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Abstract—In this paper we consider the motion of a dynamically asymmetric unbalanced ball
on a plane in a gravitational field. The point of contact of the ball with the plane is subject
to a nonholonomic constraint which forbids slipping. The motion of the ball is governed by the
nonholonomic reversible system of 6 differential equations. In the case of arbitrary displacement
of the center of mass of the ball the system under consideration is a nonintegrable system
without an invariant measure. Using qualitative and quantitative analysis we show that the
unbalanced ball exhibits reversal (the phenomenon of reversal of the direction of rotation) for
some parameter values. Moreover, by constructing charts of Lyaponov exponents we find a few
types of strange attractors in the system, including the so-called figure-eight attractor which
belongs to the genuine strange attractors of pseudohyperbolic type.
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1. INTRODUCTION

The problem of motion of a perfectly rigid body on a plane in a gravitational field can be
considered in the context of two mathematical models: a nonholonomic model and a model with
friction. In the former case, the body moves on a (perfectly rough) plane without slipping. The
absence of slipping is provided by the force of friction, which, however, does not perform any
work. In the latter case, slipping is possible and, therefore, the forces of friction are dissipative. An
advantage of nonholonomic models is that these models are, as a rule, simpler than models with
dissipative friction and, therefore, help to explain the nature of dynamical phenomena in many
problems. For example, the nonholonomic model of a Celtic stone helps to explain the nature of
the reversal characterized by the change of the direction of rotation of the stone to the opposite
when it rotates about the vertical axis in the “inappropriate” direction. This phenomenon has
been known for a long time and evidently was first described in the work of G. Walker [1], while
the explanation of this phenomenon was recently given by I. S. Astapov, A. V. Karapetyan and
A. P. Markeev [2–4] within the framework of the nonholonomic model. However, some phenomena
of rigid body dynamics cannot be explained within the nonholonomic model. The flip-over of the
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tippe top is one of the most illustrative examples. This flip-over is caused by the dissipative force
of friction [5, 6] and so cannot be explained within the nonholonomic model.

In this paper we consider the nonholonomic model of motion on a plane of a dynamically
asymmetric ball whose center of mass does not lie on any of the principal planes of inertia. In [7],
problems of controllability of this ball were investigated and the term Chaplygin’s top was introduced
to refer to the ball. This term will be used in this paper. We note that Chaplygin’s ball is the
most complicated ball with respect to mass distribution. There are several special cases depending
on the type of displacement of the center of mass and on the mass distribution inside the ball.
When the center of mass of the ball coincides with its geometrical center, such a ball is called
Chaplygin’s ball. The nonholonomic model of Chaplygin’s ball was studied in the early 20th century
by S. A. Chaplygin [8], who proved integrability of this problem and found the first (area, angular
momentum and total energy) integrals and an invariant measure. The motion of Chaplygin’s ball in
absolute space is studied in [9, 10], where the equations of the contact point of the ball are described
and the conditions for finite and infinite motions of this ball are determined. In a generic case, for
a ball with a displaced center of mass, the first integrals found by S. A. Chaplygin disappear [11].

Fig. 1. Hierarchy of the balls.

An exception is the so-called Routh ball — a ball
whose center of mass is displaced along one of
the axes of inertia, while the principal momenta
of inertia corresponding to the other two axes are
equal. Such a ball was first explored in [12], where
the integrability of the nonholonomic model was
proved and the first (total energy, Jellett’s and
Routh’s) integrals were found. Generally the ball
whose center of mass is displaced along one axis
of inertia is called rock’n’roller. This term was in-
troduced in [13], where the dynamical phenomenon
of recession — reversal of precession — was inves-
tigated. Figure 1 shows the hierarchy of balls of
different types depending on the type of dynamical
asymmetry and displacement of the center of mass.

In another nonholonomic approach where the
point of contact of a ball with a plane is subject to a
“non-spin” constraint1), in addition to the non-slip
constraint, the problem of motion of Chaplygin’s
top is generally also nonintegrable [15]. Moreover,
in [16, 17] it is shown that the dynamics of this
problem significantly depends on the type of involutions which admits a corresponding nonholo-
nomic system. The number of involutions is determined by the type of displacement of the center of
mass. For different types of displacement, strange attractors with weak dissipation and another type
of dynamical chaos — the so-called mixed dynamics [18–20] — were discovered in this problem.

From a dynamical point of view, the nonholonomic model of a Celtic stone, in which Hamiltonian-
like structures (for example, mixed dynamics) [21] as well as different limit regimes, including
strange attractors [23, 24], were found, is the most similar to the model of Chaplygin’s top. Of
special note is the discovery of the Lorenz-like attractor in the nonholonomic model of a Celtic
stone [25, 26]. This type of strange attractors belongs to the class of genuine attractors and has
not been observed in any problems of rigid body dynamics before.

In this paper we explore the dynamics of Chaplygin’s top on a plane in the framework of a
nonholonomic model. A more complex model which takes into account dissipative forces of friction
will be investigated in our future work.

The paper is organized as follows. In Section 2 the nonholonomic model of Chaplygin’s top is
introduced: equations of motion, first integrals and involutions are presented, and the procedure
for constructing a Poincaré map is described. In Section 3 we investigate the regular dynamics of
Chaplygin’s ball associated with the existence of asymptotically stable and quite unstable equilibria
which correspond to permanent rotations about the vertical axis in opposite directions. We show

1)A body which cannot spin about the vertical axis is called a rubber body [14].
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that the existence of these equilibria is the main reason for reversal. In Section 4 the focus is on the
scenario of the appearance of the so-called figure-eight attractor. This is a new type of attractor
which, to our knowledge, has not yet been observed in any physical models. In Appendix 1 we give
a full list of involutions for balls with different types of displacement of the center of mass. Finally,
in Appendix 2 the procedure of searching for equilibria in the nonholonomic system is described.

2. THE NONHOLONOMIC MODEL OF CHAPLYGIN’S BALL

2.1. Equations of Motion and First Integrals

Fig. 2. Chaplygin’s top on a plane.

Let us introduce a coordinate system Cxyz attached
to the center of mass of a ball (see Fig. 2) and chosen
in such a way that the inertia tensor of Chaplygin’s ball
is a diagonal matrix I = diag(I1, I2, I3), where Ii are the
principal moments of inertia. In the nonholonomic model
the contact point of the ball with a plane is subject to the
nonholonomic constraint which forbids slipping of the ball. If
we denote the velocity of the center of mass and the angular
velocity of the ball by v and ω, respectively, and the radius
vector connecting the center of mass of the ball with the
point of contact P by r, then the condition of absence of
slipping can be represented as

v + ω × r = 0. (2.1)

It is well known (see, for example, [27]) that the equations of motion of a rigid body in the variables
M and γ, where M is the angular momentum relative to the point of contact and γ is the vertical
unit vector, can be written as{

Ṁ = M × ω + mṙ × (ω × r) + mgr × γ

γ̇ = γ × ω.
(2.2)

Here m is the mass of the ball and g is the acceleration of gravity. In our case, since the body is a
ball with a displaced center of mass (see Fig. 2), we have

r = −Rγ − a, (2.3)

where the vector a = (a1, a2, a3) specifies the displacement of the center of mass. As we know (see,
for example, [11]) the vectors M and ω are related by

M = I ω + mr × (ω × r). (2.4)

If we express the vectors r, ṙ and ω using (2.3) and (2.4), we can get the system of ordinary
differential equations

(Ṁ , γ̇) = F (M , γ, μ), (2.5)

which depends on the parameters μ characterizing the physical and dynamical properties of
Chaplygin’s ball.

In a generic case the system (2.2) admits only two integrals

E =
1
2
(M , ω) − mg(r, γ), G = (γ, γ). (2.6)

The former is an energy integral and the latter is a geometrical integral. Due to normalization the
geometrical integral is fixed by 1 (G = 1). Thus, for the system to be integrable by the Euler – Jacobi
theorem, we need two additional integrals and an invariant measure. From [11] it follows that the
system under consideration is integrable only in two special cases:

• Chaplygin’s ball (a = 0);

• Routh’s ball (I1 = I2, a1 = a2 = 0).
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In the other cases the system (2.2) admits neither an additional integral nor an invariant measure,
and hence, on the common level set of two integrals (2.6), the system can exhibit dynamical behavior
typical of dissipative systems. Therefore, for the nonholonomic model of Chaplygin’s top one can
expect the existence of asymptotically stable regimes such as equilibria, limit cycles, invariant tori
and even strange attractors.

2.2. THE POINCARÉ MAP

On the common level set of two integrals (2.6) the phase volume of the system is a four-
dimensional manifold

M4 = {(M , γ) : G(γ) = 1, E(M , γ) = E0 = const}, (2.7)

which is homeomorphic to S
3 × S

3. For the parameterization of this manifold it is very convenient
to use the Andoyer –Deprit variables (see, for example, [27]) which are related to (M , γ) by

M1 =
√

G2 − L2 sin l, M2 =
√

G2 − L2 cos l, M3 = L,

γ1 =

(
H

G

√
1 − L2

G2
+

L

G

√
1 − H2

G2
cos g

)
sin l +

√
1 − H2

G2
sin g cos l

γ2 =

(
H

G

√
1 − L2

G2
+

L

G

√
1 − H2

G2
cos g

)
cos l −

√
1 − H2

G2
sin g sin l

γ3 =
HL

G2
−

√
1 − L2

G2

√
1 − H2

G2
cos g.

(2.8)

Note that in the new variables the condition (γ, γ) = 1 holds automatically. Thus, (2.8)
defines one-to-one correspondence between the variables ((M , γ) : (γ, γ) = 1) and (L, H, G, g, l)
everywhere except on four planes L/G = ±1 and H/G = ±1 on which l and g are undefined.

In the Andoyer –Deprit variables the plane g = g0 can be considered as a secant of the flow
defined by (2.2). Then on this secant we can determine a Poincaré map. To do so, we choose
the coordinates l (which is 2π-periodic), L

G ∈ [−1, 1] and H
G ∈ [−1, 1] on the g = g0. Thus, we can

investigate the dynamics of Chaplygin’s ball using the three-dimensional Poincaré map

x̄ = Fg0(x), x =
(

l,
L

G
,
H

G

)
, (2.9)

which is defined everywhere except on the above-mentioned four planes.

2.3. Reversibility and Involutions

In [16] it was shown that the dynamics of Chaplygin’s top moving on a plane without slipping
and spinning (rubber-body) significantly depends on the number of involutions in the system,
which is defined by the number of zero components of the vector a. When all ai �= 0, the system
admits only one involution. In this case the dynamics of the system exhibit strange attractors. If
one, or two, of the components of the vector a is zero, additional involutions appear. There are
no strange attractors in this case, but one can observe another type of dynamical chaos – the so-
called mixed dynamics, which is similar to Hamiltonian chaos but differs from it by the existence
of asymptotically stable and unstable orbits of large periods [16, 17].

In this paper we consider the dynamics of Chaplygin’s ball moving on a plane only without
slipping (spinning is possible) and obtain in a sense similar results. For arbitrary parameter values
the system (2.2) is reversible with respect to the trivial involution

R0 : M → −M , γ → γ, t → −t, (2.10)

which is responsible for the reversal of the angular momentum (and, therefore, the angular velocities
ω). The involution R0 significantly affects the dynamics of the system. Due to R0, for each stable
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dynamical regime there exists a symmetric unstable one with reversed angular velocities. Thus, for
each attractor there is a repeller in the system.

The system (2.2) can admit, along with R0, additional involutions whose number equals the
number of zero components of the vector a. So, Chaplygin’s ball has the maximal number of
involutions. A full list of the involutions is described in Appendix 1.

In this work we are interested only in the case of arbitrary displacement of the center of mass,
since only in this case can we find interesting features of the dissipative dynamics2).

Note that each involution of the flow system gives rise to an involution for the Poincaré map if
a manifold invariant under the involution is chosen as a secant. If one takes g0 = 0 as the section,
then the trivial involution R0 gives rise to an involution r0 for the Poincaré map (2.9)

r0 :
L

G
→ −L

G
,
H

G
→ −H

G
, l → l + π. (2.11)

Thus, if a set of trajectories A belongs to some attractor on the Poicaré map, then r0(A) belongs
to the repeller.

3. THE REVERSAL

The first thing that attracted our attention in the nonholonomic model of Chaplygin’s ball is
the reversal — the property of reversing the direction of rotation of the ball when it rotates about
the vertical axis in an “inappropriate” direction.

It has been known for a long time that the reversal occurs in real physical experiments with Celtic
stones, which are tops of a different type [1, 28]. However, the explanation of this phenomenon in
the framework of the nonholonomic model was given quite recently in [2–4]. In this model, asymp-
totically stable equilibrium corresponds to rotations about the vertical in “appropriate” directions
(for example, clockwise) and asymptotically unstable equilibrium corresponds to rotations about
the same vertical axis in “inappropriate” directions (counterclockwise). Thus, if we spin the stone
fast enough about this vertical axis counterclockwise, the stone starts, after a few rotations, to rock
and oscillate, and then these oscillations cause it to spin clockwise.

Unlike a Celtic stone, Chaplygin’s ball is a completly geometrically symmetric body. Therefore,
the existence of asymptotically stable and unstable states of equilibrium3) differing only in the
direction of rotation about the same vertical axis is, in our view, a surprising and remarkable
property.

Further, we note that even for a Celtic stone the reversal can be of different nature depending
on the geometrical and physical properties of the stone and also on how fast it is spun. In some
cases the unstable vertical rotations can turn into stable rotations with a small precession. In other
cases this precession can be strong enough. We call the reversal of such type periodic reversal and
note that the explanation of such a motion can also be given in the framework of the nonholonomic
model, in which (for some parameter values) the stable equilibrium undergoes the Andronov – Hopf
bifurcation, becoming unstable, and a stable limit cycle arises in its neighborhood. In this case,
after the stone is spun in an “inappropriate” direction, its final motion reaches the limit cycle, and
moving in this cycle, the stone rotates with precession. For some parameter values there coexist 2
stable limit cycles in the system and the dynamics in the second cycle correspond to the motion
with large precession.

In this paper we are interested in a genuine reversal which implies that Chaplygin’s top, spun fast
enough about a certain vertical axis, reverses the angular velocities and continues stable rotations
in the opposite direction4). For the existence of the genuine reversal of Chaplygin’s ball we require
that the following two conditions be satisfied.

2)When, for example, a1 �= 0, a2 �= 0 and a3 = 0, preliminary investigations show that the phase space of the system
is foliated by invariant tori and no signs of the dissipative dynamics are observed.

3)Here and in the sequel the equilibrium state of Chaplygin’s ball is understood to mean a state of equilibrium of
the system (2.2).

4)Note that in the case at hand only the direction of rotation of Chaplygin’s ball reverses, while the axis of rotation
of the ball, as opposed to that of a “superCeltic stone” [29], remains unchanged.
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• The stable rotation of the top about a constant vertical axis with constant angular velocity is
possible only in a stable equilibrium of the system (2.2). Therefore, the system must admit a
stable equilibrium. If this condition holds, then due to the involution R0 the system will also
admit an asymptotically unstable equilibrium corresponding to unstable rotations about the
same axis.

• There must be initial points for which the trajectories of the system (2.2) reach a stable
equilibrium in forward time and unstable equilibrium in backward time.

According to the above conditions, we describe the algorithm for investigating the possibility of
a genuine reversal. First we analyze the equilibria of the system (2.2) and their stability. In a state
of equilibrium the vectors M = M ∗ and γ = γ∗ satisfy the following system of equations:{

γ × ω = 0,

M × ω + mṙ × (ω × r) + mgr × γ = 0.
(3.1)

It follows from the first equation that in a state of equilibrium the vectors ω∗ and γ∗ are collinear,
i.e., ω∗ = αγ∗ (α �= 0, otherwise the ball does not move). Substituting this dependence into the
second equation of the system and using (2.3) and (2.4), we can obtain the relation(

α2Iγ∗ − m[α2(R + (a, γ∗)) + g]
)
a × γ∗ = 0,

which leads to the equation relating the vectors γ∗ and a through the coefficients α and β:

(α2I − βE)γ∗ = m[α2(R + (a, γ)) + g]a. (3.2)

Thus, the vectors ω∗, γ∗, and hence (by (2.4)) also M ∗, are defined in terms of the system
parameters and the coefficients α and β. To determine the unknowns α and β, we use two first
integrals (2.6). Assuming ε = E0 = const, we obtain the system of two equations{G(γ∗(α∗, β∗)) = 1,

E(ω∗(α∗, β∗), γ∗(α∗, β∗)) = E0.
(3.3)

The procedure of finding the unknowns α and β is described in Appendix 2. Unfortunately, it is
impossible to solve this system analytically. However, we have succeeded in estimating the number
of its solutions for specific parameter values and hence in determining the number of equilibrium
states.

According to (3.2), γ∗ quadratically depends on α, and hence each solution of the system (3.3)
corresponds to two equilibrium states: O+ = (ω∗, γ∗) and O− = (−ω∗, γ∗). Due to reversibility,
if the equilibrium state O+ has the eigenvalues λ+ = λ∗ = (λ∗

1, . . . , λ
∗
6), then O− will have the

eigenvalues λ− = −λ∗ = (−λ∗
1, . . . ,−λ∗

6). Thus, for stability analysis it is sufficient to investigate
one of the pair of equilibrium states corresponding to a specific solution of the system (3.3).

The characteristic equation of the linearized system has the form

λ2(λ4 + aλ3 + bλ2 + cλ + d) = 0, (3.4)

where a, b, c and d are some coefficients depending on the system parameters. We note that the
characteristic equation has two zero roots responsible for the existence of two integrals (2.6). On
the level set of these integrals the equilibrium of the system is asymptotically stable if all nonzero
roots of the characteristic equation (3.4) have a negative real part.

Below we present numerical results for the equilibria of the system (2.2) on the parameter plane
Q = (E0, a3) : E0 ∈ [200, 800], a3 ∈ [0.1, 2.0]; the other parameters can be fixed as follows:

I1 = 2, I2 = 6, I3 = 7, m = 1, g = 100, R = 3, a1 = 1, a2 = 1.5. (3.5)

To find the unknowns (α, β) of the system (3.3) and to construct the linearization of the initial
system in a neighborhood of the equilibrium states, we have used the software package MAPLE.
As the parameters (E0, a3) change in the region Q, the number of real solutions (corresponding to
the equilibrium states) of the system (3.3) varies from one to two. In Fig. 3a the grey area indicates
the range of parameters for which there exists a unique solution of the system (α1, β1) and the dark
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grey area corresponds to the region in which the second solution (α2, β2) appears. Let O+
1 and O−

1

denote the equilibrium states corresponding to the solution (α1, β1) and let O+
2 and O−

2 denote the
equilibrium states for the solution (α2, β2). Numerical calculations show that in the region Q all
equilibrium states possess two pairs of nonzero complex-conjugate roots. Figure 3b shows a stability
diagram for O+

1 . In the shaded region Q1 all nonzero eigenvalues have a negative real part, and
hence the equilibrium state is asymptotically stable (accordingly, O−

1 is completely unstable). When
the parameter values pass from Q1 to Q2, one pair of complex-conjugate roots of the equilibrium
state O+

1 passes into the right half-plane, the equilibrium state becomes a saddle-focus, and an
asymptotically stable limit cycle is born in its neighborhood. This limit cycle corresponds to a
motion of the top around some axis with a small precession (see Fig. 4)5).

Fig. 3. On the parameter plane Q one can see: (a) regions of parameters for which there exist one (light grey)

and two (dark grey) equilibrium states, (b) stability diagram for the equilibrium state O+
1 corresponding to

the first solution of the system (3.3).

Fig. 4. (a) Visualization of the top’s motion after the loss of stability of the equilibrium state through the
Andronov –Hopf bifurcation for the parameters E0 = 500, a3 = 1.4. (b) A limit cycle is born around the
equilibrium state that has become unstable. The dynamics on this limit cycle corresponds to the motion of
the stone inside the “ring” with some precession.

5)We note that the equilibrium state corresponding to the vertical rotation of the Celtic stone loses stability in a
similar fashion, when the initial energy decreases below some critical level [3].
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Similar stability analyses have been carried out for the equilibrium states O+
2 and O−

2 .
Calculations show that for any parameter values these states are saddle–foci and hence cannot
be stable. Thus, for the parameter values under consideration the system can possess the only
asymptotically stable equilibrium and the only completely unstable equilibrium.

However, in some regions of parameters from Q1 the dynamics of Chaplygin’s top exhibit a
developed multistability — the existence of various stable limit regimes depending on the initial
conditions. For example, Fig. 5 shows three attractors (in addition to the stable equilibrium state
O+

1 ) coexisting for the same parameter values: a torus and two 2-round tori (the figure shows the
attractors in the Poincaré section, where the torus corresponds to an invariant closed curve and the
2-round torus corresponds to an invariant curve of period 2). Thus, for the same parameter values
at least four attractors coexist in the system! So, it can happen that the trajectories run away from
the neighborhood of the unstable equilibrium state to one of the tori, and no genuine reversal is
observed.

Fig. 5. Coexistence of the equilibrium state and another three attractors — tori.

To find and classify the limit regimes, we have constructed charts of Lyapunov exponents in
forward and backward time on the parameter plane Q devided into 600 × 600 nodes. A trajectory
was launched from the same initial point6) P0 of each node. To preclude a transient process, the
system was integrated for T = 105 time units, and then the Lyapunov exponents were estimated on
the interval T = 104 by the Benettin method [30]. Numerical solutions of the equations of motion
were obtained with the help of the Dormand –Prince integrator [31], which uses the Runge –Kutta
method of order 8 with an automatically variable size of the integration step. The local accuracy of
integration for calculating the exponents was chosen to be 10−12. At the last points, the right-hand
side of the system (2.2) was also estimated to specify the instant when the trajectory enters into
the neighborhood of the equilibrium state. As a result of the calculations, the pixels on the chart
have the following colors: black indicates an equilibrium state, dark blue corresponds to the limit
cycle, light blue is a torus, and red corresponds to the chaotic regime.

Figures 6a and 6b show the charts of Lyapunov exponents. The charts have been constructed in
forward and backward time from the initial point P0. Analysis of the charts allows the conclusion
that the parameter region for which a stable equilibrium state is a limit regime from the given point
is much smaller than the parameter region from which an unstable equilibrium state is attainable
in backward time7). This is illustrated in Fig. 6c, where the parameter regions for which a stable

6)The initial point
P0 = (M0, γ0) = (21.042, 52.241, 41.687,−0.290,−0.720,−0.630)

was chosen near an unstable equilibrium with the parameters E0 = 500, a3 =1.
7)If we took the initial point R0(P0), the chart of Lyapunov exponents in forward (backward) time would be the

same as for the point P0 in backward (forward) direction.
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equilibrium state is attainable in forward time and an unstable equilibrium state is attainable in
backward time are overlapped. In the intersection of these two regions, the nonholonomic model of
Chaplygin’s top demonstrates the phenomenon of a genuine reversal, which can be clearly observed
in numerical experiments. Figure 7 represents the time dependencies of the angular velocities of
Chaplygin’s top for the parameters E0 = 500 and a3 = 1. The point P0 is chosen as the initial
point, and the trajectory is launched in both forward and backward time. Thus, according to
the nonholonomic model, if the system parameters and the initial point are given in accordance
with Fig. 6 and Chaplygin’s top is spun around the vertical axis γ = γ∗ in an “inappropriate”
direction, then, after a transient process (which is rather long for some parameters) accompanied
by oscillations and rolling motions, the top reverses the direction of rotation and rotates about the
same axis in the opposite direction.

Fig. 6. Charts of Lyapunov exponents in forward and backward time, and their intersection on the plane Q.

Fig. 7. Time dependence of the components of the angular velocity (E0 = 500, a3 = 1).

4. CHAOTIC DYNAMICS

We now turn our attention to chaotic dynamics in the nonholonomic model of Chaplygin’s top.
As in the analysis of reversal, we shall consider the dynamics of the ball for the values of the
parameters E0 and a3 from the region Q. The values of the other parameters are given according
to (3.5). Analysis of the chart of Lyapunov exponents has helped to detect strange attractors and to
explore the scenarios of their appearance 8). A detailed description of the algorithm for constructing
the chart of Lyapunov exponents is given at the end of the previous section. Here we only note that
to accelerate the convergence to the steady-state dynamical regime and due to multistability of the

8)Generally speaking, it is convenient to use the charts of Lyapunov exponents for the investigation of dissipative
chaotic dynamics in various models [32].
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system, the initial conditions in the internal nodes of the grid were chosen by using an inheritance
scheme which implies that the state obtained by applying the algorithm in the previous node was
used as the initial point in each subsequent node of the grid.

The constructed chart of Lyapunov exponents is presented in Fig. 8. We note that the
construction of the chart was essentially influenced by the developed multistability, due to which
the chart had to be “glued together” from several pieces constructed by various types of scanning
of the initial conditions. For convenience, we comment once again on the rules of coding of the
regimes shown in Fig. 8. Periodic regimes (limit cycles), quasiperiodic regimes (tori) and chaotic
regimes are shown in dark blue, light blue and red, respectively. The pixels colored black correspond
to the states in which the trajectories reach the equilibrium. The chart of regimes was constructed
with inheritance, as described above, except that if the trajectory did not return within a fairly
long time into the Poincaré section, the initial conditions at the next point were chosen to be the
same as those at the edge of the chart. This was done to reveal regimes differing from the stable
equilibrium state.

Typical attractors for the Poincaré map of the system under consideration are fixed and periodic
points, invariant curves and tori-chaos, which arise as a result of destruction of invariant curves
according to the Afraimovich – Shilnikov scenario [33]. The white arrows on the chart of dynamical
regimes indicate the paths along which one can observe sequences of bifurcations leading to the
birth of strange attractors. A typical feature of the system is a visible absence of period doublings
for stable periodic points9). The boundaries of stability regions of these points are formed by
bifurcation lines of saddle-node bifurcations and Neimark – Sacker bifurcations. Thus, the scenarios
of transition to chaos in our system are mainly associated with the destruction of invariant curves.
We consider one of the most interesting scenarios of chaos development, which is associated with
the appearance of a figure-eight attractor.

Fig. 8. Chart of Lyapunov exponents on the parameter plane Q.

4.1. Figure-eight Attractor

The possibility of appearance of figure-eight (and Lorentz type) attractors in three-dimensional
maps due to simple bifurcation scenarios was established in [35] (see also [36]). In these scenarios it
was assumed that at first a fixed point is an attractor in the map. According to one of the scenarios,
as the parameter changes, this point then undergoes a period-doubling bifurcation, becoming a
saddle with a one-dimensional unstable manifold, and a stable cycle of period 2 is born in its
neighborhood. Then this cycle loses stability (in principle, it does not matter how exactly), and
the stable and unstable manifolds of the saddle point begin to intersect. The resulting “homoclinic

9)This phenomenon is evidently typical of three-dimensional maps whose Jacobian is not too close to zero. For
example, in [34] it was discovered that in the case of three-dimensional Hénon maps with the constant Jacobian

B > 1
3

no second period doubling is observed for a stable fixed point.
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Fig. 9. The simplest scenarios of the birth of two types of homoclinic attractors.

attractor” is, depending on the multipliers of the saddle point, either a Lorentz type or a figure-eight
attractor (see Fig. 9).

In our case, a homoclinic figure-eight attractor is born, and at the initial stage the scenario of its
birth is somewhat different from that described in [35]. We now consider the stages of appearance
of this attractor.

Let us fix a3 = 1.9 and analyze the bifurcations arising on the route A in the chart of Lyapunov
exponents (Fig. 8). At first, when 417.5 � E1 < E < E2 � 455.60, the attractor is the point (o1, o2)
of period 2, which is born as a result of saddle-node bifurcation together with the saddle point
(s1, s2). The map (2.9) also has the fixed saddle point S1, which is located between o1 and o2

(see Fig. 10a). The point S1 is a saddle-focus up to E � E3 = 456.162, whereupon its unstable
complex-conjugate multipliers become real negative. At E � E4 = 456.30 a period-2 point (s1, s2)
merges into the saddle S1 (as a result of the subcritical doubling bifurcation) and the saddle itself
changes its type from (1, 2) to (2, 1) (its unstable manifold becomes one-dimensional). After this
bifurcation the saddle S1 has multipliers λ1, λ2 and γ such that γ < −1 < λ2 < 0 < λ1 < 1. Now the
unstable manifold is coiled around the invariant curve (l1, l2) of period 2 (see Fig. 10b). This curve
arises due to the Neimark – Sacker bifurcation from the stable cycle (o1, o2) at E � 455.60. With
further increase of the parameter E the invariant curve L undergoes a series of “torus-doubling”
bifurcations (see Figs. 10c and 10d) and then decays to form a torus-chaos (Fig. 10e). Soon after
that, the unstable manifold of the saddle S1 begins to intersect with the stable manifold, and
a strange attractor which is visually similar to the figure-eight attractor is formed. Figure 10f
shows a portrait of the detected attractor for E = 457.913. The portrait has been obtained by
iterating a point launched from the neighborhood of the saddle S1 with coordinates l = 0.514231,
L/G = −0.700259, H/G = −0.930815.

We present a number of quantitative and qualitative characteristics of the detected attractor.
The multipliers of the saddle S1 for E = 457.913, a3 = 1.9 are given below:

λ1 � 0.98885,

λ2 � −0.99732,

γ � −1.00907.

(4.1)

Thus, |λ1| < |λ2| < 1 < |γ|. The multiplier λ1 responsible for strong compression is positive, which is
characteristic of the figure-eight attractors and distinguishes them from the Lorentz type attractors
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Fig. 10. The main stages of the appearance of the figure-eight attractor.

(see Fig. 9). The condition |λ2||γ| > 1 implies the extension of areas that are transversal to the
direction of strong compression, and is indicative of pseudohyperbolicity of the detected attractor.

The Lyapunov exponents of the trajectory randomly chosen on the attractor take the following
values:

Λ1 � 0.00063,

Λ2 � −0.00003,

Λ3 � −0.00492.

(4.2)

The condition Λ1 + Λ2 > 0 is also indicative of pseudohyperbolicity, and the positive sum points
to a volume compression typical of the genuine strange attractors. The analysis made allows one
to classify the detected attractor as a pseudohyperbolic figure-eight attractor.

5. CONCLUSION

In this paper we have investigated the nonholonomic model of Chaplygin’s top, within which
we have detected the phenomenon of reversal. It is well known that the nonholonomic model is an
idealization in which the friction force does not perform any work. However, it was the analysis of
this model that allowed us to answer the question of the cause of the onset of reversal for Celtic
stones.

Whereas in the case with Celtic stones the phenomenon of reversal was at first noticed in a
real experiment and only much later was explored on the basis of a mathematical model, the
situation with Chaplygin’s top was the opposite. In the latter case, we have managed so far to
detect the phenomenon of reversal only in the nonholonomic model. In our further research we
plan to construct a more realistic model taking account of friction forces. In the case of success,
attempts will be made to design a top and to simulate the phenomenon of reversal in a real
experiment.

In addition to revealing the reversal, the nonholonomic model turned out to be very interesting
for the investigation of chaotic dynamics. Analysis of the chart of Lyapunov exponents allowed us
to detect several types of strange attractors. In this paper we considered the scenario of the birth
of a figure-eight attractor (which is, in our opinion, the most interesting of the attractors detected
so far). In our future work we plan to carry out investigations of other scenarios (typical of the
model considered) of the birth of strange attractors.
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APPENDIX. ON INVOLUTIONS

We recall the definition of reversibility and involution for a flow system. Suppose the equations of
motion (2.2) have the form Ẋ = v(X), where X = (M1, M2, M3, γ1, γ2, γ3). The map of the phase
space R(X) : X → X is said to be an involution for the flow v(X) if

d

dt
(R(X)) = −v(R(X)), R ◦ R = id. (5.1)

In this case, the flow v(X) is called reversible with respect to the involution R(X).

Depending on the type of transformation of the variables (M , γ), all additional (to R0)
involutions can be divided into two classes:

• involutions responsible for the rotation of the ball about one of the axes of inertia through
the angle π,

Π1 : M → (M1, M2,−M3), γ → (−γ1,−γ2, γ3), t → −t,

Π2 : M → (M1,−M2, M3), γ → (−γ1, γ2,−γ3), t → −t,

Π3 : M → (−M1, M2, M3), γ → (γ1,−γ2,−γ3), t → −t,

(5.2)

• involutions responsible for the reflection of the ball with respect to one of three planes passing
through a pair of the axes of inertia of the ball,

Σ1 : M → (M1, M2,−M3), γ → (γ1, γ2,−γ3), t → −t,

Σ2 : M → (M1,−M2, M3), γ → (γ1,−γ2, γ3), t → −t,

Σ3 : M → (−M1, M2, M3), γ → (−γ1, γ2, γ3), t → −t.

(5.3)

If the center of mass of the ball is displaced only along one axis, then the system (2.2) admits
three additional (to R0) involutions: involution responsible for the rotation of the ball through the
angle π along the axis of displacement (one of Πi, i = 1, . . . , 3), and two involutions responsible for
the reflection of the ball with respect to the planes passing through the axis of displacement and
one of the two axes of inertia (two of Σi, i = 1, . . . , 3). If the center of mass of the ball is displaced
along the two axes, the system has the only additional involution responsible for the reflection of
the ball with respect to the plane passing through the axes of displacement (one of Σi, i = 1, . . . , 3).
In the case of arbitrary displacement of the center of mass of the ball (when all components a1, a2

and a3 are nonzero) the system does not possess any additional involutions.

We recall the definition of reversibility and involution for maps. A transformation r(x) : x → x
is called an involution for the map (2.9) if

Fg0 ◦ r = r ◦ F−1
g0

. (5.4)

In this case, the map Fg0(x) is called reversible with respect to the involution r(x). After an
appropriate choice of a secant the involutions of the flow system (5.2) and (5.3) generate involutions
for the Poincaré map (2.9):

• those generated from Π1, Π2 and Π3

π1 :
L

G
→ −L

G
,

H

G
→ −H

G
, l → l,

π2 :
L

G
→ L

G
,

H

G
→ −H

G
, l → π − l,

π3 :
L

G
→ L

G
,

H

G
→ −H

G
, l → −l.

(5.5)
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• those generated from Σ1, Σ2 and Σ3

σ1 :
L

G
→ −L

G
,

H

G
→ H

G
, l → l,

σ2 :
L

G
→ L

G
,

H

G
→ H

G
, l → π − l,

σ3 :
L

G
→ L

G
,

H

G
→ H

G
, l → −l.

(5.6)

APPENDIX B. ON THE SEARCH FOR EQUILIBRIUM STATES

To find equilibrium states of the system (2.2), it is necessary to define the unknowns α and β
using the expressions for first integrals and the relations (3.1)–(3.2). The relation (3.2) can be
rewritten as (

I − β

α2

)
γ∗ = m

(
R + (a, γ) +

g
α2

)
a, (5.7)

whence, on introducing the notation

α̃ =
1
α2

, β̃ =
β

α2
, Ĩ =

(
I − β

α2

)−1

,

we obtain the relation

γ∗ = m
(
R + (a, γ) + α̃g

)
Ĩa.

We perform a scalar multiplication of the last relation by a and express (a, γ) and γ:

(a, γ) =
m(R + α̃g)(̃Ia, a)

1 − m(̃Ia, a)
, (5.8)

γ =
m(R + α̃g)(̃Ia, a)

1 − m(̃Ia, a)
.

Further, using the normalization condition (the geometrical integral is fixed on the unit level set)
and denoting R + α̃g by α̂, we write the first equation of the system (3.3) as

m2α̂2(̃Ia, Ĩa)

(1 − m(̃Ia, a))2
− 1 = 0. (5.9)

Now we transform the expression for the energy integral (2.6). In a state of equilibrium the
vector M , expressed by the formula (2.4), can be represented as

M = α[Iγ + m(R(a, γ)γ + a2γ − Ra − (a, γ)a)]. (5.10)

Then the expression for the energy integral becomes

E0 =
1
2
α2[(Iγ, γ) + m(a2 − (a, γ)2)] + mg((a, γ) + R). (5.11)

Performing a scalar multiplication of (5.7) by γ, we obtain an expression for (Iγ, γ):

(Iγ, γ) = β̃ + m(R + (a, γ) + α̃g)(a, γ).

Substituting this expression into (5.11) and using (5.8), we obtain an expression for the second
equation of the system (3.3):

3m2(̃Ia, a)

1 − m(̃Ia, a)
α̂2 +

(
2mR − 2E0

g
− 2mR2(̃Ia, a)

1 − m(̃Ia, a)

)
α̂ + ma2 + β̃ +

2E0R

g
− 2mR2 = 0. (5.12)
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Thus, the system (3.3) is formed by Eqs. (5.9) and (5.12). Subtracting from Eq. (5.12) Eq. (5.9)
multiplied by

3(̃Ia, a)(1 − m(̃Ia, a))

(̃Ia, Ĩa)
,

we obtain an equation relating α̂ to β̃:

α̂ =
2mR2 − 2E0R

g
− β̃ − ma2 − 3(1 − m(̃Ia, a))(̃Ia, a)

(̃Ia, Ĩa)

2mR

(
1 − m(̃Ia, a)

1 − m(̃Ia, a)

)
− 2E0

g

.

Substituting α̂ into (5.9), we obtain for β̃ an irrational equation of high degree. For a numerical
solution of this equation with specific parameter values we have applied the software package Maple.
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