn of one and other pictures may be related
with the fact that in derivation of the equations (5) we neglect slow variation of the pump
amplitude when undertake the averaging over a period of fast oscillations.)

Quantitative evidence of chaotic behavior may be obtained by calculating Lyapunov expo-
nents. Formally, in the time-delayed system the spectrum of the Lyapunov exponents contains
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Figure 2: Plots obtained from computing Eqs. (1) at ω1 = 2π, ω2 = 4π, and ω3 = 6π with
parameter values (7): (a) driving signal; (b), (c) waveforms for the first and the second oscillator
in the system.

Figure 3: Chaotic time series for the variable x1 sampled from data of numerical integration of
Eqs. (1) at the time instants tn = nT ; the parameters are the same as indicated in the caption
of the previous figure. (The gray lines do not reflect the intermediate time dependencies; they
are shown only to indicate clearly the mutual dispositions of the dots on the diagram.)
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Figure 4: Plots obtained from computing amplitude equations (5) with the same parameter
values as in Fig.2: (a) amplitudes of oscillators 1 (gray) and 2 (black) versus time, and their
phases evaluated as the arguments of the complex amplitudes A1,2 (b).

Figure 5: Empirical iteration maps for the phases at successive stages of activity obtained in
computations from Eqs. (1) with ω1 = 2π, ω2 = 4π, and ω3 = 6π(a), and from Eqs. (5) (b) at
the parameter values (7).
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Figure 6: Stroboscopic portraits of the attractor in projection onto the phase plane of the
oscillator 1 (a) for the original model (1) with ω1 = 2π, ω2 = 4π, ω3 = 6π and (b) for the
amplitude equations (5) at parameter values (7).

an infinite number of them, but practically it is reasonable to account a bounded number K
of the Lyapunov exponents sufficient to evaluate the Kaplan-Yorke dimension. To compute the
Lyapunov spectrum, a version of the Bennetin algorithm was applied adopted for the delay-
differential equations [26, 27]. Eqs. (1) are computed simultaneously with K sets of variation
equations for the perturbations (marked by tilde):

¨̃x1 + ω2
1x̃1 = κx̃2f(t) sinω3t− α1

˙̃x1 − 3β1ẋ1
2 ˙̃x1,

¨̃x2 + ω2
2x̃2 = κx̃1f(t) sinω3t− α2

˙̃x2 − 3β2ẋ
2
2
˙̃x2 + 2εx1(t− τ) ˙̃x1(t− τ) + 2εx̃1(t− τ)ẋ1(t− τ),

(8)
or, in the case of description in terms of slow amplitudes with equations (5),

˙̃A1 = − κ
4ω1

f(t)Ã∗
2 −

1

2
α1Ã1 −

3

2
ω2
1β1A

2
1Ã

∗
1 − 3ω2

1β1A
∗
1A1Ã1,

˙̃A2 = − κ
4ω2

f(t)Ã∗
1 −

1

2
α2Ã2 −

3

2
ω2
2β2A

2
2Ã

∗
2 − 3ω2

2β2A
∗
2A2Ã2 − i ε

ω2
A1(t− τ)Ã1(t− τ).

(9)

As each next modulation period comes to the end, the Gram–Schmidt orthonormalization pro-
cess is applied to the perturbation vectors X̃n(t) (see the map (6) and supplied explanations).
The Lyapunov exponents are evaluated by averaging the growth rates for sums of logarithms of
norms of the perturbation vectors after orthogonalizing, but before normalizing.

The larger Lyapunov exponents calculated for the attractor of the stroboscopic map of
the system (1) and of the amplitude equations (5) are presented in Table 1. Observe good
correspondence of the data for the original model and for the amplitude equations. Note that
the largest exponent Λ1 is close to the expected value ln 2 ≈ 0.693 corresponding to the Bernoulli-
type expanding map. Other Lyapunov exponents are negative; it means compression along all
directions in the state space beside the one associated with the cyclic coordinate ϕ and with
the exponent Λ1 . The Kaplan-Yorke dimension evaluated from the spectrum of the Lyapunov
exponents D = 1 + Λ1/|Λ2| is about 1.6 for both models.
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Table 1. Four larger Lyapunov exponents computed at the parameters (7)

Λ1 Λ2 Λ3 Λ4

System (1), ω1=2π, ω2=4π, ω3=6π 0.6805 −1.095 −6.798 −7.090

System (5) 0.6819 −1.162 −6.752 −7.064

Figure 7 shows the Lyapunov exponents obtained numerically for the amplitude equations
(5) versus parameter κ (other parameters are fixed, see (7)). Observe that the positive Lyapunov
exponent is practically constant in the parameter interval and is close to the value ln 2. Other
exponents are negative and vary slightly depending on the parameter; visually the dependence
is smooth (up to numerical accuracy). Such kind of the behavior of the Lyapunov exponents
indicates robust nature of the dynamics: chaos occupies the whole parameter range, and no
windows of periodicity occur inside it.

Figure 7: The largest four Lyapunov exponents plotted versus parameter κ as evaluated numer-
ically for the system (5); the other parameters are assigned according to (7).

4 Conclusion

We propose a scheme of parametric chaos generator composed of two coupled oscillators excited
by periodically modulated pump source and with quadratic nonlinear delayed feedback. The
system generates oscillations in the form of a sequence of pulses in which the carrier phase varies
chaotically. Basing on qualitative analysis and data of computer simulation we conjecture that a
hyperbolic strange attractor occurs in the system, which is a kind of the Smale–Williams solenoid
embedded in the infinite-dimensional state space of the respective stroboscopic mapping.
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Since the used approaches and combinations of elements are common e.g. in electron-
ics,acoustics, nonlinear optics (parametric coupling, pumping, modulation) [21, 28, 29, 30], the
implementation of devices based on the suggested scheme seems quite feasible. Such systems can
be of interest as chaos generators, including their application in hidden communication schemes
[31, 32]. A considerable practical advantage of systems with hyperbolic attractors is their struc-
tural stability, which implies insensitivity of the properties of generated chaos to variations of
parameters and of characteristics of elements constituting the device, to technical fluctuations,
and so on. Also, a feature of the system is that chaos manifests itself in a random variation of
the carrier phases in the sequence of pulses. In chaos based communication systems, it may be
an advantage for signal transmission in a communication channel that will be much less sensitive
to noises, losses, and distortions than in other schemes (in some analogy with the well-known
advantage of frequency or phase modulation compared to amplitude modulation in traditional
radio-communication).
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