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equilibrium state is attainable in forward time and an unstable equilibrium state is attainable in
backward time are overlapped. In the intersection of these two regions, the nonholonomic model of
Chaplygin’s top demonstrates the phenomenon of a genuine reversal, which can be clearly observed
in numerical experiments. Figure 7 represents the time dependencies of the angular velocities of
Chaplygin’s top for the parameters E0 = 500 and a3 = 1. The point P0 is chosen as the initial
point, and the trajectory is launched in both forward and backward time. Thus, according to
the nonholonomic model, if the system parameters and the initial point are given in accordance
with Fig. 6 and Chaplygin’s top is spun around the vertical axis γ = γ∗ in an “inappropriate”
direction, then, after a transient process (which is rather long for some parameters) accompanied
by oscillations and rolling motions, the top reverses the direction of rotation and rotates about the
same axis in the opposite direction.

Fig. 6. Charts of Lyapunov exponents in forward and backward time, and their intersection on the plane Q.

Fig. 7. Time dependence of the components of the angular velocity (E0 = 500, a3 = 1).

4. CHAOTIC DYNAMICS

We now turn our attention to chaotic dynamics in the nonholonomic model of Chaplygin’s top.
As in the analysis of reversal, we shall consider the dynamics of the ball for the values of the
parameters E0 and a3 from the region Q. The values of the other parameters are given according
to (3.5). Analysis of the chart of Lyapunov exponents has helped to detect strange attractors and to
explore the scenarios of their appearance 8). A detailed description of the algorithm for constructing
the chart of Lyapunov exponents is given at the end of the previous section. Here we only note that
to accelerate the convergence to the steady-state dynamical regime and due to multistability of the

8)Generally speaking, it is convenient to use the charts of Lyapunov exponents for the investigation of dissipative
chaotic dynamics in various models [32].

REGULAR AND CHAOTIC DYNAMICS Vol. 19 No. 6 2014



THE REVERSAL AND CHAOTIC ATTRACTOR 727

system, the initial conditions in the internal nodes of the grid were chosen by using an inheritance
scheme which implies that the state obtained by applying the algorithm in the previous node was
used as the initial point in each subsequent node of the grid.

The constructed chart of Lyapunov exponents is presented in Fig. 8. We note that the
construction of the chart was essentially influenced by the developed multistability, due to which
the chart had to be “glued together” from several pieces constructed by various types of scanning
of the initial conditions. For convenience, we comment once again on the rules of coding of the
regimes shown in Fig. 8. Periodic regimes (limit cycles), quasiperiodic regimes (tori) and chaotic
regimes are shown in dark blue, light blue and red, respectively. The pixels colored black correspond
to the states in which the trajectories reach the equilibrium. The chart of regimes was constructed
with inheritance, as described above, except that if the trajectory did not return within a fairly
long time into the Poincaré section, the initial conditions at the next point were chosen to be the
same as those at the edge of the chart. This was done to reveal regimes differing from the stable
equilibrium state.

Typical attractors for the Poincaré map of the system under consideration are fixed and periodic
points, invariant curves and tori-chaos, which arise as a result of destruction of invariant curves
according to the Afraimovich – Shilnikov scenario [33]. The white arrows on the chart of dynamical
regimes indicate the paths along which one can observe sequences of bifurcations leading to the
birth of strange attractors. A typical feature of the system is a visible absence of period doublings
for stable periodic points9). The boundaries of stability regions of these points are formed by
bifurcation lines of saddle-node bifurcations and Neimark – Sacker bifurcations. Thus, the scenarios
of transition to chaos in our system are mainly associated with the destruction of invariant curves.
We consider one of the most interesting scenarios of chaos development, which is associated with
the appearance of a figure-eight attractor.

Fig. 8. Chart of Lyapunov exponents on the parameter plane Q.

4.1. Figure-eight Attractor

The possibility of appearance of figure-eight (and Lorentz type) attractors in three-dimensional
maps due to simple bifurcation scenarios was established in [35] (see also [36]). In these scenarios it
was assumed that at first a fixed point is an attractor in the map. According to one of the scenarios,
as the parameter changes, this point then undergoes a period-doubling bifurcation, becoming a
saddle with a one-dimensional unstable manifold, and a stable cycle of period 2 is born in its
neighborhood. Then this cycle loses stability (in principle, it does not matter how exactly), and
the stable and unstable manifolds of the saddle point begin to intersect. The resulting “homoclinic

9)This phenomenon is evidently typical of three-dimensional maps whose Jacobian is not too close to zero. For
example, in [34] it was discovered that in the case of three-dimensional Hénon maps with the constant Jacobian

B > 1
3

no second period doubling is observed for a stable fixed point.
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Fig. 9. The simplest scenarios of the birth of two types of homoclinic attractors.

attractor” is, depending on the multipliers of the saddle point, either a Lorentz type or a figure-eight
attractor (see Fig. 9).

In our case, a homoclinic figure-eight attractor is born, and at the initial stage the scenario of its
birth is somewhat different from that described in [35]. We now consider the stages of appearance
of this attractor.

Let us fix a3 = 1.9 and analyze the bifurcations arising on the route A in the chart of Lyapunov
exponents (Fig. 8). At first, when 417.5 � E1 < E < E2 � 455.60, the attractor is the point (o1, o2)
of period 2, which is born as a result of saddle-node bifurcation together with the saddle point
(s1, s2). The map (2.9) also has the fixed saddle point S1, which is located between o1 and o2

(see Fig. 10a). The point S1 is a saddle-focus up to E � E3 = 456.162, whereupon its unstable
complex-conjugate multipliers become real negative. At E � E4 = 456.30 a period-2 point (s1, s2)
merges into the saddle S1 (as a result of the subcritical doubling bifurcation) and the saddle itself
changes its type from (1, 2) to (2, 1) (its unstable manifold becomes one-dimensional). After this
bifurcation the saddle S1 has multipliers λ1, λ2 and γ such that γ < −1 < λ2 < 0 < λ1 < 1. Now the
unstable manifold is coiled around the invariant curve (l1, l2) of period 2 (see Fig. 10b). This curve
arises due to the Neimark – Sacker bifurcation from the stable cycle (o1, o2) at E � 455.60. With
further increase of the parameter E the invariant curve L undergoes a series of “torus-doubling”
bifurcations (see Figs. 10c and 10d) and then decays to form a torus-chaos (Fig. 10e). Soon after
that, the unstable manifold of the saddle S1 begins to intersect with the stable manifold, and
a strange attractor which is visually similar to the figure-eight attractor is formed. Figure 10f
shows a portrait of the detected attractor for E = 457.913. The portrait has been obtained by
iterating a point launched from the neighborhood of the saddle S1 with coordinates l = 0.514231,
L/G = −0.700259, H/G = −0.930815.

We present a number of quantitative and qualitative characteristics of the detected attractor.
The multipliers of the saddle S1 for E = 457.913, a3 = 1.9 are given below:

λ1 � 0.98885,

λ2 � −0.99732,

γ � −1.00907.

(4.1)

Thus, |λ1| < |λ2| < 1 < |γ|. The multiplier λ1 responsible for strong compression is positive, which is
characteristic of the figure-eight attractors and distinguishes them from the Lorentz type attractors
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Fig. 10. The main stages of the appearance of the figure-eight attractor.

(see Fig. 9). The condition |λ2||γ| > 1 implies the extension of areas that are transversal to the
direction of strong compression, and is indicative of pseudohyperbolicity of the detected attractor.

The Lyapunov exponents of the trajectory randomly chosen on the attractor take the following
values:

Λ1 � 0.00063,

Λ2 � −0.00003,

Λ3 � −0.00492.

(4.2)

The condition Λ1 + Λ2 > 0 is also indicative of pseudohyperbolicity, and the positive sum points
to a volume compression typical of the genuine strange attractors. The analysis made allows one
to classify the detected attractor as a pseudohyperbolic figure-eight attractor.

5. CONCLUSION

In this paper we have investigated the nonholonomic model of Chaplygin’s top, within which
we have detected the phenomenon of reversal. It is well known that the nonholonomic model is an
idealization in which the friction force does not perform any work. However, it was the analysis of
this model that allowed us to answer the question of the cause of the onset of reversal for Celtic
stones.

Whereas in the case with Celtic stones the phenomenon of reversal was at first noticed in a
real experiment and only much later was explored on the basis of a mathematical model, the
situation with Chaplygin’s top was the opposite. In the latter case, we have managed so far to
detect the phenomenon of reversal only in the nonholonomic model. In our further research we
plan to construct a more realistic model taking account of friction forces. In the case of success,
attempts will be made to design a top and to simulate the phenomenon of reversal in a real
experiment.

In addition to revealing the reversal, the nonholonomic model turned out to be very interesting
for the investigation of chaotic dynamics. Analysis of the chart of Lyapunov exponents allowed us
to detect several types of strange attractors. In this paper we considered the scenario of the birth
of a figure-eight attractor (which is, in our opinion, the most interesting of the attractors detected
so far). In our future work we plan to carry out investigations of other scenarios (typical of the
model considered) of the birth of strange attractors.
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APPENDIX. ON INVOLUTIONS

We recall the definition of reversibility and involution for a flow system. Suppose the equations of
motion (2.2) have the form Ẋ = v(X), where X = (M1, M2, M3, γ1, γ2, γ3). The map of the phase
space R(X) : X → X is said to be an involution for the flow v(X) if

d

dt
(R(X)) = −v(R(X)), R ◦ R = id. (5.1)

In this case, the flow v(X) is called reversible with respect to the involution R(X).

Depending on the type of transformation of the variables (M , γ), all additional (to R0)
involutions can be divided into two classes:

• involutions responsible for the rotation of the ball about one of the axes of inertia through
the angle π,

Π1 : M → (M1, M2,−M3), γ → (−γ1,−γ2, γ3), t → −t,

Π2 : M → (M1,−M2, M3), γ → (−γ1, γ2,−γ3), t → −t,

Π3 : M → (−M1, M2, M3), γ → (γ1,−γ2,−γ3), t → −t,

(5.2)

• involutions responsible for the reflection of the ball with respect to one of three planes passing
through a pair of the axes of inertia of the ball,

Σ1 : M → (M1, M2,−M3), γ → (γ1, γ2,−γ3), t → −t,

Σ2 : M → (M1,−M2, M3), γ → (γ1,−γ2, γ3), t → −t,

Σ3 : M → (−M1, M2, M3), γ → (−γ1, γ2, γ3), t → −t.

(5.3)

If the center of mass of the ball is displaced only along one axis, then the system (2.2) admits
three additional (to R0) involutions: involution responsible for the rotation of the ball through the
angle π along the axis of displacement (one of Πi, i = 1, . . . , 3), and two involutions responsible for
the reflection of the ball with respect to the planes passing through the axis of displacement and
one of the two axes of inertia (two of Σi, i = 1, . . . , 3). If the center of mass of the ball is displaced
along the two axes, the system has the only additional involution responsible for the reflection of
the ball with respect to the plane passing through the axes of displacement (one of Σi, i = 1, . . . , 3).
In the case of arbitrary displacement of the center of mass of the ball (when all components a1, a2

and a3 are nonzero) the system does not possess any additional involutions.

We recall the definition of reversibility and involution for maps. A transformation r(x) : x → x
is called an involution for the map (2.9) if

Fg0 ◦ r = r ◦ F−1
g0

. (5.4)

In this case, the map Fg0(x) is called reversible with respect to the involution r(x). After an
appropriate choice of a secant the involutions of the flow system (5.2) and (5.3) generate involutions
for the Poincaré map (2.9):

• those generated from Π1, Π2 and Π3

π1 :
L

G
→ −L

G
,

H

G
→ −H

G
, l → l,

π2 :
L

G
→ L

G
,

H

G
→ −H

G
, l → π − l,

π3 :
L

G
→ L

G
,

H

G
→ −H

G
, l → −l.

(5.5)
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• those generated from Σ1, Σ2 and Σ3

σ1 :
L

G
→ −L

G
,

H

G
→ H

G
, l → l,

σ2 :
L

G
→ L

G
,

H

G
→ H

G
, l → π − l,

σ3 :
L

G
→ L

G
,

H

G
→ H

G
, l → −l.

(5.6)

APPENDIX B. ON THE SEARCH FOR EQUILIBRIUM STATES

To find equilibrium states of the system (2.2), it is necessary to define the unknowns α and β
using the expressions for first integrals and the relations (3.1)–(3.2). The relation (3.2) can be
rewritten as (

I − β

α2

)
γ∗ = m

(
R + (a, γ) +

g
α2

)
a, (5.7)

whence, on introducing the notation

α̃ =
1
α2

, β̃ =
β

α2
, Ĩ =

(
I − β

α2

)−1

,

we obtain the relation

γ∗ = m
(
R + (a, γ) + α̃g

)
Ĩa.

We perform a scalar multiplication of the last relation by a and express (a, γ) and γ:

(a, γ) =
m(R + α̃g)(̃Ia, a)

1 − m(̃Ia, a)
, (5.8)

γ =
m(R + α̃g)(̃Ia, a)

1 − m(̃Ia, a)
.

Further, using the normalization condition (the geometrical integral is fixed on the unit level set)
and denoting R + α̃g by α̂, we write the first equation of the system (3.3) as

m2α̂2(̃Ia, Ĩa)

(1 − m(̃Ia, a))2
− 1 = 0. (5.9)

Now we transform the expression for the energy integral (2.6). In a state of equilibrium the
vector M , expressed by the formula (2.4), can be represented as

M = α[Iγ + m(R(a, γ)γ + a2γ − Ra − (a, γ)a)]. (5.10)

Then the expression for the energy integral becomes

E0 =
1
2
α2[(Iγ, γ) + m(a2 − (a, γ)2)] + mg((a, γ) + R). (5.11)

Performing a scalar multiplication of (5.7) by γ, we obtain an expression for (Iγ, γ):

(Iγ, γ) = β̃ + m(R + (a, γ) + α̃g)(a, γ).

Substituting this expression into (5.11) and using (5.8), we obtain an expression for the second
equation of the system (3.3):

3m2(̃Ia, a)

1 − m(̃Ia, a)
α̂2 +

(
2mR − 2E0

g
− 2mR2(̃Ia, a)

1 − m(̃Ia, a)

)
α̂ + ma2 + β̃ +

2E0R

g
− 2mR2 = 0. (5.12)
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Thus, the system (3.3) is formed by Eqs. (5.9) and (5.12). Subtracting from Eq. (5.12) Eq. (5.9)
multiplied by

3(̃Ia, a)(1 − m(̃Ia, a))

(̃Ia, Ĩa)
,

we obtain an equation relating α̂ to β̃:

α̂ =
2mR2 − 2E0R

g
− β̃ − ma2 − 3(1 − m(̃Ia, a))(̃Ia, a)

(̃Ia, Ĩa)

2mR

(
1 − m(̃Ia, a)

1 − m(̃Ia, a)

)
− 2E0

g

.

Substituting α̂ into (5.9), we obtain for β̃ an irrational equation of high degree. For a numerical
solution of this equation with specific parameter values we have applied the software package Maple.
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