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Catastrophe theory is employed to classify different types of nonlinear oscillators, basing on the
complication of their potentials. By using Thom’s catastrophe unfoldings as oscillator poten-
tials, we have introduced more general models to describe the dynamics of nonlinear oscillators,
differing from each other by the form of their potential wells and by the possibility of escape.
Spreading the investigation in the space of the parameters of the potential function, we have
revealed that our examples defined via Thom’s catastrophe unfoldings have some type of univer-
sal properties in the context of forced oscillations. For oscillators with nonescaping solutions, we
have detected such typical bifurcation structures as crossroad areas and spring areas, and have
described the universal scenario of their evolution under the forcing amplitude variation. On
increasing the potential function degree, the complexity of the charts of the dynamical regimes
results from the repetition of the described bifurcation scenario. For oscillators with escaping
solutions, such general properties were investigated, as dependence of the charts of the dynam-
ical regimes and the basins on the parameters of the potential function. We have observed that
these properties are typical in a broad range of the control parameters.

Keywords : Space of parameters for the potential function; basin bifurcations; two-dimensional
bifurcation diagrams; crossroad area–spring area transition.

1. Introduction

There are three basic motivations for studying the
dynamics of nonlinear oscillators.

First, forced nonlinear oscillators, while remain-
ing one of the simplest forms of nonlinear sys-
tems, yield a wide variety of interesting nonlinear
phenomena such as regular and chaotic motions,
coexisting attractors, regular and fractal basin
boundaries and local and global bifurcations.

Second, the nonlinear oscillator example allows
us to study the routes to complex dynamics from
order to chaos. The type of equation for nonlinear

oscillators considered in this work is given by

ẍ+ kẋ+
∂U(x)

∂x
= B cos ωt , (1)

where k > 0 is the damping coefficient and
U(x) is the potential function. The right-hand side
describes a harmonically varying periodic force. The
case of U(x) = x2/2 + x4/4 was first investigated
by Duffing [1918], who studied harmonic solutions.
With the development of nonlinear dynamics, un-
derstanding of nonperiodic chaotic solutions has
become possible [Ueda, 1992].

1241



1242 A. Yu Kuznetsova et al.

Table 1. Examples of oscillators with different kinds of potential function.

The kind of the potential function: The examples:

U(x) =
x2

2
− x3

3

ẍ+ kẋ + x − x2 = B cos ωt (2)

Thompson, Soliman Capsize model for a
ship. Lateral
vibrations of an
axially compressed
shell.

U(x) =
x2

2
− x4

4

ẍ+ kẋ + x − x3 = B cos ωt (3)

Kao, Thompson
and Stewart

The dynamics is
similar to the
forced pendulum
near the potential
minimum.

U(x) = −x2

2
+

x4

4

ẍ+ kẋ − x+ x3 = B cos ωt (4)

U(x) =
x2

2
+

x4

4

ẍ+ kẋ + x+ x3 = B cos ωt (5)

Guckenheimer
and Holmes,
Moon, Parlitz,
English

Support column loaded
beyond its buckling
point. Magneto-elastic
beam in the
nonuniform field of
two permanent
magnets.

U(x) =
x4

4

ẍ+ kẋ + x3 = B cos ωt (6)

Hayashi, Ueda,
Mosekilde

Electrical circuit with
magnetic saturation
in core inductor.

U(x) =
x2
0x2

2
− (x2

0 + 1)x4

4
+

x6

6

ẍ + kẋ + x(x2 − x2
0)(x

2 − 1) = B cos ωt (7)

Li and Moon Magneto-elastic beam
in the nonuniform
field of three
permanent magnets.

U(x) = − cos x

ẍ + kẋ+ sin x = B cos ωt (8)

MacDonald,
Huberman,
Swift

Periodically forced
pendulum or
Josephson
junction.

Finally, as the third and perhaps most impor-
tant motivation, nonlinear oscillators of the form
(1) describe the dynamics of many real systems,
for example, the dynamics of the forced pendu-

lum [MacDonald & Plischke, 1983], a ball on a
nonlinear spring and the unstable working regime
of a synchronous motor [Goryachenko, 1995]. The
nonlinear oscillator (1) can be used to model the
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capsize of a ship [Soliman & Thompson, 1991].
It also describes the dynamics of a support col-
umn loaded beyond its buckling point [Thompson &
Stewart, 1986] and the magneto-elastic beam in the
nonuniform field of two [Moon & Holmes, 1979] or
three [Li & Moon, 1990] permanent magnets. It can
describe the oscillations of a particle in a twin-well
potential [Szemplinska-Stupnicka, 1993], the inde-
terminate jumps to resonance for nonlinear mechan-
ical structures and electrical systems [Thompson
et al., 1987], a periodically forced suspended ca-
ble [Kloster & Knudsen, 1995], or the lateral vibra-
tions of axially compressed shells [Thompson, 1995].
The nonlinear restoring force in Eq. (1) can repre-
sent the simplest form of magnetic saturation in an
electrical circuit with a core inductor [Hayashi &
Ueda, 1973]. Equation (1) can describe an electri-
cal circuit with a ferroelectrical capacity [Petersson,
1990] as well as a variety of dissipative electrical
circuits [Klinker et al., 1984]. In a broader sense,
it even models a variety of phenomena in phys-
ically extended systems, such as charge-density-
waves in plasmas [Huberman & Crutchfield, 1979],
four-wave interactions [Flytzanis & Tang, 1980],
optical bistability [Goldstone & Garmire, 1984], and
Josephson junctions [Huberman et al., 1980].

Duffing’s equation has been studied both theo-
retically and experimentally by many researchers.
However, in spite of the considerable number of
articles devoted to the study of nonlinear oscilla-
tors, there is not yet a single point of view of all
phenomena. Hence, it is necessary to attempt a
classification using a new unification approach.

In Table 1 we have summarized some examples
of applications of Eq. (1) with different potentials.
The table shows a sketch of the potential function,
the corresponding dynamic equation, and the asso-
ciated references. The hierarchy of models shown
in the table are organized in accordance with an
increasing degree of the polynomial potential func-
tions, beginning with an oscillator with one poten-
tial well and one hill, and ending with an infinite
order potential function.

Several possible classification principles have
been suggested for nonlinear oscillators. First,
Thompson and Stewart [1986], for example, consid-
ered the qualitatively different shapes of the anhar-
monic potentials. They differentiated the systems
depending on whether the restoring force in Eq. (1)
increases more or less rapidly than a linear function
of the displacement (stiffening or softening spring,

respectively). They discussed the cases correspond-
ing to Eqs. (3)–(5) in Table 1 as well as the oscillator
with periodic potential (8).

Second, Neimark and Landa [1987] surveyed a
number of papers devoted to the investigation of
Duffing’s equation driven by a harmonic force with
some constant component B0

ẍ+ kẋ+ αx+ βx3 = B0 +B cos ωt , (9)

where α and β are parameters, that determine the
form of the potential function. They emphasized
works in which the different types of nonlinear func-
tion in Eq. (1) were considered: softening springs
(α > 0, β < 0), stiffening springs (α > 0, β > 0),
springs with zero linear stiffness (α = 0, β < 0) and
springs with negative linear stiffness (α < 0, β > 0).

Third, Kao et al. [1988] considered Eq. (9) with
B0 = 0. They distinguished three types of the non-
linear function: with α �= 0, β > 0 corresponding to
Eq. (5) or α = 0, β > 0 corresponding to Eq. (6)
in Table 1, with α < 0, β > 0 corresponding to
Eq. (4), and with α > 0, β < 0 corresponding to
Eq. (3). The solutions to the systems (4)–(6) are
stable and nonescaping, because U(x) → ∞ when
|x| → ∞. The amplitude of the solutions to Eq. (3),
on the other hand, increases unlimitedly for some
initial conditions, and U(x)→ −∞ when |x| → ∞.
Thus, Kao et al. [1988] differentiated the oscillators
depending on whether the system had escaping or
nonescaping solutions.

All the classifications mentioned above regard
the case of Duffing’s equation, and do not regard
the Eqs. (2) and (7), which are the important steps
in the hierarchy of Table 1. In this work we would
like to spread the investigation of the nonlinear
oscillators in the space of parameters for the poten-
tial function and to establish a hierarchy of oscil-
lators including all possible polynomial potentials
and basing on the gradual complication of their
dynamics. For this purpose a new approach to the
classification of nonlinear oscillators is proposed,
which takes its origin in Thom’s catastrophe the-
ory [Arnold et al., 1999; Poston & Stewart, 1978].
According to this scheme there are thirteen clas-
sification forms for families of smooth functions
R

n → R with less than six parameters (see Thom’s
classification theorem [Bröcker & Lander, 1975;
Lu, 1976]). The first four elementary catastrophes
of the scheme are summarized in Table 2.

Consideration of the nonlinear oscillator equa-
tion in the context of catastrophe theory was
carried out by other authors. Using Duffing’s
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Table 2. Thom’s elementary catastrophes.

Catastrophe Codimension r Function

Fold 1 U(x) = x3 + ax (10)

Cusp 2 U(x) = ±(x4 + ax2 + bx) (11)

Swallowtail 3 U(x) = x5 + ax3 + bx2 + cx (12)

Butterfly 4 U(x) = ±(x6 + ax4 + bx3 + cx2 + dx) (13)

equation to model the passing of seismic waves in
the asthenosphere, Mitra and Sinha [1981] observed
the existence of two cusp catastrophes in parame-
ter space. Moreover, Saunders [1980], considering
Duffing’s equation as a couple of cusp catastrophes,
supposed that if one adds further odd powers of x to
the restoring force of the Duffing equation, then one
can obtain higher order catastrophes. This way we
are going to carry out our research. Introducing the
different forms of the nonlinear restoring force in
Eq. (1), we shall observe different catastrophes and
their influence on system dynamics. In this work
the catastrophe means a sudden transition from one
state of minimum potential, one stable equilibrium,
to another [Woodcock & Davis, 1991].

Using the catastrophe unfoldings as oscillator
potentials, we obtain a more general classification
scheme, because each of the potential functions
in Table 1 may be transformed into a canonical
type of some elementary catastrophe in Table 2.
The introduced classification arranges the oscilla-
tors from simple to more complicated potential ac-
cording to the number of the parameters. This al-
lows us to investigate the dynamics of the oscillators
in the whole parameter space. The codimension of
the catastrophe (here the number of controlling pa-
rameters in the potential function shown in Table 2)
increases from stage to stage in our study. We shall
begin with the oscillator with one parameter, which
corresponds to the fold catastrophe, and finish with
the four-parameter oscillator corresponding to the
butterfly catastrophe.

The advantages of this new classification are
the following. First, different nonlinear oscillators
studied earlier by many researches at fixed parame-
ters of the nonlinearity show up as particular cases
of the oscillators with catastrophe unfoldings. For
example, the Thompson’s model (2) is an oscilla-
tor with fold catastrophe at the parameter of the
nonlinearity a = 0.25; the oscillator models (3)–(6)
presented in works by Parlitz, Ueda, and others rep-

resent cases of the oscillator with cusp catastrophe
at fixed potential function parameters; the model in
Moon’s study (7) is the simplest case of the oscilla-
tor with butterfly catastrophe. Thus, our examples,
introduced via the catastrophe unfoldings, can be
regarded as more general models. The above clas-
sification allows us to predict the kind of dynamics
that we can expect for the oscillator with any poly-
nomial potential function by considering the rele-
vant class of oscillator with catastrophe.

Second, we have revealed that our examples
defined via Thom’s catastrophe unfoldings have
some type of universal properties in the context of
forced oscillations. We have divided different catas-
trophe unfoldings of oscillator potentials in two
groups according to the general properties of os-
cillator dynamics: the oscillators with escaping so-
lutions described in Sec. 2, and the oscillators with
nonescaping solutions described in Sec. 3. For the
first group, such general properties were investi-
gated, as dependence of the charts of the dynam-
ical regimes and the basins on the parameters of
the potential function. For the second group of the
oscillators, we have detected such typical bifurca-
tion structures as crossroad areas and spring areas
in the space of the parameters of the potential func-
tion, and we have described a universal scenario for
their evolution under the forcing amplitude vari-
ation (see Sec. 3.1). This scenario is the same in
different cases of the catastrophe unfoldings, and
it repeats itself with increasing forcing amplitude.
Guided by the catastrophe theory scheme, we have
investigated the influence on the system dynamics
of an increase in the degree of the potential function.
The higher the degree of the polynomial potential
function, the higher the speed of the development
of this scenario, and the more times the scenario
repeats itself. For the oscillators with higher degree
potentials, the complexity of the charts of the dy-
namical regimes results from the repetition of the
described bifurcation scenario.
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Finally, using the catastrophe theory as a clas-
sification principle for the oscillators helps us to
predict the areas in the space of the potential func-
tion parameters, which are interesting to study. We
have observed in our investigations of oscillators
with all of Thom’s elementary catastrophes that if
the parameters of the system are chosen far from
the bifurcation manifold of the catastrophe, then
the solution of the system is the simplest — a limit
cycle, corresponding to the forced oscillations, but
if the parameters are taken on or near the bifurca-
tion manifold of the catastrophe, the solution can
be a strange attractor, and the system has a rich bi-
furcation behavior. Thus, the complex dynamics is
realized in the parameter spaces only near the bifur-
cation manifolds of the catastrophes. It is our main
criteria for choosing ranges of the parameters of the
potential function. The catastrophe theory can also
help us estimate the location of a strange attractor
in the phase space. For the system with potential
of degree p in the form of the Thom’s catastrophe
Marzec and Spiegel [1980] observed that location of
the strange attractor in the particular phase space
involves the catastrophe set of a “potential” of de-
gree p+ 1.

Before we begin our study, we need to explain
the choice of the values of the forcing frequency
and amplitude. In our work we have observed that
the described universal properties are typical for a
broad range of the control parameters. The typ-
icalness of the presented bifurcation sets in the
parameter space is due to the features of the con-
sidered oscillators. Choosing any forcing frequency,
we can observe the general picture of the system
dynamics. This results from the influence of the
nonlinear shift of the natural frequency of the os-
cillator. The concept of natural frequency in our
examples is not trivial, because there are no os-
cillations in the absence of the external forcing.
Resonance properties appear in these systems in
the presence of a harmonic external forcing. When
there are terms in the oscillator equation with coor-
dinate in higher than first degree, then these terms
can be interpreted as nonlinear shift of the natural
frequency. Thus, the natural frequency will depend
on the amplitude of oscillations as determined by
the amplitude of the external forcing. The mutual
dependence of amplitude and frequency properties
of the system allows us to pass through all char-
acteristic regimes by varying the forcing amplitude
at a constant forcing frequency. The inclination of
synchronization areas on the plane of forcing fre-

uency versus amplitude, as shown, for example, for
Duffing’s oscillator [Parlitz, 1991], serves as an illus-
tration of this effect. Except for insignificant areas
at small forcing frequencies, which correspond to
atypical system regimes, we can pass through all
the characteristic regimes with any choice of the
forcing frequency. Our numerical investigations also
testify that the variations of the charts of the dy-
namical regimes are insignificant in other ranges of
the forcing frequency.

2. Dynamics of Nonlinear
Oscillators with Escape

Let us first consider nonlinear oscillators with es-
caping solutions, potential functions of which obey
the general rule U(x) → −∞, when |x| → ∞.
Examples of such oscillators are Eqs. (2) and (3)
in Table 1. The equations considered in our study
correspond to the fold catastrophe (10), the dual
cusp catastrophe (11), and the swallowtail catas-
trophe (12).

2.1. Dynamics of nonlinear
oscillator with fold catastrophe

The equation for the forced oscillator with fold
catastrophe is

ẍ+ kẋ − x2 + a = B cos ωt . (14)

The fold catastrophe is characterized by the merg-
ing and disappearance of the stable and unsta-
ble states of the system when the parameter a is
changed. Notice, that the replacement x → x+1/2
in Eq. (2) in Table 1 leads to Eq. (14) with the
parameter a = 0.25. Consequently, the well-known
results from the works of Thompson [1995] and
Soliman [1994], concerning the stability of ships in
the sea, correspond to a single point on the a-axis.
The solutions to this system possess the possibility
of escape from the potential well for some initial
conditions, or they can be attracted to a large am-
plitude orbit, due to a jump to resonance. In Fig. 1
we have shown the different basins of attraction,
where the white color denotes the region of the es-
caping solutions and the black color corresponds to
the region of the stable solutions with finite ampli-
tude. A small increase in the forcing amplitude leads
to a fractalization of the basin boundary [Thomp-
son et al., 1987], in which “white fractal fingers” of
the escaping basin incurs into the black region [see
Figs. 1(a) and 1(b)] . This is due to the homoclinic
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Fig. 1. Basin erosion sequence for the oscillator with fold catastrophe (14) showing the incursion of “fractal fingers” into
the safe basin of nonescaping initial conditions (black) at k = 0.1, ω = 0.85 and following parameter values: (a) a = 0.25,
B = 0.0725, (b) a = 0.25, B = 0.0750, (c) a = 0.2, B = 0.0725, (d) a = 0.15, B = 0.0725, (e) a = 0.1, B = 0.0725, and
(f) a = 0.05, B = 0.0725.
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Fig. 2. Charts of the dynamical regimes for the oscillator with fold catastrophe (14) at initial conditions x(0) = y(0) = 0.0,
k = 0.1 on the (amplitude, parameter a) plane in the cases (a) ω = 1.0 and (b) ω = 0.85.
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Fig. 3. Charts of the dynamical regimes for the oscillator with the dual cusp catastrophe (15) (a) on the (a, b)-plane at
k = 0.1, ω = 0.85 and B = 0.1, (b) on the (amplitude, frequency) plane at k = 0.1, a = 4.03, b = 2.14.

tangles of the stable and unstable manifolds of the
hilltop saddle cycle at the chaotic saddle bifurcation
[Thompson, 1995]. If we fix the forcing amplitude
B and slowly decrease the parameter a, the same
sequence of basin erosions occurs, which ultimately
leads to the disappearance of the basin of attraction
for the stable nonescaping solution [see Figs. 1(c)–
1(f)].

To illustrate how this happens, charts of the
dynamical regimes were plotted on the plane of
the forcing amplitude and the parameter a [see
Figs. 2(a) and 2(b)]. The escape region is shown as
white, gray color corresponds to the stable period-1
solutions, and light gray marks the boundary be-
tween the regions of escaping and nonescaping so-
lutions, which seems to be fractal. Figure 2(b) shows
an enlarged fragment of the fractal boundary. The
smaller the value of the parameter a, the smaller

the value of the forcing amplitude will be for the
boundary. If one plots also the charts of the dynam-
ical regimes on the plane of the forcing amplitude
versus frequency at different values of the param-
eter a, one can observe that the reduction of this
parameter lead to the displacement of the escape
boundary in the region of low amplitude and low
frequency [Kuznetsov & Potapova, 2000].

Analogous charts of the dynamical regimes were
obtained for other values of the forcing frequency.

2.2. Dynamics of nonlinear
oscillator with dual cusp
catastrophe

The equation of the oscillator with a dual cusp
catastrophe [Woodcock & Davis, 1991] is

ẍ+ kẋ − x3 + ax+ b = B cos ωt . (15)
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Fig. 4. Contraction and disappearance of the basin of the nonescaping solution for the oscillator (15) at k = 0.1, B = 0.1,
ω = 0.85, b = 2.14 at the decreasing of parameter a: (a) a = 4.03 and (b) a = 3.50.
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Fig. 5. Contraction and disappearance of the basin of nonescaping solution for the oscillator (15) at k = 0.1, b = 0.0, ω = 0.85,
a = 4.3 with increasing forcing amplitudes B: (a) B = 2.5 and (b) B = 2.9.

Its potential (11) differs from the potential in
Eq. (3) of Table 1 due to the introduction of the
parameters a and b, variation of which changes
the deepness and the symmetry of the well. With
the forcing amplitude B = 0 there is a cusp point in
the (a, b)-plane, where two-fold lines emanate [see
Fig. 3(a)]. On these lines the potential has an in-
flection point. These curves bound the region of
potential functions with two hills and one well and
pass close to the boundary of the triangular region
of nonescaping period-1 solutions shown as gray in
Fig. 3(a).

As for the preceding case, the charts of the
dynamical regimes for this oscillator in the (B,ω)

plane show a fractal boundary between the escape
region and stable solution region [see Fig. 3(b)].
This boundary moves towards the region of smaller
forcing amplitudes and frequencies, contracting the
area of nonescaping solutions in size, as the param-
eter a is decreased or the parameter b is increased.
When decreasing parameter a from 4.03 to 3.50, the
basin transformations shown in Fig. 4 take place.
Increasing of parameter b, from 2.14 to 2.8, for
example, leads to the same contraction and subse-
quent disappearance of the region of the nonescap-
ing solutions. The basin transformations as a
function of forcing amplitude are shown in Fig. 5,
where the basin is observed to decrease signifi-
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Fig. 6. Division of the parameter (a, b, B) space for the os-
cillator (15) into the regions of characteristic dynamics for
k = 0.1 and ω = 0.85.

cantly with increasing forcing amplitudes to disap-
pear completely for B ≈ 3.0.

The regions of the stable and unstable regimes
in the three-dimensional parameter space (B, a, b)
are shown in Fig. 6. This three-dimensional
chart was reconstructed from a number of two-
dimensional sections, as indicated in the figure.
All sections exhibit a triangle shape. For example,
the basis of this figure is the triangular region of
nonescaping solutions shown in Fig. 3(a). The area
of nonescaping solutions arise from the cusp point
at a = b = B = 0 and become larger with increas-
ing parameters. All points inside this figure corre-
spond to stable period-1 solutions. For simplicity,
all escape boundaries are shown schematically to
be smooth in Fig. 6. When considered in more de-
tail, they have a fractal structure, which is more
noticeable at small values of the parameter b.

The two-dimensional sections exhibit the same
triangle shape at other values of the forcing fre-
quency, so we expect the same form of the three-
dimensional chart.

2.3. Dynamics of nonlinear
oscillator with swallowtail
catastrophe

The following by its complicity potential (12) in our
scheme can have two hills and two wells, one hill and
one well, or no critical points. For the whole picture
of all possible forms of the potential, which corre-
spond to the different points of the bifurcation set
of the swallowtail we refer to [Bröcker & Lander,
1975]. For the oscillator with the swallowtail catas-

trophe the dynamic equation reads

ẍ+ kẋ+ x4 + ax2 + bx+ c = B cos ωt . (16)

We investigate the dynamics in the space of the
parameters of the potential chosen near the bifur-
cation set. The corresponding regions of stable and
unstable regimes in the three-dimensional param-
eter space (a, b, c) are shown in Fig. 7. This three-
dimensional chart was reconstructed from a number
of two-dimensional slices. At the top of the figure
there is a large region of escaping solutions, with
right-hand edges corresponding to the bifurcation
set of the swallowtail [Bröcker & Lander, 1975].
This form of the surface follows from the potential’s
transformations. At large values of the parameter
b, the oscillator potential has at least one well for
any a and c, so there are no escaping solutions in
the system. On the other hand, at large negative
b there is no stable equilibrium possible above the
surface, and one stable equilibrium below the escape
boundary at c ≈ 2 (see Fig. 7). The corresponding
basin erosion sequence is depicted in Fig. 8, where
the fractalization of the basin boundary due to the
heteroclinic intersections of saddle manifolds can be
seen for increasing values of c. The same basin ero-
sion sequence happens, for example, when parame-
ter b is reduced from 0.05 to 0.005.

Analogous dynamics is observed for other val-
ues of the forcing frequency.

Thus, we have illustrated for oscillators with
escaping solutions, i.e. with potentials correspond-
ing to the fold, the dual cusp and the swallowtail
catastrophes, such general properties, as the depen-
dence of the escape boundary of the charts of the
dynamical regimes on the potential function param-
eters and the basin erosion sequence under variation
of the nonlinear parameters. We have observed the
same results at other values of the forcing frequency.
We expect similar dynamical properties for the os-
cillators with higher order catastrophes which have
escaping solutions.

3. Dynamics of Nonlinear
Oscillators with Nonescaping
Solutions

3.1. Dynamics of nonlinear
oscillator with cusp
catastrophe

Let us consider the behavior of a nonlinear oscillator
with cusp catastrophe whose dynamics is governed
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show its inner structure.
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Fig. 8. Basin erosion sequence at k = 0.1, B = 0.1, a = −1.0, b = 0.0 and ω = 0.85 under the increasing of c: (a) c = 0.105,
(b) c = 0.120, and (c) c = 0.140.
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Fig. 9. Fold lines and cusp point for the oscillator with the cusp catastrophe (17) on the (b, a)-plane. Outlined points of
the parameter plane correspond to the previous studies of the oscillator (17): a in [Parlitz, 1991], b in [Thompson & Stewart,
1986], c in [Ueda, 1991], d in [Szemplinska-Stupnicka, 1993], and e in [English & Lauterborn, 1991].
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Fig. 10. The sequence of the bifurcation diagrams for Eq. (17) at k = 0.2, ω = 1.0, x0 = 3.1, y0 = 3.1, and increasing
amplitude B from 0.15 to 0.3. Each diagram corresponds to a scan of the circle R = 0.5 on the (b, a)-plane.
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by

ẍ+ kẋ+ x3 + ax+ b = B cos ωt . (17)

This system has a cusp point [Poston & Stewart,
1978] at the origin (a = b = 0) in the two-
parameter plane from which two-fold lines emanate
(see Fig. 9).

These lines form the boundaries of the region
of the two-well potential (11). The dynamics of this
system was studied by different authors [Thomp-
son & Stewart, 1986; Szemplinska-Stupnicka, 1993;
Parlitz, 1991; English & Lauterborn, 1991; Ueda,
1991] at several sample points of the parameter
plane (outlined in Fig. 9). Let us now consider the
dynamical regimes in the vicinity of the cusp point.
In Fig. 10 we have presented a sequence of one-
dimensional bifurcation diagrams for Eq. (17). Each
diagram corresponds to a closed path around the
cusp point in the (b, a)-parameter plane parame-
terized by an angle ϕ, (see Fig. 9). The forcing
amplitude B was fixed with different values in the
different panels. A saddle-node bifurcation occurs at
small values of B = 0.05 and for ϕ ≈ 3π/2. This an-
gle corresponds to a domain of coexisting orbits in
the parameter plane. Increasing the forcing ampli-
tude leads to the appearance of several saddle-node
bifurcations. The first period-doubling bifurcation
occurs just before the parameter value B = 0.15.
For forcing amplitudes B > 0.16 the attractor can
become chaotic via a period-doubling cascade (see
figure). Periodic windows can be observed in the
region where chaotic solutions are found (large val-
ues of ϕ). A further increase in B leads to the dis-
appearance of the period-3 and period-4 windows
(most visible at B = 0.20). At B = 0.29 a so-called
period-bubbling is seen, i.e. both period-doubling
and period-halving [English & Lauterborn, 1991]. A
final increment of the forcing amplitude to B = 0.30
reveals that there are now complete period-doubling
cascades to chaos in the place of each bubble.

In the parameter plane, several typical config-
urations of the flip and fold bifurcation lines can
be distinguished in the stability domains of peri-
odic regimes (Fig. 11). They are organized around
a codimension-two cusp bifurcation point. The first
configuration is a so-called “crossroad area” [Mira &
Carcasses, 1991]. The second configuration, which
has been termed a “spring area” [Mira & Car-
casses, 1991], involves codimension-two flip bifur-
cation points where tangent points of flip and fold
bifurcation lines meet. For transitions between these
configurations we refer to the paper by Carcasses

pd(4n−1,4m) pd(4n+1,4m)
pd(2n+1,2m)pd(2n−1,2m)

sn(2n,2m)sn(2n,2m)

[sb(n,m)]
pd(n,m)

crossroad area

sn(n,m)

sn(4n−1,4m)

Fig. 11. The typical configurations of the flip and fold
bifurcation lines “crossroad area” and “spring area” on the
potential parameter plane. The “sn”, “pd”, and “sb” abbrevi-
ations correspond to the lines of saddle-node, period-doubling
and symmetry breaking bifurcations and (n, m) define the
involved subharmonics.

and Mira [1991]. In Fig. 11 two crossroad areas
and one spring area are shown. The largest cross-
road area involves the subharmonic of type (n,m).
(The subharmonic n/m means that the system ac-
complishes n oscillations during m periods of the
external forcing [Ueda, 1991].) Another crossroad
area, located in the right-hand part of figure, in-
volves the (2n + 1, 2m) subharmonic. Finally, the
spring area is based on the (2n − 1, 2m) subhar-
monic, in the left-hand part. A location of smaller
areas inside of a bigger crossroad area was described
in the works by Parlitz [1991], and by Scheffczyk
et al. [1991]. These configurations were shown typ-
ically to be met in the two-parameter analysis of
nonlinear dynamic systems with discrete and con-
tinuous time [Parlitz, 1991; Scheffczyk et al., 1991;
Mackey & Tresser, 1987; Komuro et al., 1991;
Gallas & Catarina, 1993]. Scheffczyk et al. [1991],
for example, described the appearance of these
structures in different nonlinear dissipative oscilla-
tors: Toda system, Morse system, soft symmetric
oscillator and Duffing oscillator.
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Fig. 12. Development of the dynamical regime topographies for the oscillator (17) on the (b, a)-plane at k = 0.2, ω = 1.0 and
increasing forcing amplitude B: (a) B = 0.25, (b) B = 3.0, (c) B = 6.0, and (d) B = 8.0. (e) Enlarged fragment of Fig. 12(d),
(f) enlarged fragment of Fig. 12(d), the broadened inner part of right crossroad area. The “sn” and “pd” abbreviations
correspond to the lines of saddle-node bifurcation and to the period-doubling one, the term “mc” to the metastable chaos,
and “sl” to the dotted line of the crossroad area separation, respectively. The numbers define the involved subharmonics.
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In Fig. 12(a) the topography mapping out the
dynamical regimes for Eq. (17) is plotted in the
(b, a)-parameter plane. Here the chaotic regions are
shown in white, blue regions correspond to period-1
solutions, green color is for period-2 solutions, and
other periodic regimes are coded by different col-
ors. We distinguish between three kinds of transi-
tions from the period-1 orbit SO, which corresponds
to the oscillations within one of the potential wells
only, to a chaotic orbit LO, that covers both wells.
(The abbreviations SO and LO were suggested by
Szemplinska-Stupnicka [1993] for the small orbit
and large orbit, respectively.) The first transition
is the period-doubling cascade to chaos at the top
of the picture; the second transition proceeds via a
saddle-node bifurcation in the middle of the topog-
raphy; and the last case is the transition through
the metastable chaos (where chaotic transients can
be observed) in the lower part of Fig. 12(a).

Let us now consider the consequent evolution of
the topography in the (b, a)-parameter plane with
increasing values of the forcing amplitude B. Start-
ing from the amplitude B = 0.25, we can see the
crossroad area formed by lines of period-doubling
bifurcations and saddle-node bifurcations, located
at the top part of Fig. 12(a). The characteristic
feature of this structure is the large period-3 win-
dow in the lower middle of the figure. Increasing the
forcing amplitude B leads to the disappearance of
the periodic windows as well as to the expansion of
the region of complex dynamics [Fig. 12(b)]. Two
spring areas arise along the lines of saddle-node bi-
furcations and a small crossroad area appears be-
tween them [Fig. 12(c)]. Furthermore, the right and
left parts of the original configuration are separated
by two new crossroad areas, and at B = 6, there
are already two spring areas in the lower part of
Fig. 12(c) and three crossroad areas at the top.
The rightmost spring area configuration is formed
by lines of period-doubling bifurcations for subhar-
monics 2/1 and 5/2, shown in detail in Fig. 12(e).
With further increase of the amplitude, the left and
right crossroad areas are broken into two parts each.
The outer parts (nearest to the edge of the pic-
ture) are narrow, and the inner parts have become
broader [Fig. 12(d)]. The broadened inner part of
right crossroad area is shown in detail in Fig. 12(f),
where one can see period-doubling bifurcations for
the subharmonics 3/1, 5/2 and 11/4 in the left half
part, and for the subharmonics 3/1, 7/2 and 13/4
in the right half part. The inner structure of this
figure corresponds to the scheme in Fig. 11. The

blue dotted line between the left and right halves
outlines the direction along which the next sepa-
ration of the broadened part can occur, leading to
the appearance of the next crossroad area. In the
left half there is a small spring area formed by bi-
furcation lines for 3/1, 5/2 and 11/4 subharmonics.

Thus, we have described the scenario for the
topography evolution with increasing amplitude for
the oscillator with cusp catastrophe. It is natural
to ask how this scenario will change as the de-
gree of the polynomial potential function increases
in Eq. (17). Will these changes have universal
character?

Consider the oscillator with a sixth degree poly-
nomial potential function

ẍ+ kẋ+ x5 + ax+ b = B cos ωt , (18)

and the oscillator with eighth degree polynomial
potential function

ẍ+ kẋ+ x7 + ax+ b = B cos ωt . (19)

The parameters of Eqs. (18) and (19) were chosen to
be the same as for Eq. (17) in order to illustrate the
effect dynamics of increasing the order of the poly-
nomial potential function on the system dynamics.

Figures 13(a) and 13(b) for the oscillator (18)
reproduce the same dynamics as for the oscillator
with cusp catastrophe (17), but for smaller am-
plitudes. A new feature in the topography evolu-
tion arises at B = 6 [Fig. 13(c)], when a new
spring area appears in the place of the intersec-
tion of the saddle-node bifurcations lines of two
neighboring spring areas marked in Fig. 13(b). The
enlarged right spring area is shown at B = 8 in
Fig. 13(e). The development of these three spring
areas leads to an intersection of their bifurcation
lines. Some of the intersections of saddle-node bifur-
cations lines of these neighboring spring areas are
shown in Fig. 13(d). At B = 8 the central crossroad
area is broken into two crossroad areas, the inner
parts of which have broadened while the outer parts
have narrowed, as for example above. The same
transformations occur for the two crossroad areas in
the left and in the right halves of Fig. 13(d). Hence
there are four crossroad areas and three spring areas
at B = 8. Figure 13(f) shows a magnification of part
of Fig. 13(d), which illustrates that copies of spring
and crossroad areas are found on smaller scales.

Let us now examine the observed scenario
for the oscillator (19). The first three figures [see
Figs. 14(a)–14(c)] repeat the dynamics of the oscil-
lator (18). In the following we wish to watch the
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Fig. 13. Development of the dynamical regime topographies for the oscillator (18) on the (b, a)-plane at k = 0.2, ω = 1.0
and increasing amplitude B: (a) B = 0.25, (b) B = 3.0, (c) B = 6.0, and (d) B = 8.0. (e) Enlarged fragment of Fig. 13(d),
(f) enlarged fragment of Fig. 13(d), the broadened inner part of right crossroad area. The “ip” and “sl” abbreviations mark
the place of intersection of saddle-node bifurcation lines of neighboring spring areas and the dotted line of the crossroad area
separation, respectively.
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Fig. 14. Development of the dynamical regime charts for the oscillator (19) on the (b, a)-parameters plane at k = 0.2, ω = 1.0
and increasing amplitude B: (a) B = 0.25, (b) B = 3.0, (c) B = 5.0, and (d) B = 6.0. (e) Enlarged fragment of Fig. 14(d),
the broadened inner part of right crossroad area. (f) B = 7.0, (g) B = 8.0, (h,i) enlarged fragments of Fig. 14(g), (j) enlarged
fragment of Fig. 14(g), a new right crossroad area. The “ip” and “sl” abbreviations correspond to the place of intersection of
saddle-node bifurcation lines of neighboring spring areas and to the dotted separation line, respectively.
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evolution of the three main characteristic subjects
of the chart: the central spring area, the central
crossroad area and the right crossroad area. Note
that the evolution of the left crossroad area is sim-
ilar to that observed for the right one.

Further increases of the amplitude makes the
central spring area in Fig. 14(c) subject to the
following transformations: two new spring areas
arise in the place, where its fold lines intersect
the fold lines of the neighboring spring areas [see
Fig. 14(d); compare with the intersections of fold
lines in Fig. 13(d)]. The right spring area is shown
in magnification in the lower part of the left half
side of Fig. 14(i), where the fold line intersections
of the two old spring areas are marked. Moreover,
the central crossroad area in Fig. 14(c) is broken
down and thus generates two crossroad areas near
the top of the center part of Fig. 14(d). Its inner

parts are broadened [Fig. 14(f)] and are broken in
order to allow a new crossroad area to appear [see
Figs. 14(g) and 14(h)]. The same transformations
of the right and left crossroad areas are also shown
in these figures, where inner parts of the configura-
tions in Fig. 14(d) are broken along the blue dotted
line [see Figs. 14(e) and 14(f)] and two crossroad ar-
eas are born instead of these parts [see Fig. 14(g)].
The right configuration is shown in Fig. 14(j).

Summarizing the above mentioned results, we
have studied the evolution of the topography of dy-
namical regimes for the oscillators with polynomial
potential function of fourth, sixth and eighth de-
grees (17)–(19). Some conclusions may be drawn
about the general features of the evolution of the
topography for the oscillators with the polynomial
potential function of pth degree, where p is an even
number p > 2. The described universal scenario of
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the topography evolution consists in the following.
The crossroad areas expand significantly when in-
creasing the forcing amplitude, its right and left
parts become separated and generate two new cross-
road areas. Two spring areas arise along the lines
of saddle-node bifurcations, and one crossroad area
arises between them. The new area configurations
then appear in the places, where the fold lines of
the spring area intersect fold lines of the neighbor-
ing configurations. The inner parts of right and left
crossroad areas are broadened and broken in or-
der for new crossroad areas to appear instead of
the old parts. The higher the degree of the poly-
nomial potential function, the smaller the values of
the forcing amplitude are for which the above sce-
nario takes place. Hence, the scenario repeats it-
self several times (cascade-like) over the considered
range of the forcing amplitude, leading to a signifi-
cant complication of the topography.

The described topographies of the dynamical
regimes do not change significantly at other values
of the forcing frequency, thus, the scenario of the
topography evolution has a universal character for
the considered nonlinear oscillators. The approach
of the catastrophe theory helps us to understand
a intuitive reason for this universality of the os-
cillator dynamics. The parametrization of Eq. (18)
corresponds to one of the sections of the butter-
fly catastrophe parameter space [Bröcker & Lander,
1975]. Woodcock and Poston showed that this sec-
tion is typical to the cusp catastrophe: there are fold
lines emanating from cusp point on the (a, b)-plane
[Woodcock & Poston, 1974]. The parametrization
of the next considered Eq. (19) corresponds to the
section of the star catastrophe parameter space,
where all parameters of the potential at coordi-
nate in higher than second degree equal to zero
[Woodcock & Poston, 1974]. In this case the sec-
tion is typical to a butterfly catastrophe with fold
lines, emanating from a cusp point on the (a, b)-
plane. Woodcock and Poston remarked that each
higher order catastrophe, when plotted on the ap-
propriate plane, generate the relevant lower order
catastrophes. Thus, it seems that in our study one
picture of the topography evolution is observed in
different cases of the projections of the higher or-
der catastrophes on the relevant plane. The speed
of the scenario depends on order of the catastrophe.
For the oscillators with cusp catastrophe and but-
terfly catastrophe the speed is smaller than for one
with star catastrophe, because the angle between
fold lines on the (a, b)-plane for oscillators (17)–(19)

gradually decreases. Thus, if there is a particular
type of the low order catastrophe in the sections
of different higher order catastrophes, then we can
expect one scenario of the topography evolution for
the corresponding oscillators.

3.2. Dynamics of nonlinear
oscillator with butterfly
catastrophe

In the above discussion we have considered the dy-
namics of the oscillator with butterfly catastrophe
with zero parameters at the coordinates in higher
than first degree. We now turn to the consideration
of the full parameter space for the nonlinear oscil-
lator with butterfly catastrophe

ẍ+ kẋ+ x5 + ax3 + bx2 + cx+ d

= B cos ωt . (20)

The corresponding potential function (13) as shown
in Table 2 depends on the four controlling param-
eters a, b, c, and d. Variation of these parame-
ters leads to potential function transformations as
shown in Fig. 15. For the correspondence between
the forms of the potential (13) and the regions of
the sections of the butterfly set see the book by
Saunders [1980].

Let us consider the physical example of a
magneto-elastic beam inclined in a field from three
magnets, described by Eq. (7) in Table 1 with
a sixth-order polynomial function. This potential
function has three potential wells [Li & Moon,
1990]. Equation (7) is a Duffing type equation with
nonlinearity up to fifth order in x, here x0 is a di-
mensionless quantity that represents the ratio of
the unstable and stable equilibrium positions of the
beam. Introducing the parameter a = x2

0, we ob-
tain the example of the oscillator with the butterfly
catastrophe.

In Fig. 16(a) the topography of the dynamical
regimes for this system is presented in the plane
of the forcing amplitude and the parameter a. One
can observe curves of period-doubling bifurcations,
and the period-doubling cascade to chaos. We now
rewrite Eq. (7) in the form

ẍ+ kẋ+ x5 − (a+ 1)x3 + ax+ b

= B cos ωt , (21)

which corresponds to the addition of an external ho-
mogeneous field, with a “tension” b. The potential
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Fig. 15. Transformations of the potential function (13) under variation of the parameters a, b, c, and d.
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Fig. 16. The dynamical regimes topography for the oscillator with butterfly catastrophe at k = 0.2 and ω = 1.0 in cases for
(a) Eq. (7), (b) Eq. (21) at B = 8.0.

function for Eq. (21) is given by

U(x) =
x6

6
− (a+ 1) x4

4
+ a

x2

2
+ bx , (22)

which has three potential wells and corresponds to
the two-parameter section of the butterfly catas-
trophe parameter space. The topography of the
dynamical regimes on the (b, a)-parameter plane for
this equation is shown in Fig. 16(b). At B = 8 there
are four spring areas in the bottom part of the figure
and three spring areas in the top one.

Now return to the equation of the oscillator
with butterfly catastrophe (20). The two-well po-
tential system possesses homoclinic orbits. A dis-
tinct feature of the three-well potential system is
that besides homoclinic orbits, it also possesses het-
eroclinic orbits [Li & Moon, 1990]. Bifurcations in-
volving the homoclinic and heteroclinic orbits lead

to complicated intersections of the stable and unsta-
ble manifolds. Therefore the basin boundaries will
become extremely complicated, in particular, they
will become fractal. Let us fix parameters a, b, c,
d and consider the basin transformations for differ-
ent values of the forcing amplitude. Increasing of
forcing amplitude from B = 0.3 to B = 1.4 results
in the merger of the four basins into two basins
(Fig. 17). If the value of the controlling parameter
is smaller than the critical value for the homoclinic
bifurcation [Li & Moon, 1990], then the boundaries
are clearly smooth, as shown in Fig. 17(a). Else
segments of the basin boundaries become non-
smooth or fractal [see Fig. 17(b)]. If initial condi-
tions are chosen near the fractal basin boundaries
with a small uncertainty in this case, then the fi-
nal state to which the motion is attracted is not
predictable. With a further increase in parameter
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(a) (b)

(c) (d)

Fig. 17. The basin transformation for the oscillator with butterfly catastrophe (20) at a = −4.6, b = 0.2, c = 4.3, d = 0.2,
k = 0.2, ω = 1.0 and increasing amplitude B: (a–c) B = 0.3, B = 0.6, B = 1.0 — four attractors, and (d) B = 1.2 three only.

B, the fractal basin boundaries spread out and be-
come more complex, as shown in Fig. 17(c). This
fractalization leads to the incursion of the fragments
of others basins and to the merger of some neighbor-
ing basins [see Fig. 17(d)]. At B = 1.4 the system
has only two attractors rather than the previous
four. Hence a transition from the oscillations within

one of the wells of the three-well potential to oscil-
lations which spread out over all three wells takes
place.

Consider the variation of parameters a, b, c, and
d corresponding to the potential function (13) trans-
formations presented in Fig. 15. Increasing the value
of the parameter a, say, from a = −5.0 to a = −4.2
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(a) (b)

(c) (d)

Fig. 18. The basin transformation for the oscillator with butterfly catastrophe (20) at b = 0.2, c = 4.3, d = 0.2, k = 0.2,
ω = 1.0, B = 0.8 and increasing parameter a: (a) a = −5.0 four attractors, (b) a = −4.5 three attractors, (c) a = −4.4,
(d) a = −4.2 two attractors.

(while the remaining parameters are fixed) leads to
the merger of the four basins of different attractors
into two basins [see Figs. 18(a)–18(d)]. The same
basin transformation occurs when increasing the pa-
rameters b and d from 0.2 (four attractors) to 0.25

(three attractors), and to 0.3 (two attractors), or de-
creasing the parameter c from 3.5 (four attractors)
to 3.2 (three attractors), and to 1.0 (two attrac-
tors). The basins of attraction for increasing b are
similar to the basins for increasing d. There is one
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Fig. 19. Charts of the dynamical regimes for the oscillator with butterfly catastrophe (20) on the plane of forcing amplitude
B and potential function parameters at k = 0.2, ω = 1.0, (a) b = 0.2, c = 4.3, d = 0.2, (b) a = −4.6, b = 0.2, d = 0.2,
(c) a = −4.6, c = 4.3, d = 0.2, (d) a = −4.6, b = 0.2, c = 4.3.

attractor only in the cases of a > −4.1, or b > 3.0,
or d > 0.9. Thus, a transition from oscillations in
the three-well potential to oscillations in a one-well
potential takes place.

Figures 17 and 18 were obtained for the forcing
amplitude parameter value B = 0.8. All attractors,
the basins of which were presented in these figures,
are period-1 cycles. The evolution of these regimes
with increasing forcing amplitude is illustrated in
Fig. 19. The dynamical regime charts are presented
for the oscillator with butterfly catastrophe (20)

in the (B, a)-, (B, c)-, (B, b)- and (B, d)-parameter
planes. One can see the period-doubling cascade to
chaos on these topographies [Figs. 19(a)–19(d)]. In
Fig. 20 the dynamical regimes topographies on the
potential function parameter plane can be seen. The
topography on the plane of the (d, a) parameters
exhibits at least one crossroad area, based on the
subharmonic solution 6/3, and spring areas based
on the subharmonics 6/3 and 2/1 [see Figs. 20(c)
and 20(d)]. The topography of the plane of (d, c)
parameters has a crossroad area, based on the sub-
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(a) (b)

(c) (d)

(e) (f)

Fig. 20. Charts of the dynamical regimes for the oscillator with butterfly catastrophe (20) on the plane of potential function
parameters at k = 0.2, ω = 1.0, B = 5.0, (a) b = 0.2, d = 0.2, (b) a = −4.6, c = 4.3, (c) b = 0.2, c = 4.3. (d) Enlarged fragment
of Fig. 20(c). (e) a = −4.6, b = 0.2. (f) Enlarged fragment of Fig. 20(e). The numbers define the involved subharmonics.
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harmonic 4/2, and a spring area of the subharmonic
7/3 [see Figs. 20(e) and 20(f)].

Thus, the oscillator with butterfly catastrophe
demonstrates the dependence of the dynamics on
potential function parameters. The basins merge at
the variation of these parameters, and there are the
crossroad area and spring area configurations on the
plane of these parameters.

4. Conclusions

In the present work the behavior of nonlinear oscil-
lators was considered. A new classification of oscil-
lators was developed based on the scheme of Thom’s
catastrophe theory. This allowed us to describe the
oscillators in Table 1, which differ from each other
in the order of the potential functions and in the
possibility of escape, by using only one equation.
All previous examples are particular cases of this
oscillator equation with some elementary catastro-
phe taken at different fixed values of the controlling
parameters. We studied the behavior of this more
general model equation in the full parameter space.
At the end result, we have discovered the universal
properties of the dynamics of systems with Thom’s
catastrophe unfoldings in the context of forced
oscillators.

First, an investigation of the systems which
possess escaping solutions was carried out. For the
oscillators with fold, dual cusp and swallowtail
catastrophes the dependence of the dynamics on the
parameters of the potential function was described.
Variation of the potential function parameters leads
to the basin erosion. The escape region and the re-
gion of stable solutions were estimated on the charts
of the dynamical regimes in the space of the con-
trol parameters. The dependence of the location of
the fractal escape boundary on the variation of the
parameters of the potential function was illustrated.

Second, for the oscillators with nonescaping
solutions the evolution of the dynamical regime
topographies under the increase of the forcing am-
plitude was considered. We compared the evolution
of the topographies for oscillators with the polyno-
mial potential function of fourth, sixth and eighth
degrees, corresponding to the cusp, butterfly and
star catastrophes. It seems that the crossroad area
and spring area configurations arise at smaller am-
plitudes in case of higher degree of the polynomial
potential function. We found one universal scenario
of the developing of these configurations in the plan
of the potential function parameters with increase

of the forcing amplitude. For every considered os-
cillator the initial crossroad areas expand and be-
come separated leading to the generation of two new
crossroad areas on the right and on the left of the
chart. Moreover, along the lines of saddle-node bi-
furcations of the initial crossroad area two spring
areas arise, and the new area configurations then
appear in the places, where the fold lines of the
neighboring spring areas intersect themselves. The
inner parts of the right and left crossroad areas are
broadened and broken in order for new crossroad
areas to appear instead of the old parts. This uni-
versal scenario repeats itself several times on the
regarded range of the forcing amplitude leading to
the complication of the topographies. The higher
the degree of the potential function, the higher the
speed of the repetition of this scenario. The scenario
was described for the oscillators with some higher
order catastrophes, which have cusp catastrophe in
one particular section. We suppose that considera-
tion of other sections may be of the same interest.
For the oscillators with the higher order catastro-
phes which have another lower order catastrophe
in the sections also, some universal features of the
topography evolution can observed.

We have shown for the oscillator with butter-
fly catastrophe, as the example of the higher order
catastrophe, that the basin transformations take
place for the variation of the potential function pa-
rameters as well for the increasing of the forcing
amplitude. The topographies of the dynamical
regimes on the plane of the potential function pa-
rameters demonstrate also the crossroad area and
spring area configurations.
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