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Abstract

The transition from asynchronous hyperchaos to complete synchrony in cou-

pled identical chaotic systems may either occur directly or be mediated by

a preliminary stage of generalized synchronization. In the present paper we

investigate the underlying mechanisms of realization of the both scenarios.

It is shown that a generalized synchronization arises when the manifold of

identically synchronous states M is transversally unstable, while the local

transversal contraction of phase volume first appears in the areas of phase

space separated from M and being visited by the chaotic trajectories. On the

other hand, a direct transition from an asynchronous hyperchaos to the com-

plete synchronization occurs, under variation of the controlling parameter, if

the transversal stability appears first on the manifold M , and only then it ex-

tends upon the neighboring phase volume. The realization of one or another

scenario depends upon the choice of the coupling function. This result is valid

for both unidirectionally and mutually coupled systems, that is confirmed by

theoretical analysis of the discrete models and numerical simulations of the

physically realistic flow systems.
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I. INTRODUCTION

Synchronization of the dynamics of coupled chaotic systems is a fundamental natural

phenomenon, which has been observed in many physical, chemical and biological systems.

Classifying a variety of different synchronization types, the researchers usually distinguish

a complete synchronization of identical systems [1–5] and a generalized synchronization of

non-identical ones [2,6–8]. For more detailed classification of the synchronization phenomena

including phase and lag synchronization etc., see survey works [9,10].

In the case of a vanishing coupling between individual chaotic systems, their asyn-

chronous dynamics corresponds to existence of a hyperchaotic (i.e. characterized by two

or more of positive Lyapunov exponents) attractor in the joint phase space. An appear-

ance of a complete or generalized synchronization suggests that the chaotic motion becomes

restricted to an invariant subspace of the whole phase space. In the case of a complete

synchronization of a pair of identical chaotic systems, a synchronous chaotic attractor exists

on the trivial manifold of identical states M : {(x,y)|x = y}, where x and y are the state

vectors of individual systems. If this attractor is stable against perturbations transverse to

the manifoldM (i.e. all the transversal Lyapunov exponents characterizing the attractor are

negative), it may become an attractor in the whole phase space. For the case of a generalized

synchronization, the identity of the individual systems dynamics is not required, instead a

relationship of a general form between systems states is necessary [2,10]. In the majority of

studies of generalized synchronization phenomena, the model is represented by the example

of a pair of unidirectionally coupled systems [6–8]. As the criteria of existence of a generally

synchronous regime, the method of negative conditional Lyapunov exponents [7] and the

auxiliary system method [11] are usually used. The main point of the both methods consists

in that (for definiteness suggest that the system “x” is a driving and “y” is a response

one), independently of an initial state y(t0) of the response system, it approaches the state

uniquely defined by the driving system after sufficiently long time term: y(t) → f(x(t)) at

t→ ∞.
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However, it is known, that identical chaotic systems may also demonstrate such a type

of dynamics, when the systems states are not identical, but there is a functional relationship

between them, and the corresponding Lyapunov exponents take on negative values. In par-

ticular, such situation was observed for unidirectionally coupled identical systems in Refs.

[12–14]. Obviously, this satisfies the definition of synchronization in a generalized sense.

Such a situation may arise on the route of transition from an asynchronous hyperchaos to a

completely synchronous chaos, as it was shown in Ref. [15], and as it follows from the details

of transitions described in Refs. [16–19]. Thus, the generalized synchronization stands as

an intermediate type of dynamics on the route from independent behavior to a complete

synchrony. On the other hand, this scenario is not universal [20], and a direct transition

from asynchronous hyperchaos to completely synchronous chaos without intermediate stage

of generalized synchronization is also possible for both unidirectionally [21–23] and symmet-

rically [24–26] coupled systems. The question about special conditions which result in the

choice of one or another of the scenarios described above is still unrevealed and represents

an actual interest.

The purpose of the present paper is an investigation of the general mechanism responsible

for realization of the both direct and indirect scenarios of the transition from independent

hyperchaotic dynamics to the complete chaos synchronization. For rigorous theoretical anal-

ysis, we construct a transparent model of generalized synchronization in the form of a pair of

coupled identical discrete maps of special type, demonstrating chaos in individual dynamics,

with a controllable type and direction of coupling, which can be chosen both unidirectional

and mutual. By example of this model, we show analytically that two conditions are nec-

essary for appearance of the generalized synchronization: (i) the transversal instability of

chaotic trajectories on the manifold M and (ii) the existence of areas of the local transver-

sal contraction of phase volume isolated from M and being visited by trajectories of the

chaotic attractor. The specific choice of scenario of the transition from asynchronous hy-

perchaos to identically synchronous chaos then depends upon the order of appearance of

transversal stability on the manifold M and in the adjoining regions of the phase space,
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under variation of the controlling parameter of the transition. If the transversal stability

appears on the manifold M first as the controlling parameter is varied, and then it extends

to the manifold’s neighborhood, the direct transition from asynchronous hyperchaos to com-

pletely synchronous chaos is observed. On the other hand, if the local transversal stability

appears first in the regions being visited by chaotic trajectories and isolated from M , and

only then the manifold becomes transversally stable, the generalized synchronization arises

as an intermediate type of dynamics on the route of such transition. The realization of one

or another scenario in our model depends upon the choice of coupling function, which can

provide an appearance of local transversal contraction of phase volume in a vicinity of the

manifold M or in some other regions of the phase space. The analysis of the models with

different directions of coupling shows that our results are valid for both unidirectionally and

mutually (asymmetrically or symmetrically) coupled systems.

In order to demonstrate the universality of conclusions obtained from theoretic analysis,

we also consider a physically realistic flow model consisting of a pair of coupled chaotic os-

cillatory systems, which individually possess robust chaotic dynamics [27] with a hyperbolic

attractor of the Smale-Williams type. Introducing different types and directions of coupling

in this flow, we numerically observe exactly the same picture of the transition scenarios,

that was previously observed theoretically for the models in the form of coupled maps.

II. THE DISCRETE MODELS

The basic subsystem which will be used for theoretical analysis is the most simple chaotic

map, known as the Bernoulli map: x′ = 2x (mod 2π). Let us consider a pair of coupled

maps of this type:

x′ = 2x+ (α− 1)Cg(x− y) (mod 2π),

y′ = 2y + Cg(x− y) (mod 2π),
(1)

where C is a parameter of coupling strength, and g(v) is a coupling function which satisfies

the following conditions: (i) g(0) = 0 (zero effect on the invariant diagonal M : {(x, y)|x =
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y}, (ii) g(v) = −g(−v) (asymmetry by the variable), (iii) g(v) = g(v + 2π) and Dng(v) =

Dn(v + 2π) at n ∈ N (continuity and differentiability at the points of joining). In the

simplest case such function can be chosen in the sinusoidal form:

g(v) = sin v. (2)

For α = 0 the coupling becomes symmetric, while for nonzero α (0 < α ≤ 1) it is asymmetric.

The extreme case of asymmetric coupling with α = 1 corresponds to the unidirectional

coupling. In such a way, α tunes the degree of asymmetry in the coupling.

For convenience, let us proceed to the longitudinal and transversal variables (u = x+ y,

v = x− y) and then rewrite the system (1) as

u′ = 2u+ αCg(v) (mod 2π),

v′ = 2v + (α− 2)Cg(v) (mod 2π).
(3)

From the equations (3) it immediately follows that the original system (1),(2) is characterized

by two Lyapunov exponents λ|| = ln 2 and λ⊥ =< ln |2− C∗ cos v| > (here and thereafter

we denote C∗ = (2 − α)C), which measure the longitudinal and transversal (in)stability of

any trajectory. Then, for trajectories on the diagonal the value of the transversal exponent

is λ⊥ = ln |2− C∗|. Hence, the transition to the complete synchronization under increasing

of the coupling parameter occurs at C∗ = C∗
f = 1.0. The examples of phase portraits of

the map (1),(2) for the case of the symmetric coupling just prior and immediately beyond

the transition are shown in Figs. 1(a) and 1(b), respectively. From the Fig. 1(a) one can

see the crowding of the phase trajectories in vicinity of the diagonal, which then becomes

transversally stable. The plots of the dependences of Lyapunov exponents vs. C∗ are shown

in Fig. 1(c). The plot λ⊥(C
∗) for attractor is shown in black, while the plot λ⊥(C

∗) for

repeller on the diagonal is shown in grey. From the latter figure one can immediately see,

that the transition to the complete synchronization occurs directly, without intermediate

stage of generalized synchronization, which would be characterized by negative value of λ⊥

for attractor simultaneously with the positive λ⊥ for the repeller. In order to understand

the reason of such behavior, let us consider the value of a finite-time (“local”) transversal

5



exponent taken per one iteration: Λ⊥(v) = ln |2− C∗ cos v|. For any C∗ within the interval

C∗ ∈ [0, 2), the minimum value of the function Λ⊥(v) falls on v = 0 (see a typical plot in

the Fig. 1(d) for C∗ = C∗
f ). Hence, as the parameter C∗ passes the critical value C∗

f , the

transversal stability first arises on the diagonal, and only then it extends upon other regions

of the whole phase space. Obviously, the reason for direct transition to the complete syn-

chrony in our situation consists in the choice of the coupling function in the sinusoidal form,

which minimizes the local transversal exponent on the invariant diagonal M . Therefore, in

order to observe the indirect transition to the complete synchrony through an intermediate

stage of the generalized synchronization, one should select the coupling function in such a

way that the local transversal exponent would take minimum value in some other region of

the phase space, instead of the diagonal M .

Let us modify the coupling function in a following way:

g(v) = [1 +B sin2 v] sin v. (4)

The idea of this modification consists in the modulation of the sinusoidal function by the

factor, which has the minimum value at v = 0, and which increases sufficiently as v is varied

from zero. In this case the effect of transversal contraction will be stronger in the regions

distant from the diagonal. Then, for local transversal Lyapunov exponent we obtain:

Λ⊥(v) = ln |2− C∗(cos v + 3B sin2 v cos v)|. (5)

One can easily see that the value of this exponent on the diagonal remains the same:

Λ⊥(0) = ln |2− C∗|. An elementary analysis shows, that for B > 1/6 the function Λ⊥(v)

has two minimums at vmin = ± arctan
√
(6B − 1)/(3B + 1) and a local maximum at v = 0.

Hence, if the parameter C∗ < C∗
f is chosen appropriately, the situation may arise, when

Λ⊥(0) > 0, while Λ⊥(v) < 0 for v ∈ (vmin − ε, vmin + ε), that suggests appearance of local

transversal stability of motion at these values of deviation from the diagonal. The corre-

sponding example of the plot of the function Λ⊥(v) for B = 1.5, C∗ = 0.6 is presented in

Fig. 2(a). Since the transversal instability of motion on the diagonal there takes place si-
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multaneously with the local transversal stability arising in some neighboring regions of the

phase space, one can expect, that the generalized synchronization may there appear.

The plot of the dependence of λ⊥ vs. C∗ for B = 1.5 is shown in Fig. 2(b). From this plot

one can see, that for C∗ ∈ (C∗
g , C

∗
f ) the condition λ⊥ < 0 for the attractor holds, although

the diagonal is still transversally unstable. Hence, the dynamical regime existing in the

system (1),(4) at these values of C∗ is different from identical synchronization, although it

is characterized by a negative transversal Lyapunov exponent. The phase portraits of the

system (1),(4) with symmetric coupling (α = 0) for hyperchaotic regime at B = 1.5, C = 0.27

and for the generally synchronous chaotic regime at B = 1.5, C = 0.29 are presented in the

Figs. 2(c) and 2(d), respectively. One can observe how the chaotic trajectories condense in

the regions aside from the diagonal at the threshold of the transition. After the generalized

synchronization has arisen, the chaotic attractor fills the straight line segment which is

parallel to the diagonal and is different from it, so that the condition holds: x−y = const[̸=

0]. The existence of such a trivial one-to-one functional dependence of systems variables is a

sufficient criterion for detection of generalized synchronization. In order to understand the

underlying cause for this trivial relationship, let us consider the dynamics of the transversal

variable v described by the second equation of the system (3). From this equation (taken

jointly with the condition (4)) we immediately obtain, that the value of v = const can be

found as a solution of the transcendent equation:

v = C∗ sin v(1 +B sin2 v). (6)

Thus, the investigation of the dynamics of synchronous chaotic regime of the system (1),(4)

has reduced to the investigation of the solutions of the equation (6). The corresponding

bifurcational tree for B = 1.5 is presented in the Fig. 2(e). The branches of stable and

unstable solutions are shown in black and grey, respectively. For C∗ ∈ [0, C∗
g ) the equa-

tion (6) has only one unstable solution: v = 0. At C∗ = C∗
g ≈ 0.55904 a symmetric pair

of saddle-node bifurcations occurs, which results in appearance of two other pairs of the

solutions, namely, two stable (±vs) and two unstable (±vu) ones. For C∗ ∈ (C∗
g , C

∗
f ) the
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stable solutions determine the manifolds of generally synchronous states for the map (1),(4):

x − y = ±vs. At C∗ = C∗
f = 1.0 the backward pitchfork bifurcation occurs, so that the

stable pair of solutions ±vs disappears, while the trivial solution v = 0 becomes stable. This

is the moment, when the regime of the complete chaos synchronization in the system (1),(4)

arises.

Note, that all the above arguments illustrated by the example of symmetric coupling

(α = 0) in fact do not depend upon the choice of the parameter α, so that our results

are valid for both asymmetric and unidirectional cases of mutually coupled systems as well.

Therefore, the condition of appearance of generalized synchronization that we have found

gives a goal-directed algorithm for construction of the regimes of generalized synchronization

in identical chaotic systems with different types of mutual coupling on the route from asyn-

chronous hyperchaos to the complete synchronization. This result is also worthy of notice,

since in a usual situation, the diagnostics of the existence of generalized synchronization for

bidirectionally coupled systems is rather difficult, so that the construction of the regimes

with the predetermined properties may be useful for development of common methods of

diagnostics of generalized synchronization in various coupled systems.

III. THE FLOW MODELS

In order to demonstrate the generality and physical meaning of the results obtained from

the analysis of theoretical discrete models, let us apply the same arguments to examples

of realistic flow systems. We expect to observe numerically nearly the same picture of

dynamical transitions, that was described in the previous Section. As a basis for modeling,

we will use a non-autonomous oscillatory system, consisting of two interacting van der

Pol oscillators with the characteristic frequencies of generation deferring twice, with the

excitation parameters undergoing slow periodic counter-phase modulation in time, and with

a special type of connection between the oscillators, which provides the forwarding of the

oscillation’s phase. This system was first suggested in the Ref. [27] as an example of a feasible
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flow with a robust chaotic attractor, and later it was realized as an electronic device in the

work [28]. The equations of the system ẋ = F(x, t) for vector components x = (x1, x2, x3, x4)

have the form:

ẋ1 = f1(x, t) = x2,

ẋ2 = f2(x, t) = (A cos (ω0t/N)− x21)x2 − ω2
0x1 + εx3 cosω0t,

ẋ3 = f3(x, t) = x4,

ẋ4 = f4(x, t) = −(A cos (ω0t/N) + x23)x4 − (2ω0)
2x3 + εx21.

(7)

Here ω0 and 2ω0 are the characteristic frequencies of the first and the second oscillators,

respectively, A is an amplitude of the modulated excitation parameter, N is an integer

number determining the period of modulation T = 2πN/ω0, and ε is the parameter of the

connection intensity. In this Section we set the same parameters values as in the Ref. [27] for

the robust hyperbolic attractor: A = 3.0, ε = 0.5, ω0 = 2π,N = 10. Then, the evolution of

the chaotic phase φ : x1 ∼ cos (ω0t+ φ), determined at discrete time moments tn = t0 + nT

(where n is integer), will approximately follow the Bernoulli map (φn+1 ≈ 2φn (mod 2π)),

as in the well-known Smale-Williams model.

Now let us consider a pair of interacting systems of the described type:

ẋ = F(x, t) + C(α− 1)g(x,y),

ẏ = F(y, t) + Cg(x,y),
(8)

where g(x,y) is a coupling function satisfying the conditions g(x,x) = 0 and g(x,y) =

−g(y,x), C and α are the parameters controlling the intensity and the direction of coupling,

as in the previous Section. In the cases of α = 1 or α = 0 the coupling becomes unidirectional

or symmetrical, respectively.

The system (8) is characterized by 8 nontrivial Lyapunov exponents. In order to calculate

the full Lyapunov spectrum, we will first linearize the system (8):

˙̃x = ∂F(x,t)
∂x

x̃+ C(α− 1)
[
∂g(x,y)

∂x
x̃+ ∂g(x,y)

∂y
ỹ
]
,

˙̃y = ∂F(y,t)
∂y

ỹ + C
[
∂g(x,y)

∂x
x̃+ ∂g(x,y)

∂y
ỹ
]
.

(9)
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For the case of unidirectional (α = 1) coupling the full set of exponents may be divided into

two subsets:
{
λ(i)x

}
i=1,...,4

for characterization of the driving system “x”, and
{
λ(i)y

}
i=1,...,4

for

characterization of the response system “y”. For the case of mutual (0 ≤ α < 1) coupling, it

is impossible to distinguish the subsets associated with one or another system, and it is neces-

sary to consider the set
{
λ(i)

}
i=1,...,8

as a whole. The procedure for calculation of the values of{
λ(i)x

}
i=1,...,4

based on Benettin’s algorithm is fully described in Ref. [27]. For this purpose one

should assign an orthonormal basis of 4 vectors
{
(x̃

(i)
1 (t), x̃

(i)
2 (t)/ω0, x̃

(i)
3 (t), x̃

(i)
4 (t)/2ω0)

}
i=1,...,4

at the time moment t = t0, and then consider the evolution of these vectors under the ef-

fect of the first equation of the system (9) being integrated jointly with the corresponding

equation of the system (8). In the course of the integration, the Gram-Schmidt orthogo-

nalization and normalization must be performed at time moments tn = t0 + nT . Summing

up the logarithms of the norms (after the orthogonalization, but before the normalization),

one can obtain the values of exponents
{
λ(i)x

}
i=1,...,4

as the mean rates of growth or decrease

of the accumulated sums. In accordance with the results of the Ref. [27], the value of the

largest exponents in this set is λ(1)x ≈ T−1 ln 2 ≈ 0.068, while other ones are sufficiently

negative and depend upon the choice of the parameters of the basis subsystem (7). For

calculation of the values of
{
λ(i)y

}
i=1,...,4

one should assign the orthonormal basis of 4 vec-

tors
{
(ỹ

(i)
1 (t), ỹ

(i)
2 (t)/ω0, ỹ

(i)
3 (t), ỹ

(i)
4 (t)/2ω0)

}
i=1,...,4

at the time moment t = t0. Note, that all

the values of variations “x̃” in the second equation of the system (9) must be set to zero

(i.e.
{
x̃
(i)
1 (t) = 0, x̃

(i)
2 (t) = 0, x̃

(i)
3 (t) = 0, x̃

(i)
4 (t) = 0

}
i=1,...,4

). Then, this equation must be in-

tegrated jointly with the system (8). Performing orthogonalization and normalization via

Gram-Schmidt scheme at time moment tn = t0+nT , we will obtain the values of exponents{
λ(i)y

}
i=1,...,4

of the response system as the mean values of the logarithms of the vector norms

taken after the orthogonalization and before the normalization.

In the same way one can find the whole set of
{
λ(i)

}
i=1,...,8

for the case of mutual

coupling of the systems. For this purpose one should assign a basis consisting of 8 vec-

tors
{
(x̃

(i)
1 (t), x̃

(i)
2 (t)/ω0, x̃

(i)
3 (t), x̃

(i)
4 (t)/2ω0, ỹ

(i)
1 (t), ỹ

(i)
2 (t)/ω0, ỹ

(i)
3 (t), ỹ

(i)
4 (t)/2ω0)

}
i=1,...,8

at the

time moment t = t0, and then consider the evolution of these vectors under the effect of
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the whole system of equations (9) being integrated jointly with the whole system (8). As

previously, performing the Gram-Schmidt orthonormalization and averaging the logarithms

of norms of the vectors (after the orthogonalization but before the normalization), one can

obtain the values of
{
λ(i)

}
i=1,...,8

.

Using the procedures described above, let us characterize the scenarios of transition from

asynchronous hyperchaos to completely synchronous chaos for the system (8) with various

types of coupling in terms of Lyapunov exponents. Constructing the coupling function,

we will proceed from the same arguments, which were used for the case of the discrete

models (see the formula (4)), with the only difference consisting in that we do not need a

2π-periodicity of the function by the variables. Let us define the coupling function g(x,y)

in the following form:

gi(x,y) = (xi − yi)[1 +B(xi − yi)
2], i = 1, . . . , 8. (10)

For the case of B = 0 the coupling becomes linear. For B > 0 the linear term is

modulated by the factor, which has minimum on the manifold of synchronous states

M : {(x,y)|x = y}, and which growths with the transversal deviation of the trajectory

from M . Note also, that the coupling function in the chosen form satisfies the condition:

∂g(x,y)/∂x = −∂g(x,y)/∂y.

In order to determine the threshold of the complete synchronization appearance, let

us consider the dynamics of the system (8) with the condition (10) on the manifold of

synchronous states M . It is possible to obtain analytically the functional dependences of

the Lyapunov exponents upon the parameters of coupling for an attractor/saddle on the

manifold M , if we proceed to the longitudinal and transversal variables (u = x + y,v =

x− y) in the system (8) and correspondingly rewrite the linearized system (9). Then, for a

synchronous chaotic trajectory x∗(t) = y∗(t) taken as the reference one, we will obtain the

linearized system for new variables:

˙̃u =
[
∂F(x,t)

∂x

]
x=x∗

ũ+ αCĥ(x∗,y∗)ṽ,

˙̃v =
[
∂F(x,t)

∂x

]
x=x∗

ṽ + (α− 2)Cĥ(x∗,y∗)ṽ.
(11)
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Here ĥ(x,y) = ∂g(x,y)/∂x is a linear matrix operator with the components hi,j(x,y),

i, j = 1, . . . , 4. From the definition of the coupling function via formula (10) it immediately

follows that ĥ(x∗,y∗) = δij.

The system (11) formally represents a pair of subsystems with unidirectional coupling.

Therefore, the whole set of 8 Lyapunov exponents can be divided there into two subsets of

longitudinal exponents
{
λ
(i)
||

}
i=1,...,4

associated with the variable u, and transversal exponents{
λ
(i)
⊥

}
i=1,...,4

associated with the variable v, for which the conditions hold:

λ
(i)
|| = λ(i)x , λ

(i)
⊥ = λ(i)x + (α− 2)C, i = 1, . . . , 4, (12)

where
{
λ(i)x

}
i=1,...,4

coincide with the exponents characterizing the original single subsys-

tem (7). Correspondingly, for the case of the unidirectional coupling (α = 1) the complete

synchronization arises at Cf = λ(1)x ≈ T−1 ln 2, while for the case of the symmetric coupling

(α = 0) it appears at Cf = λ(1)x /2 ≈ (2T )−1 ln 2.

At first, let us illustrate the direct transition from asynchronous hyperchaos to the com-

plete synchronization. For that, we assign B = 0 in the formula (10). The plots of the

dependences of selected Lyapunov exponents upon the coupling parameter C for the case of

unidirectional coupling are presented in the Fig. 3(a). The plots of the exponents λ(1)x and

λ(1)y for the attractor are shown in black, while the plot of λ
(1)
⊥ for the chaotic saddle on the

manifold M is shown in grey. The values of other exponents are sufficiently negative and

do not change noticeably on the route of the transition. Therefore, they are not presented.

The synchronization arises when the largest exponent of the response system λ(1)y passes zero

value and becomes negative. From the diagram one can see that it occurs exactly at the mo-

ment when λ
(1)
⊥ passes through “0” and the manifoldM becomes transversally stable. Hence,

here the complete synchronization arises directly. Introducing the discrete phases for the

both systems “x” and “y” as φn = arg [x2(tn) + iω0x1(tn)] and ψn = arg [y2(tn) + iω0y1(tn)],

we can observe the portraits of the mappings (φn, ψn) for hyperchaotic and completely syn-

chronous chaotic regimes as shown in Figs. 3(b) and 3(c), respectively. From the Fig. 3(b)

one can see the crowding of the phase trajectories near the diagonal on the threshold of the

12



transition.

In the Fig. 3(d) the plots of the dependences of Lyapunov exponents upon the parameter

C are presented for the case of the symmetric coupling (as before, we set B = 0). The plots

for two largest exponents of the attractor λ(1) and λ(2) are shown in black, the plot for the

transversal exponent λ
(1)
⊥ of the chaotic saddle on the manifold M is shown in grey. For

the case of asynchronous hyperchaotic regime, the both exponents of the attractor (λ(1)

and λ(2)) are positive. The value of λ(2) becomes negative simultaneously with the value of

λ
(1)
⊥ , whereupon the complete chaos synchronization arises. The examples of phase portraits

for the mapping (φn, ψn) of hyperchaotic and synchronously chaotic regimes are shown in

Figs. 3(e) and 3(f).

Next, let us consider the case of an indirect transition to the complete synchronization

through the intermediate stage of the generalized synchrony. For this purpose we assign

B > 0 in the formula (10). Note, that the relationships (12) for the longitudinal and

transversal exponents of synchronous trajectories on the manifoldM then remain unchanged,

as well as the thresholds of the complete synchronization Cf = λ(1)x ≈ T−1 ln 2 for the

unidirectional coupling and Cf = λ(1)x /2 ≈ (2T )−1 ln 2 for the symmetric coupling.

The corresponding plots of the dependences of Lyapunov exponents upon the parameter

C for the case of unidirectional coupling are shown in Fig.4(a). As previously, the plots

of λ(1)x and λ(2)y for the attractor are shown in black, while the plot of λ
(1)
⊥ for the chaotic

saddle on the manifold M is shown in grey. From these plots one can see that, as C

is increased, the largest exponent λ(2)y of the response system becomes negative at C =

Cg ≈ 0.0414, while the value of the transversal exponent of the chaotic saddle λ
(1)
⊥ remains

positive. Hence, according to the Ref. [7], for C ∈ (Cg, Cf ) generalized synchronization

takes place. The examples of phase portraits of the mapping (φn, ψn) for hyperchaotic and

generally synchronous chaotic regimes are shown in Figs.4(b) and 4(c), respectively. In the

Fig.4(b) one can observe the crowding of the phase trajectories in the regions aside from the

diagonal, that is similarly to the Fig.2(c) for the system (1),(4). For the case of the generally

synchronous regime, the phase portrait in Fig.4(c) represents a diffuse strip parallel with
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the diagonal, that agrees well with the prediction of the discrete model. Note, that the

diffusion occurs due to intrinsic nonlinearity of the basic subsystem (7). We would obtain a

similar diagram for the system (1) by adding a nonlinear term into the Bernoulli map. It is

also significant that the generally synchronous regime is bistable, i.e., starting integration of

the system (8),(10) with another set of initial conditions, we can obtain the phase portrait

analogous to the one presented in Fig.4(c), but reflex with respect to the diagonal. The last

also agrees with the results for the model (1),(4). As the parameter C is further increased,

the diffuse strips become sharpen and finally merge with the diagonal at C = Cf , when the

manifold M becomes transversally stable and the complete synchronization appears.

The entirely analogous picture of the transition takes place for symmetrically coupled

systems. Unfortunately, it is impossible to establish the existence of the generalized synchro-

nization strictly in this case, since there is no response system for mutual coupling, and we

can not distinguish the largest Lyapunov exponent associated with this system. However,

the transition of the second exponent λ(2) of the whole system (see Fig.4(d), λ(2) is shown in

black) into the region of negative values at C = Cg ≈ 0.0205 gives evidence on a qualitative

change of the system’s dynamics, namely, on the hyperchaos-to-chaos transition. The phase

portrait in coordinates (φn, ψn) for hyperchaotic regime on the threshold of this transition

(Fig.4(e)) shows the crowding of phase trajectories in the regions aside from the diagonal.

The portrait of generally synchronous regime has the form of the diffuse strip, which is

parallel to the diagonal (Fig.4(f)), as it was predicted by the discrete model. Note, that

this regime is also bistable. Finally, as in the previous cases, the transition to the complete

synchronization occurs in the moment when λ
(1)
⊥ passes the zero value and the manifold M

becomes transversally stable.

IV. CONCLUSION

In the present paper we have studied two general scenarios of the appearance of complete

synchronization for coupled identical chaotic subsystems. In accordance with one of the, the
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generalized synchronization plays the role of the intermediate type of the dynamics on the

route of the transition from asynchronous hyperchaotic behavior to the complete synchrony.

According to the another scenario, the direct transition from asynchronous hyperchaos to

complete synchrony takes place. It is shown, that the realization of one or another scenario

is caused by the order of appearance of transversal stability on the manifold of identically

synchronous states and in the neighboring regions of the phase space under variation of the

controlling parameter of the transition. In the case when the transversal stability appears

first on the manifold of the identically synchronous states, and only then it extends upon

the manifold’s neighborhood, the direct transition from asynchronous hyperchaos to com-

pletely synchronous chaos is observed. On the other hand, if the local transversal stability

of the trajectories appears first in the regions containing chaotic attractor and being distant

from the manifold, and only then the manifold becomes transversally stable, the generalized

synchronization arises. The mechanism of the birth of generally synchronous attractor is

analogous to the saddle-node bifurcation. The obtained results are common for both unidi-

rectionally and mutually coupled system, as shown for discrete modeling maps and feasible

flow models of the oscillatory type.

In conclusion we would like to note, that coupled identical chaotic systems represent a

convenient model for the investigation of the mechanisms not of the complete synchronization

only, but also for the study of generalized, phase and, possibly, some other types of chaotic

synchronization, and different transition between these types of dynamics.
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FIGURES

FIG. 1. The phase portraits of the system (1),(2) with symmetric coupling (α = 0) at

(a) C = 0.49 and (b) C = 0.51. (c) The dependences of transversal Lyapunov exponent λ⊥

vs. parameter C∗ for the attractor (black) and for the repeller on the diagonal (grey). (d) The

dependence of local transversal exponent Λ⊥ vs. the variable v at C∗ = 1.0.
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FIG. 2. (a) The dependence of local transversal exponent Λ⊥ given by the formula (5) vs. the

variable v at B = 1.5 and C∗ = 0.6. (b) The dependences of transversal Lyapunov exponent λ⊥

vs. the parameter C∗ at B = 1.5 for the attractor (black) and for the repeller on the diagonal

(grey). The phase portraits of the system (1),(4) with symmetric coupling (α = 0) and B = 1.5 at

(c) C = 0.27 and (d) C = 0.29. (e) The bifurcational tree of the solutions of the equation (6) for

B = 1.5.
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FIG. 3. (a) The dependences of Lyapunov exponents of the system (8),(10) with unidirectional

linear coupling (α = 1, B = 0.0) vs. parameter C, and the phase portraits of the mapping (φn, ψn):

(b) for hyperchaotic regime at C = 0.06, and (c) for completely synchronously chaotic regime at

C = 0.08. (d) The dependences of Lyapunov exponents of the system (8),(10) with symmetric linear

coupling (α = 0, B = 0.0) vs. parameter C, and the phase portraits of the mapping (φn, ψn): (e) for

hyperchaotic regime at C = 0.03, and (f) for completely synchronous chaotic regime at C = 0.04.
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FIG. 4. (a) The dependences of Lyapunov exponents of the system (8),(10) with unidirectional

nonlinear coupling (α = 1, B = 0.007) vs. parameter C, and the phase portraits of the mapping

(φn, ψn): (b) for hyperchaotic regime at C = 0.035, and (c) for generally synchronous chaotic

regime at C = 0.050. (d) The dependences of Lyapunov exponents of the system (8),(10) with

symmetric nonlinear coupling (α = 0, B = 0.015) vs. parameter C, and the phase portraits of the

mapping (φn, ψn): (e) for hyperchaotic regime at C = 0.015, and (f) for generally synchronous

chaotic regime at C = 0.022.
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