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Abstract

A non-autonomous flow system is introduced with an attractor of Plykin type that
may serve as a base for elaboration of real systems and devices demonstrating
the structurally stable chaotic dynamics. The starting point is a map on a two-
dimensional sphere, consisting of four stages of continuous geometrically evident
transformations. The computations indicate that in a certain parameter range the
map has a uniformly hyperbolic attractor. It may be represented on a plane by means
of a stereographic projection. Accounting structural stability, a modification of the
model is undertaken to obtain a set of two non-autonomous differential equations
of the first order with smooth coefficients. As follows from computations, it has the
Plykin type attractor in the Poincaré cross-section.
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In mathematical theory of dynamical systems a class of uniformly hyperbolic
chaotic attractors is known [1,2,3,4,5,6,7]. In such an attractor all orbits are
of the saddle type, and their stable and unstable manifolds do not touch each
other, but can only intersect transversally. These attractors manifest strong
stochastic properties and allow detailed mathematical analysis. They are struc-
turally stable; that means insensitivity of the structure of the attractors in
respect to variation of functions and parameters in the dynamical equations.
Although main concepts of the relevant mathematical theory were advanced
40 years ago, until recently, these attractors are considered rather as a refined
image of chaos, than as adequate models for real-world systems. In textbooks
and reviews examples of the uniformly hyperbolic attractors traditionally are
represented by mathematical constructions, like Plykin attractor and Smale
– Williams solenoid. These examples relate to discrete-time systems, iterated
maps. In particular, Plykin attractor takes place in some special map on a
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sphere with four holes, or on a plane in a bounded domain with three holes
[6]. In applications, physics and technology people deal usually with systems
operating in continuous time, called flows in mathematical literature. In such
systems Plykin type attractors could occur in the context of description based
on the Poincaré map [7,8,9].

The present work is aimed at explicit construction of a non-autonomous flow
system with Plykin type attractor, which could provide a basis for develop-
ment of real systems and devices, demonstrating structurally stable chaotic
dynamics. The starting point is consideration of a motion on a two-dimensional
sphere composed of periodically repeated stages of continuous geometrically
evident transformations.

Let us consider a sphere of unit radius. A point on the sphere can be specified
in angular coordinates (θ, ϕ), or in Cartesian coordinates

x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ, (1)

which satisfy the relation x2 + y2 + z2 = 1. As proven by Plykin, a map on
a sphere can possess hyperbolic attractor only in the presence of at least four
holes, the areas not visited by trajectories belonging to the attractor. In our
construction this role will be played by neighborhoods of four points A, B, C,
D with coordinates (x, y, z) = (±1/

√
2, 0, ±1/

√
2).

Let us consider a sequence of four successive continuous transformations, each
of which is of unit time duration.

I. Flow down along circles of latitude, that is motion of the representative
points on the sphere away from the meridians NABS and NDCS (N and S
designate the north and the south poles) towards the meridians equally distant
from the arcs AB and CD. In Cartesian coordinates it is governed by equations

ẋ = −εxy2, ẏ = εx2y, ż = 0, (2)

where ε is a parameter.

II. Differential rotation around z-axis with angular velocity depending on
z linearly, in such way that the points B and C do not move, while A and D
exchange their location; it corresponds to equations

ẋ = π(z/
√

2 + 1/2)y, ẏ = −π(z/
√

2 + 1/2)x, ż = 0. (3)

III. Flow down to the equator, that is motion of representative points
along circles centered on the x-axis on the sphere from the great circle ABCD,
towards the equator:

ẋ = 0, ẏ = εyz2, ż = −εy2z. (4)
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IV. Differential rotation around x-axis with angular velocity depending on
x linearly, in such way that representative points in the plane, orthogonal to
the x-axis and containing the point C, do not move, while those in the plane
containing the point B undergo a turn by 180◦:

ẋ = 0, ẏ = −π(x/
√

2 + 1/2)z, ż = π(x/
√

2 + 1/2)y. (5)

Note a symmetry of the procedure: the first and the second pairs of the trans-
formations are identical, up to exchange of the variables x and z.

The Poincaré map describing transformation of a state vector xn = (xn, yn, zn)
on a period T = 4 may be obtained explicitly. From successive solution of the
differential equations (2)-(5) with account of the mentioned symmetry, one
can represent the resulting state vector xn+1 as

xn+1 = f+(f−(xn)), f±(x) =





















±z,
√

x2+y2

(

yeε(x2+y2)/2 cos π
2
(z
√

2+1)±xe−ε(x2+y2)/2 sin π
2
(z
√

2+1)

)

√
x2e−ε(x2+y2)+y2eε(x2+y2)√

x2+y2

(

yeε(x2+y2)/2 sin π
2
(z
√

2+1)∓xe−ε(x2+y2)/2 cos π
2
(z
√

2+1)

)

√
x2e−ε(x2+y2)+y2eε(x2+y2)





















.

(6)

The relations (6) determine the map on the sphere xn+1 = T(xn). Note that C
is a fixed point of the map T, while A, B and D compose an unstable periodic
orbit of period 3: A → D → B → A. The map T is invertible. The inverse
map appears as a result of the same transformations in backward order, with
reversed directions of the rotations.

Figure 1 shows attractor of the map T at ε=0.77. Observe specific fractal-like
transversal structure of the attractor: the object looks like composed of strips,
each of which contains narrower strips of the next level etc.

Description of the dynamics can be reformulated to represent instantaneous
states of the system on a plane. The variable change is

W = X + iY =
x − z + iy

√
2

x + z +
√

2
, (7)

which corresponds to a stereographic projection, with selection of the pro-
jection point at C(−1/

√
2, 0, −1/

√
2). This point does not belong to the

attractor (it is in the “hole”), so the image of the attractor on the plane is
located in a bounded domain. Portrait of the attractor for the Poincaré map
in this representation is shown in Fig.2a.

I argue that the attractor relates to the uniformly hyperbolic class, i.e. it is
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Figure 1. Attractor of the map (6) at ε=0.77 on the unit square

Figure 2. (a) Portrait of the attractor of the map (6) at ε=0.77 on a plane obtained
by means of the stereographic projection (7) and (b) graphical presentation of fields
of directions associated with stable (black) and unstable (red) manifolds in a domain
D (white background) that contains the attractor

an attractor of Plykin type. To support this assertion let us turn to Fig. 2b
illustrating location of stable and unstable manifolds in a domain D that con-
tains the attractor. 1 The stable and unstable manifolds run along the curves
shown, respectively, in black an red on a white background of the domain D.
As seen, the unstable manifolds follow along filaments of the attractor, while

1 To draw the stable and unstable manifolds with a computer, we do the following.
First, for a given point on the attractor x we obtain its image by iterations of
the Poincaré map x̄ = T

N
P (x), and its pre-image by iterations of the inverse map

x̃ = T
−N
P (x), where N is some empirically chosen integer. Then, with random initial

conditions ỹ in a small neighborhood of x̃, we get a set of points y = T
N
P (ỹ) by

iterations of the Poincaré map, which mark the unstable manifold. In a similar way,
starting with random initial conditions ȳ in a small neighborhood of x̄, we draw the
stable manifold with a set of points y = T

−N
P (ȳ).The accuracy the manifolds are

depicted grows fast with N . Actually, N = 6 is enough to get so small errors that
they are indistinguishable in the plot.
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the stable ones are transversal to the filaments. Mutual disposition of the sta-
ble and unstable manifolds certainly excludes possibility of tangencies, at least
in the domain D.

An alternative approach to verification of the hyperbolicity can be based on
the cone criterion known from the mathematical literature [1,2,3,4,5,9]. Such
calculations were performed on a base of methodology developed in Ref.[10],
and the hyperbolicity was confirmed. 2

Lyapunov exponents were computed for the map T by means of the proce-
dure based on joint iterations of the map together with a collection of two sets
of linearized equations for perturbation vectors. At each iteration step, these
two vectors are orthogonalized, and normalized to a fixed constant. Lyapunov
exponents are obtained as slopes of the straight lines approximating the accu-
mulating sums of logarithms of the norm ratios for the vectors in dependence of
the number of iterations [11]. In particular, at ε=0.77 the Lyapunov exponents
are Λ1 = 0.9587 and Λ2 = −1.1406. Then, the estimate of the attractor di-
mension from the Kaplan – Yorke formula yields DKY ≈ 1+Λ1/|Λ2| = 0.8405.

One can accept an interpretation that an instant speed of a representative
point on the sphere is determined by combination of two vector fields, which
are switched on and off, turn by turn. One corresponds to dynamics during
the stages of flow down, and another to the stages of differential rotation.
Let us introduce angles ᾱ and β̄ determining directions of the fields, and
coefficients p and q responsible for switching them on and off. We set ᾱ =
β̄ = π

4
(−1)[t/2] − π

4
, p = 1

2
+ 1

2
(−1)[t], q = 1

2
(−1)[t/2] − 1

2
(−1)[t/2+1/2]. (Here

[τ ] designates the integer part of τ .) Setting K = π/
√

2, we write down the
Eqs. (2)-(5) in a compact form:

ẋ = −pεy2(x cos ᾱ + z sin ᾱ) cos ᾱ + qKy(−x sin β̄ + z cos β̄ + 1√
2
) cos β̄,

ẏ = pεy(x cos ᾱ + z sin ᾱ)2 − qK(x cos β̄ + z sin β̄)(−x sin β̄ + z cos β̄ + 1√
2
),

ż = −pεy2(x cos ᾱ + z sin ᾱ) sin ᾱ + qKy(−x sin β̄ + z cos β̄ + 1√
2
) sin β̄.

(8)

As a next step, let us construct a version of the non-autonomous model con-
taining only smooth functions. To do this, in Eqs. (8) we simply set

ᾱ = π
4

cos π
2
t − π

4
, β̄ = π

4
sin π

2
t − π

4
, p = 1, q = sin π

2
t. (9)

Now, two vector fields, responsible for the flow down and for the differen-
tial rotation vary in time continuously and smoothly, undergoing rotations in
space in such way that the original configuration is repeated with the period

2 These results will be published elsewhere, because require more volume than ap-
propriate for the short communication.
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T = 4. The second field oscillates, reversing the direction twice on a period.
The time variations of one and other fields are shifted in phase relatively by
a quarter of period. So, the extremal values of the fields are achieved turn by
turn. The action of the fields at the extrema are mostly significant for mo-
tion of the representative points, hence, it is reasonable to specify the values
at extrema, like in the original model. Because of structural stability of the
hyperbolic attractor, one can hope that its nature remains the same after the
modification, at least in a properly selected range of the parameters. As seen
from computations, it is so, e.g. at ε=0.72 and K=1.9.

In contrast to the previous version of the model, the Poincaré map can not
be expressed analytically. However, it may be easily realized by a computer
program integrating the equations with a finite-difference method on a time
period T = 4.

We can exclude a redundant variable in the equations by means of the variable
change (7), and rewrite them in terms of W = X + iY . After separation of
the real and imaginary parts, we obtain

Ẋ = −2εY 2Ω1(X, Y, t)
(

cos(π
4

cos π
2
t) − X sin(π

4
cos π

2
t)

)

+KY Ω2(X, Y, t)
(

cos(π
4

sin π
2
t) − X sin(π

4
sin π

2
t)

)

sin πt
2
,

Ẏ = εY Ω1(X, Y, t)
(

2X cos(π
4

cos π
2
t) + (1 − X2 + Y 2) sin(π

4
cos π

2
t)

)

−KΩ2(X, Y, t)
(

X cos(π
4

sin π
2
t) + 1

2
(1 − X2 + Y 2) sin(π

4
sin π

2
t)

)

sin πt
2
,

(10)

where

Ω1(X, Y, t) =
2X cos(π

4
cos π

2
t)+(1−X2−Y 2) sin(π

4
cos π

2
t)

(1+X2+Y 2)2
,

Ω2(X, Y, t) =
−2X sin(π

4
sin π

2
t)+(1−X2−Y 2) cos(π

4
sin π

2
t)

(1+X2+Y 2)
+ 1√

2
.

(11)

The expressions (10), (11) look a bit unwieldy, but this is, apparently, the
first explicit example of a set of differential equations with smooth coefficients,
which has attractor of Plykin type on a plane in the Poincaré cross-section.

Figure 3 shows variables X and Y in dependence on time as obtained from
numerical integration of the differential equations (10) at ε=0.72 and K=1.9,
after exclusion of transients. Visually they look like realizations of random
processes, as it should be for dynamics on the chaotic attractor.

Figure 4 shows portrait of the attractor in the three-dimensional extended
phase space (X, Y , t). To make visible the inherent structure, the picture is
presented in the gray-scale technique. Brighter tones correspond to relatively
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larger probability of visiting pixels by orbits on the attractor. Time interval
on the vertical axis corresponds just to a period of variation of coefficients in
the equations. In the cross-section of the attractor with the horizontal plane,
one can observe an object with fractal structure, remarkably similar to that
discussed in the context of the sphere map (see Fig. 2a). At a qualitative level,
it may be regarded as an argument in favor of persistence of the hyperbolic
attractor under modification of the model we undertake.

Figure 3. Variables X and Y versus time as obtained from numerical integration of
the differential equations (10) at ε=0.72 and K=1.9. The plot relates to sustained
chaotic regime associated with motion on the attractor; the transients are excluded

Figure 4. Portrait of attractor of the model (10) at ε=0.72 and K=1.9 in the ex-
tended three-dimensional phase space. The gray-scale technique is used: brighter
tones correspond to relatively larger probability of visiting the pixels by orbits on
the attractor
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Computation of the Lyapunov exponents for the model (10) by means of the
Benettin algorithm [11] at ε=0.72 and K=1.9 yields λ1 ≈ 0.221 and λ2 ≈
−0.315. It corresponds to the Lyapunov exponents of the Poincaré map Λ1 =
λ1T ≈ 0.884 and Λ2 = λ2T ≈ −1.260. Estimate of the attractor dimension in
the Poincaré section by the Kaplan – Yorke formula is DKY ≈ 1.70.

The hyperbolic nature of the attractor was verified by means of graphical
representation of manifolds in the Poincaré section (like in Fig.2) and by the
computations based on the cone criterion (in analogy with Ref. [11]). As follows
from those results, attractor is hyperbolic in some parameter range around
ε=0.72 and K=1.9. (More details will be published elsewhere.)

To conclude, this work puts into consideration a non-autonomous flow system
manifesting chaotic dynamics associated with a hyperbolic strange attractor.
In the stroboscopic Poincaré map it is attractor of Plykin type. In fact, I
present two versions of the model. In the first version the evolution consists of
successive stages, and the differential equations have piecewise continuous de-
pendency of coefficients on time. The Poincaré map is expressed analytically,
as a map on a sphere. In the second version, the system is modified in such
way that it is governed by a set of differential equations with smooth coeffi-
cients. The modification does not alter the hyperbolic nature of the chaotic
attractor due to structural stability intrinsic to this object. As the system
has the minimal phase space dimension required for existence of a hyperbolic
strange attractor, its investigation, including verification of the hyperbolic-
ity criteria is essentially simpler, in comparison with models suggested earlier
as examples of attractors of Smale-Williams type [10,12,13]. Appearance of
concrete examples of systems with hyperbolic strange attractors is of evident
significance both from the point of view of complementation of mathematical
concepts with concrete and visible context (see e.g. Ref. [14]), and for ex-
ploiting these concepts in applications. Hyperbolic chaotic systems may be of
special interest for applications due to structural stability, that means insen-
sitivity of the generated chaos to variations of parameters, characteristics of
elements, technical fluctuations etc.

The work was performed, in part, during a visit of the author to the Group of
Statistical Physics and Theory of Chaos in Potsdam University. The research
is supported by RFBR-DFG grant 08-02-91963 and by grant 2.1.1/1738 of
Ministry of Education and Science of Russian Federation in a frame of program
of Development of Scientific Potential of Higher Education.
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