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ROBUST CHAOS IN AUTONOMOUS TIME-DELAY SYSTEM
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We consider an autonomous system constructed as modification of the logistic differential
equation with delay that generates successive trains of oscillations with phases evolving
according to chaotic maps. The system contains two feedback loops characterized by two
generally distinct retarding time parameters. In the case of their equality, chaotic dynamics is
associated with the Smale-Williams attractor that corresponds to the double-expanding circle
map for the phases of the carrier of the oscillatory trains. Alternatively, at appropriately chosen
two different delays attractor is close to torus with Anosov dynamics on it as the phases are
governed by the Fibonacci map. In both cases the attractors manifest robustness (absence
of regularity windows under variation of parameters) and presumably relate to the class of
structurally stable hyperbolic attractors.

Keywords: Attractor, hyperbolic chaos, maps, Anosov dynamics, Arnold cat, Fibonacci map,
Smale-Williams attractor.

Introduction

The concept of uniformly hyperbolic chaotic dynamics was advanced in mathema-
tical theory of dynamical systems half a century ago [1-6]. It deals with invariant sets in
state space of systems composed exclusively of orbits of saddle type with such a restriction
that their stable and unstable manifolds do not touch each other (intersect transversally).
The hyperbolic invariant sets are structurally stable. It implies their robustness in respect
to (at least small) variation of functions and parameters in the dynamical equations.
Henceforth, the hyperbolic dynamics may be regarded as preferable for any possible
practical application of chaos and as deserving prior research in a frame of physical and
technical disciplines [7, 8].

One important class of the uniform hyperbolicity is Anosov dynamics in systems
where the hyperbolic invariant set occupies the whole accessible phase space; usually it
is considered in the context of the phase volume preserving maps or flows (conservative
dynamics). Alternatively, in the context of dissipative systems, the uniformly hyperbolic
attractors were introduced; their mathematical examples are Smale-Williams solenoid,
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Plykin type attractors, DA-attractor of Smale!. Although originally they relate to artificial
discrete-time systems, analogous attractors can occur as well in Poincaré maps associated
with continuous time systems governed by differential equations. In the last case it is used
to speak about suspension of these attractors provided by the appropriate flows.

Till a short time ago, realistic examples of uniformly hyperbolic dynamics which
could relate to real-world systems were poorly presented and discussed in the literature.
One example is a hinge mechanism with Anosov dynamics described and studied in [9].
An artificial example of suspension of Plykin-type attractor was constructed in PhD thesis
of Hunt [10], but it is surely too complicated to allow a real physical implementation.
Possible occurrences of suspension of Plykin-type attractors in neuron model [11] and in
modified Lorenz model [12] were discussed, but no convincing data on a level of concrete
equations and numerical simulation were provided.

Recently a number of implementable systems with uniformly hyperbolic attractors
were advanced and studied due to efforts of Saratov group of nonlinear dynamics
[13-20]. It is essential that these examples are constructed on a base of the physical rather
than the mathematical toolbox exploiting such entities as oscillators, nonlinear elements,
interactions, self-oscillatory and parametric excitation etc.

One particular productive method for design of systems with uniformly hyperbolic
attractors is based on using time-delay nonlinear feedback loops [21-24]. Most of the
examples suggested were non-autonomous systems functioning in presence of the external
periodic driving [21-23]. An exception is an autonomous system with attractor of Smale—
Williams type considered in Ref. [24]. The present article is inspired by that work. We
construct and study numerically an autonomous time-delay system manifesting different
types of uniformly hyperbolic attractors depending on two parameters of time delay.

1. Basic equations

Let us start with logistic delay equation offered in due time in population bio-
logy [25]:

Pl =t =)l (@). (1)

Here the population is characterized by the positive variable r evolving in time and
normalized in such way that the saturation occurs at » = 1. A positive parameter | is
the birth rate, t; is the delay time characterizing lag of the effect of saturation. According
to Ref. [25], under condition t; < 7/2u the system has a stable stationary state r = 1
and for T > 7t/2u self-oscillations occur. At large values t; the generated waveform looks
like a periodic sequence of pulses (Fig. 1, a). The period grows with the delay t; as
P = (1+ €"™)/u. Estimate for the minimal level of the population in between the pulses
i Tmin = wtexp(—el™ + 2ut; — 1), i.e. it manifests the double exponentially decrease
with increase of T;.

Now, let us regard the variable r as squared amplitude of some oscillatory process
with frequency wq. For this, we set 7 = x? + y? and require the new variables to satisfy

IThe abbreviation DA stands for «derived from Anosov».
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the equations
&= —woy + (1/2)u(l — 22(t — 1) — y%(t — 1)),

§ = oz + (1/2)n(1 — 22(t — 1) — y*(t — 1))y

2

Solutions of the equations (2) instead of the solitary pulses manifest successive oscillatory
trains for « and y while the envelope evolves exactly according to (1) (Fig. 1, b).
Next, let us add terms proportional to z(t — t1)z(t — t2) — y(t — t1)y(t — 12) and
x(t —11)y(t — 12) + 2(t — t2)y(t — 11) with small coefficient ¢ in the first and the second
equation
i = —woy + (1/2)n(1 — 22(t — 1) — y2(t — 70))a+

telz(t — )zt —12) — y(t — 1)y(t — 1)), )
g =wox + (1/2)n(1 — 2*(t —w) — y*(t —w))y+

telz(t — )yt —t2) + 2(t — 12)y(t — 1),

where we suppose always that the delays satisfy the inequality T2 > t1. Now, in the case
of generation of pulses with low enough level of minimal amplitude between them, just
these additional terms will initiate formation of each next pulse of oscillations. Due to
this, the phase of the oscillations for the new-born pulse will be determined by the phases
of the previous pulses via some mapping as discussed in detail in the following sections.
In presence of this initiation of the oscillations the characteristic repetition period of the
pulses is reduced comparing to the original system (2).

Formally, the time-delay system is infinite-dimensional. Indeed, an instantaneous
state is determined by functions x(t) and y(t) defined on a time interval of length to.
To start solution of the equations (3) the initial conditions have to be chosen as some
functions x(¢) and y(t) on the time interval [—12, 0]. In the course of numerical integration
they are represented by arrays sampled with time step used in the integration scheme, and
the elements of the arrays are replaced step by step by the newly obtained values to be
accounted on latter stages of the computations. In other respects the integration schemes
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Puc. 1. Self-pulsations in the logistic-delay equation (1) at u = 1.6, T1 = 2 (a) and oscillatory trains generated
by system (2) at wo = 27 (b). The period of the pulses is roughly 7" ~ 16
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are analogous to those used for solution of ordinary differential equations. With arbitrary
initial conditions the computations are executed for sufficiently long time and then, after
reliable arrival at the attractor, processing of the data is performed including plotting
waveforms, portraits of attractors, evaluation of the Lyapunov exponents etc.

Now let us turn to some concrete cases of the model (3).

2. Attractor of Smale-Williams type

Let us start with the simplest particular case setting both delay time parameters
equal: T2 = 11 = 1. It leads to the equations

A e e L e e A
§ = w0z + (1/2)u(1 — 22(t 1) — y2(t 1))y + 2=(t — Dy(t — ).

To clarify the principle of functioning of the system suppose that during some
current stage of activity the variables behave as x ~ cos(wot + ¢) and y ~ sin(wot + @);
then the additional terms are expressed as

22t — 1) — y2(t — 1) ~ cos?(wot + @) — sin®(wpt + @) = cos(2wpt + 2¢),
%)
2z(t — 1)y(t — 1) ~ 2cos(wot + @) sin(wot + @) = sin(2wpt + 2¢).

These relations determine actually the stimulating signal for oscillations on the immediate
next stage of activity. The phase shift of this signal is transferred to the oscillations arising
on this stage. Hence, the phase undergoes the doubling transformation

Pn+1 = 2¢p + const. (6)

It is the expanding circle map, or the Bernoulli map, which is chaotic and is characterized
by the Lyapunov exponent A = 1n2 =~ 0.693.

We may consider a Poincaré map for the time-delay system that corresponds to
transformation of the infinite-dimensional space vector on a time interval from one pulse
of oscillations to the next one. Attractor of this Poincaré map is supposed to be a kind
of Smale-Williams solenoid embedded in the infinite-dimensional state space. Actually,
the phase ¢ plays a role of the angular variable in the Smale-Williams solenoid while in
other directions compression of the phase volume will take place. Respectively, attractor
of the original autonomous time-delay system (4) is a suspension of the Smale-Williams
solenoid in the infinite-dimensional state space.

Figure 2 shows waveforms for dynamical variables = and y illustrating operation of
the system (4) at

wg=2m, nw=16, t=2, ¢=0.05. (7)

In accordance with the above qualitative considerations, the process looks like a sequence
of trains of oscillations. Note that the average period of their appearance is less than that
in models (1), (2), and in the regime under discussion it is 7" ~ 10. Although represented
by nearly periodic alternation of excitation and suppression of the oscillations, the process
is actually chaotic (in contrast to the regular one observed in Fig. 1, b). Chaos reveals
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Puc. 2. Waveforms for the dynamical variables = (black) and y (gray) according to the results of the numerical
solution of equation (4) at p = 1.6, wp = 2m, v = 2, € = 0.05
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Puc. 3. Diagram illustrating the transformation of
phases in the successive stages of the activity plotted
according to the results of the numerical solution of

equation (4) at u = 1.6, wp = 2w, t =2, = 0.05

time-delay system.

itself in variations of phases on successive
stages of activity. More accurate analysis
shows that these phases obey approximately
the Bernoulli map. Figure 3 illustrates it
by a diagram obtained in the numerical
simulation. The phases were determined
at moments of maximal amplitude at
successive excitation stages as ¢, =
= arg(z — iy) and plotted for sufficiently
large number of processed successive
oscillatory trains. Surely, the mapping for
the phases looks topologically equivalent
to the expected Bernoulli map: one
complete bypass for the pre-image ¢, (that
is variation by 2i) corresponds to the two-
fold bypass for the image @, 41.

Figure 4 shows 3D and 2D
projections of the attractor from the
infinite-dimensional phase space of our

-3.0
-3.0 x 3.0

Puc. 4. 3D and 2D projections of the attractor from the infinite-dimensional phase space at wo = 2w, u = 1.6,
T =2, ¢ = 0.05. The first diagram is plotted in the coordinates (z, y, p), where p = /22(t — 1) + y2(t — 1),

and the second on the plane of variables (z,y)
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For computation of Lyapunov exponents we use the Benettin algorithm [26, 27]
adapted for the time-delayed systems [28, 29]. It is based on simultaneous numerical
solutions of the equations (4) and the variation equations

&= —wof+ (1/2u[l — 2%(t — 1) — y2(t — 1)]i—

—arla(t — T)E( — ) + y(t — VGt — )] + 2e[elt — VE(E — 1) — y(t — Vit — ),

y = 0o + (1/2)u[l — 2*(t — 1) —y*(t — V)]~

—uyle(t — Dt — ) + y(t — Dt — )] + ly(t — D& — ) + 2t — Vit — ).

(®)

Formally, there are an infinite number of Lyapunov exponents in the time-delayed
system, but we necessarily restrict ourselves dealing with a finite number of them. To
evaluate the larger M exponents we integrate a collection of M sets of equations of
form (8). In the computations, the perturbation vectors are represented as finite-dimensional
arrays of values & and g sampled on intervals of length t with time step of the integration
scheme of the delay equations. The dot product for the vectors involved in normalization
and Gram-Schmidt orthogonalization required in the Benettin algorithm is determined

as a sum of products of pairs of the
elements relating to one and another array.

It is convenient to use normalization
of the Lyapunov exponents A; by the
average period of pulse repetition T,
namely, to set A = AT. It makes natural
to relate them with the Lyapunov exponent
of the Bernoulli map obtained in the
qualitative analysis.

According to the computations, in
the regime corresponding to parameters (7)
the largest four Lyapunov exponents are

A = 0.6964, Ay = 0.0000,
A3 =—12.129, A4 = —15.538, ...
©)
The estimate of the Kaplane—Yorke

dimension for the attractor of the Poincaré
map (the Smale-Williams solenoid) is
DY, = 1+ A1/|As| ~ 1.06. Dimension
of the attractor in the infinite-dimensional
phase space of the autonomous system is
Dky = 2+H(A1+A2) /| A3 = 14+D2y, ~2.06.

Figure 5 shows plots for four
Lyapunov exponents of the system (4)
versus €, T and p. Observe that the largest
exponent remains almost constant in a
wide interval of the parameter variation

©D.S. Arzhanukhina, S.P. Kuznetsov
U3B. By30B «I[TH», T. 22, Ne 2, 2014

1.0
0
A

-150
c

Puc. 5.

A
A;

0.04 0.2 ¢

1.85

351

u=1.6,e= 0.05, w,= 2w
A
1.5 A, 241
As
Ay

e=0.05, w=2m, 1=2

Lyapunov exponents of the system (4) versus

the parameters ¢ (a), T (b), u (c)

41



and remains close to the expected value In2 = 0.693.... The second is close to zero (up
to numerical inaccuracy). As usual in autonomous systems, it is interpreted as associated
with perturbations of infinitesimal shift along the phase trajectory. Other exponents are
negative.

Note smooth character of dependences of the Lyapunov exponents on parameters,
particularly, there are no drops in the plot of A;, which could correspond to regularity
windows intrinsic usually to non-hyperbolic systems. It confirms robust nature of chaos,
which is natural in a frame of our qualitative argumentation that it is associated with the
uniformly hyperbolic attractor of Smale-Williams type.

3. Attractor associated with Anosov-type dynamics on torus

Now return to the model with two different time delays t; and 7to:
i =—wy+ (1/2)u(l — 2%t —v1) — y*(t — 1))z +

+elz(t —m)z(t —12) —y(t —w)y(t — 1)), (10
§=wox + (1/2n(1 - 22(t — 1) — y*(t — 1))y +

+elx(t — 1)yt — v2) + z(t — t2)y(t — 11)]

and select these parameters to get such situation that the delayed signals stimulating
excitation of a new (n + 1)-th pulse of oscillations arrive being emitted from the previous
two pulses n (delay t1) and n — 1 (delay t2).

Suppose that at the previous two activity stages the phases were ¢, and @,_1,
namely, z(t—11) ~ cos(wot+@y,), y(t—T1) ~ sin(wot+¢y,), x(t—12) ~ cos(wot+@n_1),
yz(t — t2) ~ sin(wot + @,—1). Then, the additional terms in the right-hand parts are
expressed as

z(t —11)x(t —12) — y(t — t1)y(t — 12) ~ cos(2wpt + @, + Pp—1),
(11)
z(t — 1)yt — ) + x(t — t2)y(t — 11) ~ sin(2wot + @, + Pp—1)-

As follows, on the next, (n + 1)-th stage of activity the phase will be determined (up to a
constant) by the Fibonacci map

Pnt1 = Qn + @n—1 + const (mod2m). (12)

Of what kind attractor is in this case? For the infinite-dimensional Poincaré map
of our time-delay system attractor is an object close geometrically to a two-dimensional
torus, and the discrete-time dynamics of the angular variables on this torus obey the map
(12). It relates to the class of Anosov maps. Due to structural stability of the Anosov
dynamics, one can conjecture that on the attractor in the infinite-dimensional state space
of the Poincaré map the dynamics remains of the same nature; in other dimensions
the phase volume compression occurs that corresponds to the approach of orbits to the
attractor. Respectively, attractor in the phase space of the continuous-time system (10) is
a suspension of that object, and here (in the autonomous system) we have an additional
neutral direction associated with a zero Lyapunov exponent.
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Figure 6 shows waveforms for the variables x and y obtained from numerical
solution of the equations (10) at

u=16, £=0.02, wg=2xn tm1=2, T2=14. (13)

The process looks like a sequence of trains of oscillations for which the phases
of the high-frequency carrier vary in a random-like way from one to the next stage of
activity. The average period of repetition of the pulses evaluated numerically is roughly
T =~ 10.85.

Figure 7 shows 3D and 2D projections of the attractor from the infinite-dimensional
phase space of our time-delay system on the plane of variables (z,y).

Figure 8 illustrates correspondence of the dynamics of the phases to the Fibonacci
map. The phases ,, are determined at instants of maximal amplitude in the oscillation
trains as ¢ = arg(x — dy). Diagram (@) presents the data in the coordi-
nates (@, + @n—1,9Pn+1) and one can see that the dots lie in a strip parallel to the
bisector. (Although the strip looks widened, this does not violate the expected topological
nature of the mapping.) Diagram () shows the 3D diagram for the phases in coordinates
(Qn+1; Pn, Pn—1), which corresponds visually to the Fibonacci map.

RAa2

0 22.5 45 67.5 90.0 ¢

Puc. 6. Waveforms for variables = (black) and y (gray) according to the numerical solution of equation (10)
atp=1.6,e=0.02, 00 =21, 11 = 2,120 =711 = 14

3030 -3.0 X 3.0
Puc. 7. 3D and 2D projections of the attractor from the infinite-dimensional phase space at u = 1.6,
e = 0.02, wg = 2w, 11 = 2, 12 = 711 = 14. The first diagram is plotted in the coordinates (x,y, p),

where p = /22(t — 1) + y2(f — 1), and the second on the plane of variables (z, )
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Puc. 8. Diagrams illustrating dynamics of the phases of the system (10) in successive stages of activity

One more way to illustrate the Anosov dynamics for the phases is similar to the
famous picture of Arnold’s cat [30, 15, 16]. For each pair of phases ¢,, and ¢,,—; on the
n-th and n — 1 stages of activity, we determine either the point with such coordinates fit or
not in the picture of the cat face drawn on the plane. If yes, then the point is marked on the
graph, and on the following two plots the corresponding points are depicted, respectively
after 3 and 6 iteration steps. If the initial point does not fall within the specified cat face
area, the dots are not marked, and we carry on with further iterations. Figure 9 shows the
pictures obtained by this method comparing with the respective diagram originating from
iterations of the Fibonacci map itself.

2n

b 0 (Pn,l 2

Puc. 9. Transformation of the cat face area under successive iterations of the mapping for the phases obtained
in computations for the model (10) (a) and for the Fibonacci map (b). (See explanations in the text.)
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For computation of the Lyapunov exponents we use the algorithm similar to that
described in the previous section. It is based on the joint numerical solutions of the

equations (10) and the variation equations

F= w0+ (1/2u[1- 22 (t—11) —y2(t -] — (et —T)E(E—1) +y(t—T) G —)

+elz(t — )Tt —12) +x(t —2)Z(t — 1) —y(t —1)y(t — 12) —y(t — 12)y(t — 11)],

y= woi+(1/2)u(l—a?(t—) —y*(t—11)) —py(z(t —t)Z(t —11) +y(t—11) gt —a)

+ely(t —12)T(t — ) + y(t —12)@(t — 12) + 2(t —12)7(t — 1) + 2(t — 1)F(t — ©2)].

The perturbation vectors are represented in
computations as finite arrays of Z and ¢ on
time intervals of length 1o sampled with
the integration step used for the numerical
solution of the equations. We compute four
larger exponents and normalize them by
the factor T'; at parameters (13) they are

Ar = 0.4851,
Az = —0.4691,

Ao = 0.0003,

Ay = —0.5404...

(15)
The first and the third Lyapunov exponents
are close in magnitude and opposite in
sign. Their may be compared with the
Lyapunov exponents of the Fibonacci map
A = £1In(1 +/5)/2 = £0.4812.... The
second exponent is zero up to numerical
inaccuracy. The fourth and subsequent
Lyapunov exponents are all negative, of
larger absolute values.

Figure 10 shows plots for the
Lyapunov exponents depending on the
coupling parameter € (a), parameter of
activity w (b) and the delay T (¢)
at fixed other parameters. As seen, in
a fairly wide range of the parameters
the largest Lyapunov exponent remains
approximately constant, and one of the
negative exponents is close in the absolute
value to the positive exponent. It indicates
persistence of the Anosov dynamics on the
attractor.

Viewing the graphics in Fig. 10 one
can distinguish two somewhat different
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Puc. 10. Lyapunov exponents of the system (10)

depending on the parameters ¢, u and ©
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situations. Namely, in the left parts of the diagrams the first negative exponent is nearly
equal to the positive one in absolute value, and the next negative exponent is lesser. As
we go to the right some crossover occurs, and the two negative exponents exchange their
places. After that, obviously, approach of trajectories to the attractor in time is slower than
the convergence and the divergence of orbits on the attractor itself. (Apparently, it implies
different nature of the attractors in these two situations, but we leave the comparative
analysis of them outside the frame of the present article.)

We outline again the smooth character of dependences of the Lyapunov exponents
on parameters that confirms robust nature of chaos. It may be thought that the attractors
we deal with in this section are uniformly hyperbolic, close to the so-called «non-strange
chaotic attractors» briefly mentioned and discussed in the literature [31-33].

Conclusion

In this paper, we introduce an autonomous system built on the basis of the logistic
differential equation with delay. As shown, the dynamics of the phases of generated
successive oscillatory trains corresponds to expanding circle map or Anosov map on a
torus depending on selection of two retarding time parameters. Numerical simulations
show robust chaos generation in these cases, and we conjecture the uniformly hyperbolic
nature on the attractors in the infinite-dimensional state space of the time-delay system.

The suggested system and analogous constructions may be realized on a basis
of electron devices as generators of robust chaos; physically they may be simpler in
implementation comparing, for example, with systems constructed on the basis of coupled
oscillators [13-16].

Due to the insensitivity of chaos to variations in parameters, the chaos generators
of this kind are of interest from a practical point of view, for example in application for
communication, random number generation, cryptographic schemes etc. [7].

D.S.A. acknowledges support of this work by RFBR grant Ne 14-02-31162, and
S.PK. thanks Prof. A. Pikovsky for discussions.
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Hocmynuna 6 pedaxyuro ~ 17.03.2014

T'PYBBI XAOC B ABTOHOMHOM CUCTEME C 3AIIA3JIBIBAHUEM

I C. Apacanyxuna', C. I1. Kysueyos*>
! Caparosckuii rocynapcrBennsiit yausepcuter uM. H.I. UepHBIIIEBCKOro
2MHCTUTYT PaAHOTEXHUKH ¥ 31eKTpoHnky uM. B.A. Korenbuukosa PAH, CaparoBckuit (umman

3 lenapramenT GU3MKK U aCTPOHOMMH YHHBepcuTeTa IloTcama

PaccmarpuBaeTcs aBTOHOMHAS CHCTEMa, OCTPOSHHAs KaK MOAW(HUKALNY JIOTUCTH-
yeckoro anu¢epeHnnaibHOT0 ypaBHEHHS C 3ala3blBaHUeM M TeHEepHpYIomas MocIen0-
BaTeJIbHBIC IIyTU KonebaHuii ¢ Bhazoii, Tpancopmupyromeiics B COOTBETCTBUU C XaOTHYE-
ckuMu oToOpakeHusmu. CucTeMa COACPKHUT JBE METIN OOpaTHOU CBSI3H, XapaKTEPU3YIO-
muecs AByMs, BOOOIIe TOBOPs, pa3sHBIMU BpeMEHaMH 3aJepXKu. B ciydae nx paBeHCTBa,
XaoTHYecKas AUHaAMHUKa ofpenensercs arTpakTopoMm Cwmeitna-BunbsMca, KOTOpBIH COOT-
BETCTBYET JBYKPAaTHO PAaCTATUBAIOLIEMY OTOOPa)KEHUIO OKPYXHOCTHU VI (pa3bl HECYILETo
cUrHaja IyroB kojeOaHuil. [Ipu BEIOpaHHBIX ONpenesieHHBIM 00pa3oM pa3HbIX BpeMEHax
3aJIep kKU TUHAMUKa (ha3 cooTBEeTCTBYeT oToOpaskeHnto GuboHauyn Ha Tope. Takum obOpa-
30M, Ha aTTPAaKTOPE OCYILECTBIIETCSl ANHAMUKA TUIIa AHOCOBa. B 000mX ciyyasx aTTpak-
TOPBI IPOSABIISIIOT TPYOOCTH (OTCYTCTBHE OKOH PETYISPHOCTH NPH N3MEHEHUH TTapaMeTPOB)
U, MIPEATIOTIOKUTEIBHO, OTHOCATCA K KJIAaCCy CTPYKTYPHO YCTOHUMBBIX TMIEPOOTHYECKUX
aTTPaKTOpPOB.

Kniouesvie cnosa: AtTpaktop, THIepOOTHUECKUI Xaoc, 0ToOpaxkeHne, TMHaMUKa AHOCO-
Ba, KOT ApHONbAa, oToOpakeHne drubonaydn, arrpakTop Cmeitna-BunbsamMca.
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Aporcanyxuna JJapes Cepeeesna — poaunach B Caparose (1988). Oxonunna da-
KyJbTeT HEIUHEHHBIX IpolueccoB CapaTOBCKOIO I'OCYAapCTBEHHOIO YHHBEPCUTETA
(2011). 3amuTnia TUIUIOMHYI0 paboTy Ha TeMy «ClOKHAs AMHAMHMKA M pa3pylie-
HHE TUNEpOOIMIECKOrO Xaoca B OTOOPaXKEHHH «KOT APHOJIBIA» C AUCCHIIATHBHBIM
BO3MYyILEHHEM. B HacTosiee Bpemst sIBJIsieTCs aclupaHToM 0a30Boit kadenpsl 1uHa-
MHYECKUX CHCTeM (haKyipTeTa HeIMHEeHHbIX mpoueccoB CI'Y. Mmeet 4 myOnukarum.

410012 Caparos, yi. ActpaxaHckas, 83
CapatoBckuii rocygapcTBeHHbI yHusepcuteT uMm. H.I. UepHblmesckoro
E-mail: arzhanukhinadarja@rumbler.ru

Kysneyos Cepeeii Ilemposuu — poamncst B Mockse (1951). Oxonunn Caparos-

ckuii TocymapcrBeHHbIH yHHBepcenuTeT (1973). Corpynnuk CaparoBckoro ¢uimana

WnctutyTa paguorexHuku U dekTpoHuku uM. B.A. Korensnukosa PAH (c 1988).

PykoBomut naboparopueil TEOpPETHUECKOW HENTMHEHHON AMHAMHKU. 3allUTHI JHC-

CepTaLMIO HAa CONCKAHKUE YUYCHOU CTeNeHU KaHauaara GHU3UKo-MaTeMaTHYeCKuX HayK

B CI'Y (1977) u noxropa Hayk (1987) no cneunansHOCTH paguodusuka. [Ipodpeccop

6aszoBoii kadenpsl quHammyeckux cucreM CI'Y. ABtop moHorpadun «/luHammde-

CKHUl Xa0C U THIIEPOOINIEcKUe aTTpakTopbl: OT MaTeMaTuku K (GU3UKE», MOHOTpa-

¢un «Hyperbolic Chaos. A Physicist’s View», mororpaduu «Strange Nonchaotic

Attractors» (coBmecTHO ¢ A. [TukoBckum u Y. Dolinens), a Takke yueOHO-HAYIHBIX

' h 7 MoHorpadwuii «uHammdeckuii xaocy U «HenuHeiHbIe KoneOaHus» (B COABTOPCTBE C

1 A.IL. Ky3uenossiM 1 H.M. Prickunbiv). Omy6nukoBan cBbinie 200 HaydHBIX cTaTed

[0 HEeJMHEWHOH NMHaMuKe, paanopu3uke W deKTpoHuKe. I1og ero pykoBOICTBOM

3alIMIIEHBl eCATh KaHAMIATCKUX AuccepTrauuil. Jlaypear rocynapcTBeHHOM Hayd-

HoOW ctunenauu s yueHoix Poccun (1994-1996), Copocosckuit mouent (1998),

Copocosckuii mpodeccop (2000, 2001). UsneH penakiMOHHOIH KOJUIETHH JKypHaia
«M3Bectus By30B. [Ipuxiiagnas HenMHENWHAs JTUHAMUKA.

410019 Caparos, yi. 3eneHas, 38
Caparosckuii punuan PO nmenn B.A. KorensaukoBa PAH
E-mail: spkuz@yandex.ru
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