
  

Technical Physics Letters, Vol. 29, No. 4, 2003, pp. 332–333. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 29, No. 8, 2003, pp. 52–55.
Original Russian Text Copyright © 2003 by Kuznetsov, Tyuryukina.

                                     
Forced Synchronization in a System with Unstable Cycle
A. P. Kuznetsov* and L. V. Tyuryukina

Saratov Branch, Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
* e-mail: alkuz@sgu.ru

Received November 10, 2002

Abstract—The dynamics of a system with unstable limiting cycle under the action of a periodic sequence of
delta pulses is considered. It is shown that stable quasiperiodic regimes and phase lock regimes (synchroniza-
tion) can be observed within a narrow range of parameters of the external signal. © 2003 MAIK “Nauka/Inter-
periodica”.
The phenomenon of synchronization, albeit known
for a long time, still draws the attention of researchers.
The classical case of synchronization consists in an
external periodic (usually harmonic) signal acting upon
an autooscillating system with a stable limiting cycle
[1, 2]. In this case, frequency locking and quasiperiodic
regimes are possible inside and outside the Arnold lan-
guage, respectively, on the external signal frequency–
amplitude plane. In phase space, these regimes are rep-
resented either by a stable torus (corresponding to a
closed curve in the Poincaré cross section) or by the sta-
ble and saddle limiting cycles appearing on this torus
upon crossing the language boundary.

Let us consider an alternative variant, whereby an
unstable limiting cycle is realized in an autonomous
system. At first glance, either unstable torus or unstable
cycles can be expected in the phase space of this system
in the presence of an external action. However, the non-
linear dynamics give many examples of phenomena
related to the so-called problem of controlled chaos [3].
Within the framework of these notions, it is possible to
study situations in which external actions can stabilize
the initially unstable system. For example, an external
signal acting upon a discrete system possessing an
unstable cycle can lead to stabilization of this cycle,
provided that the external signal is determined by ele-
ments of the unstable cycle. In this context, an interest-
ing question is whether a pulsed action can lead to sta-
bilization in a system with unstable limiting cycle and
initiate stable synchronous and quasiperiodic regimes.
We have established that such control is possible.

In order to demonstrate the possibility of induced
synchronization, let us consider a system possessing an
unstable limiting cycle, described by an equation of the
Van der Pol–Duffing type and excited by a periodic
sequence of δ-shaped pulses:

(1)

Here, x is a dynamic variable, λ is a control parameter
(at λ = 0, the system features a reverse Andronov–Hopf
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bifurcation whereby an unstable focus at the origin
becomes stable with separation of an unstable limiting
cycle), T is the pulse repetition period, and B is the
pulse amplitude.

In the autonomous case with positive λ, a system
described by Eq. (1) possesses a stable immobile point
and an unstable limiting cycle. The corresponding
phase portrait is depicted in Fig. 1. Now let us switch
on the external signal according to Eq. (1). Figure 2
shows a map of dynamic regimes on the T–B plane of
parameters for this differential equation with the con-
trol parameter λ = 1.2 and the phase nonlinearity
(nonisochronicity) parameter β = 1. In the map of
Fig. 2, white color corresponds to the regime of period 1;
light gray, to the regime of period 2, and so on; and
black color indicates quasiperiodic regimes and chaos
(the runaway of trajectories is also indicated by gray
tint). The cycle period is determined in the Poincaré
cross sections separated by time intervals equal to the
period T of the external action.
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Fig. 1. The phase portrait of an autonomous system.
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Fig. 2. The map of dynamic regimes of the differential equation (1) on the plane of parameters B–T for λ = 1.2 and β = 1.0. The
bottom inset shows the indicated fragment on a greater scale and the corresponding portraits of attractors.
As can be seen from Fig. 2, there are two extended
regions, one corresponding to stable motion with
period 1 and the other to the runaway of trajectories.
This is quite a natural physical result: the external
action of a small amplitude drives the imaging point to
a stable focus, while the pulses of a large amplitude
drive the system beyond the boundaries of unstable
cycle (whereby the imaging point goes to infinity). At
the same time, there is a very narrow band of stable syn-
chronization regimes separating the two regions. This
synchronization band is shown in greater detail in the
bottom part of Fig. 2, where the corresponding map
fragments are depicted on a greater scale. As can be
seen, the band contains quasiperiodic regimes and syn-
chronization domains with periods 2, 3, 4, 5, etc. These
regimes are also characterized by the portraits of attrac-
tors. The trajectory moves in the vicinity of the unstable
limiting cycle of the autonomous system, while the
external pulsed signal returns the trajectory to this
vicinity. Thus, the system actually features a control sit-
uation initiating stable quasiperiodic regimes and the
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synchronization regimes in the vicinity of an unstable
limiting cycle.
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