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Rigid transition to the stationary structure and imposed convective
instability in a reaction–diffusion system with flow
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Abstract

Stationary flow and diffusion distributed structure (FDS) is known to appear in a reaction–diffusion system with open flow
when the constant perturbation is applied at the inlet. Usually, the FDS is considered in the oscillatory Hopf domain when the
instability of the Hopf mode is convective. This paper focuses on the formation of the FDS in presence of the absolute Hopf
instability. In this case, both FDS and Hopf solutions tend to invade the space. The result of this competition depends on the
amplitude of the inflow perturbation and on the flow rate. At large flow rate the Hopf solution dominates if the inflow perturbation
is small. Increasing of the inflow perturbation gives rise the rigid transition to FDS and produces the imposed convective Hopf
instability. Small flow rate always gives an advantage to the Hopf solution. The FDS solution, though still appears near the inlet
at large inflow perturbation, does not expand, and the FDS-Hopf domain boundary stays in a fixed position.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Reaction–diffusion systems typically demonstrate Hopf and Turing instabilities. The Hopf instability is ass
ith the appearance of the spatially homogeneous oscillations. The Turing instability emerges when the

ates of reacting species are significantly different and results in the formation of a stationary spatially
tructure.
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In presence of an open flow, the instability is either absolute or convective[1–6]. If the flow rate is small, the
diffusion carries the perturbation upstream faster than the flow sweeps it downflow. As a result, the perturbation
invades the whole space. This situation is referred to as an absolute instability. If the flow rate is large, the flow acts
faster than the diffusion do. Therefore, the perturbation asymptotically decays towards zero at every fixed point.
This is the case of the convective instability. The transition between these two cases happens at the critical flow rate
vca that can be determined from the set of equations[7–9] (see also references therein):

d(s, q) = 0, Res(q) = 0,
∂d/∂q

∂d/∂s
= 0. (1)

Here,d(s, q) is the dispersion relation of the system under consideration, ands andq are, respectively, the complex
frequency and the wave number of the elementary wave est+qx.

Another well known type of instability arises in the reaction–diffusion-flow systems when the reacting species
have different flow rates[10]. This is referred to as a differential-flow instability (DIFI).

Recently, a new type of pattern formation mechanism was discovered that does not require the differential
transport. The stationary periodic structure may arise in a reaction–diffusion-flow system in the oscillatory domain
when the constant inhomogeneous perturbation is applied at the inlet. Provided that flow rate is sufficiently high, the
flow distributes the temporal oscillations in space, and the phase of this spatial mode is frozen at the inflow boundary.
This effect was reported by Kuznetsov et al.[9], and little bit later this was studied in more details by Andresén et
al. [11]. Soon after these structures was observed experimentally by Kærn and Menzinger[12–14]. They referred to
these as flow distributed oscillations (FDO). The combined action of flow and diffusion was studied by Satnoianu et
al. [15,16]. The periodic patterns arising in this case are referred to as flow and diffusion distributed structures (FDS).

The FDS attracts much of interest. Kuptsov et al.[17] considered the perturbation of the FDS by the particle that
is dragged by the flow and partially blocks it. For certain parameter values several peaks of the structure disappears,
and the wave of substitution of the missing peaks runs across the structure. In other regimes the response with
intermittent Hopf- and Turing-type structures is observed. In[18] by Kuptsov et al., the FDS was analyzed for the
complex Ginzburg–Landau equation. In particular, the rigid transition to FDS was discussed. Satnoianu et al.[16]
showed that the FDS mechanism is a robust morphogenetic mechanism which is more flexible in comparison with
the classical Turing scenario. Kærn et al.[19,20]discussed the application of the concept of FDS for the modelling
of the axial growth and segmentation in biology. Kærn and Menzinger in[21] reviewed a lot of experiments on
FDS. Bamforth et al.[22] provided the experimental study of formation of the FDS. Taylor et al.[23] studied the
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ompetition between the FDS and the oscillating solution when the flow rate is close to the critical value.
The FDS solution exists when the flow ratev exceeds the critical valuevst [9]. If, in addition, the instability in th

ystem is convective, i.e.,v > vca, even very small inflow perturbation grows to the FDS[9,11]. It this case that i
tudied usually[21]. We refer to this as a soft transition to FDS. In this paper, we investigate the FDS in pres
he absolute Hopf instability, i.e., whenvst < v < vca. Selection of the FDS solution in this case occurs only i
nflow perturbation is sufficiently large, while the small inflow perturbation does not grow to the FDS and th
scillations appear instead. This case we refer to as a rigid transition to FDS. In paper[18], we reported the rigi

ransition to FDS for the complex Ginzburg-Landau equation. This paper analyzes the details of this tran
reaction–diffusion system. As a concrete example, we consider the one-dimensional Brusselator model
We consider the FDS for the model system in the Hopf instability domain. (The conditions of arising of th

olution are analyzed in[9,11,15,16].) The flow rate is supposed to be the same for all species; thus, the effec
ifferential flow is not taken into account. Most of discussions are done for the similar diffusion rates, but p
ualitative results are valid for the differential diffusion too.

Section 2contains the brief review of instabilities in the Brusselator model. The plane of parameters
btained where the domains of soft as well as rigid transition to FDS are outlined.Section 3presents the ma
henomenology discussed in this paper. The series of the spatio-temporal diagrams illustrate the FDS-H
etition in the domain of rigid transition. InSection 4, the analysis is provided for the considered effects.Section 5
ontains the discussion of possible manifestation of the rigid transition to FDS in experiments. ConcludingSection 6
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summarizes the obtained results, and in the Appendix more illustrations of the discussed effects are presented for
two others reaction–diffusion system with flow.

2. Instabilities in the Brusselator model with flow

The Brusselator is one of the canonical models of reaction–diffusion systems under far-from-equilibrium condi-
tions[24]. In presence of flow and diffusion, this is specified by the following set of equations[9]:

∂U

∂t
+ v

∂U

∂x
= A− (B + 1)U + U2V + σ

∂2U

∂x2
,

∂V

∂t
+ v

∂V

∂x
= BU − U2V + ∂2V

∂x2
. (2)

Here,U andV denote the dynamical variables,A > 0 andB > 0 are the control parameters, 0< σ is the ratio of
the diffusion constants forU andV , andv > 0 is the flow rate. The flow is supposed to be directed from the left
towards the right.

System (2) has a homogeneous steady state

US = A, VS = B

A
. (3)

The linear stability of this state is described by the dispersion relation[9]

d(s, q) = (s+ vq− B + 1 − σq2)(s+ vq+ A2 − q2) + A2B, (4)

wheres andq are, respectively, complex frequency and wave number of the elementary wave est+qx. Analysis of
Eq. (4) gives the thresholds for the Hopf and Turing instabilities[25,9]:

B = BH ≡ 1 + A2 and B = BT ≡ (1 + A
√
σ)2. (5)

Below we consider the Hopf instability assuming thatBH < B < BT.
The transition from absolute to convective instability occurs when the flow rate attainsvca. This critical value

can be obtained from the set ofEqs. (1) and (4) [9]. The FDS solution exists whenv > vst. The critical flow ratevst
can be found from the dispersion equationd(s, q) = 0 (4) as a bifurcation point for the spatial modes = 0 [9]:
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vst =
√
B2 + (1 − A2σ)2 − B(2 + A2(1 + σ2))

(1 + σ)(1 + A2 − B)
. (6)

ig. 1shows the dependencies ofvst andvca on the parameterB. The curves in this figure divide the plane onto
our domains. The FDS solution exists above the curvevst(B) (domains I and II), while below this curve the inflo
erturbation always decays in space (domains III and IV). The instability in the system (2) is absolute be
urvevca(B) (domains II and III), and this is convective above the curve (domains I and IV). The critical flo
ca is zero atB = BH, and the steady state is stable forB < BH.

In the domain I, the Hopf mode is convectively unstable and decays in every fixed point. Hence, it does no
he spatial growth of any inhomogeneous constant inflow perturbation to the FDS. This situation was rep
uznetsov et al.[9] and studied little bit later both theoretically by Andresén et al.[11] and experimentally by Kæ
nd Menzinger[12]. This is the case of the soft transition to the FDS.

In the domain II, the Hopf mode is absolutely unstable, i.e., both the FDS and the Hopf solutions tend t
he whole space. A kind of competition of these solution should, obviously, be observed in this case. A
elow, this competition is controlled by the inflow perturbation and by the flow rate.

In the domain III, only the Hopf solution tends to spread over the space, because this is absolutely uns
he FDS solution does not exist.
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Fig. 1. Plane of parameters (B, v) for the system (2).vca is the critical flow rate for the transition from the convective instability (domains marked
by the roman numbers I and IV) to the absolute instability (domains II and III), seeEqs. (1) and (4). vst is the critical flow rate above which the
FDS solution exists (domains I and II), seeEq. (6). The system becomes stable atB = BH = 2. vca is zero in this point whilevst diverges. The
plane is drawn for the parametersA = 1, σ = 1.

Fig. 2. Spatio-temporal diagram for the system (2). The gray scale representsU: lighter tones correspond to larger values. The parameters are
A = 1,B = 3,σ = 1, andv = 1.35 (vca ≈ 1.414,vst ≈ 1.225) that correspond to the domain II inFig. 1. The inflow perturbation is absent, i.e,
Uin = Vin = 0. The absolute Hopf instability develops in this case.

In the domain IV, the FDS solution decays near the inlet and the Hopf mode is convectively unstable. This results
in the decaying of the perturbation to the steady state in every fixed point.

3. Spatio-temporal diagrams and description of the FDS-Hopf competition

To investigate the competition, we find the solutions to the system (2) numerically using the semi-implicit finite
difference method of the second order (Cranck–Nicholson scheme) with the time and space steps about 0.1. The
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Fig. 3. Rigid transition to FDS in the Brusselator model (2). The parameters are the same as inFig. 2, but now the inflow boundary is
nonhomogeneous. The inflow perturbation in panel (a) isUin = 0.05 that is small to grow to FDS and the Hopf mode spreads over space. Larger
perturbationUin = 0.5 in panel (b) results in the rigid transition to FDS and in the imposed convective Hopf instability.

inlet boundary conditions are

U(x, t)|x=0 = US + Uin, V (x, t)|x=0 = VS + Vin, (7)

where (US, VS) is the homogeneous steady state (3), and (Uin, Vin) is the constant perturbation. At the outlet, as
usual for systems of considered type, the zero flux boundary conditions are applied.

Fig. 2presents the numerical solution toEq. (2) in the domain II when the inflow perturbation is absent, i.e. when
Uin = Vin = 0. The Hopf instability is absolute in this domain. The homogeneous oscillations occupies almost the
whole area of the reactor except the narrow boundary layer where the oscillations attain their limit amplitude.

Fig. 3 illustrates the case when the constant perturbation is applied at the inflow boundary. In panel (a), the
perturbation is sufficiently small and decays right near the inlet. Observe that the sizes of the boundary layers in this
case and in the case of the homogeneous boundary,Fig. 3, are identical. The increasing of the perturbation changes
the picture and results in the rigid transition to FDS. In panel (b), the large inflow perturbation grows in space and
develops into the FDS. The Hopf mode becomes convectively unstable, and the boundary between FDS and Hopf
domains moves downstream. This will be referred to as an imposed convective instability.

The rigid transition to FDS exist only if the flow rate is sufficiently high. This is illustrated inFig. 4where the
flow rate is a little bit smaller. In panel (a) of this figure, the inflow perturbation is small and this decays as in
the previous figure. Large perturbation in panel (b) grows to the FDS but now this does not produce the imposed
convective instability. The boundary between FDS and Hopf domains remains in a fixed position, and two these
solutions coexist.
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Fig. 4. Same asFig. 3, but for smaller flow ratev = 1.3. In panel (a), the inflow perturbation is small to grow to the FDS. In panel (b), the inflow
perturbation is large and the FDS solution though appears but does not expand. The FDS and Hopf solutions coexist.

Further decreasing of the flow rate is illustrated inFig. 5. First, the FDS domain becomes more narrow, as
seen from panel (a). When the flow rate is very small, see panel (b), the FDS vanishes and even very large inflow
perturbation decays.

The figures presented above are obtained in the vicinity of the left boundary of the domain II inFig. 1. Increasing
the parameterB, we observe that the effect of the rigid transition to FDS survives.Fig. 6shows how small inflow
perturbation decays, while the large one grows to the FDS. However, the flow rate band where the FDS and Hopf
solutions coexist shrinks. The effect of coexistence is obtained inFig. 7(a) forv = 1.414, and even small variation
of the flow rate destructs this.Fig. 7(b) shows the vanish of the FDS domain already forv = 1.413, and a little bit
larger flow rate inFig. 6, v = 1.416, results in the appearance of the rigid transition to the FDS. If the parameterB

grows further, effect of coexistence becomes rather unobservable.
Finally, in Fig. 8 we present the examples of the discussed phenomenology when the diffusion rates of the

reacting speciesU andV are different. In panel (a), the large inflow perturbation at the high flow rate produces
the rigid transition to FDS and the imposed convective instability (as inFig. 3(b)). In panel (b), the small flow rate
does not results in the imposed convective instability even at the large inflow perturbation, and the FDS and Hopf
solutions coexist (compare withFig. 4(b)).

Thus, we observe that the result of the FDS-Hopf competition in the neighborhood of the inlet is determined
by the inflow perturbation: the small perturbation decays, while the large one can grow. In the former case further
development of the competition depends on the flow rate. Increasing of the inflow perturbation when the flow rate
is large gives rise the rigid transition to FDS and the imposed convective Hopf instability. Small flow rate together
with the large perturbation results in the coexistence of the FDS and Hopf solutions. This is observed until the flow
rate is sufficiently large. Decreasing of the flow rate, we observe the shrinking of the FDS domain, and, finally,
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Fig. 5. Further decreasing of the flow rate: (a)v = 1.27,Uin = 0.5; (b) v = 1.23,Uin = 5. In panel (a) reducing of the flow rate results in the
shrink of the FDS domain (compare withFig. 4(b)). When the flow rate becomes very small, as in panel (b), the FDS vanishes right near the
inlet. Notice that this takes place even if the inflow perturbation is very large.

the FDS domain disappears. Coexistence of the FDS and Hopf solutions is easier to observe for sufficiently small
parameterB, while increasing ofB reduces the flow rate band where this effect is observable.

4. Discussion

4.1. Stepwise propagation of the FDS-Hopf boundary

Specific feature of the presented spatio-temporal diagrams is the stepwise propagation of the FDS-Hopf domain
boundary. (The interaction between forming FDS pattern and oscillating solution was observed in several experi-
ments[23,21].) As seen from Figs. 3(b), 6(b), and 8(a), the boundary spends sufficiently long time near the minima
of UFDS (the dark vertical stripes in the figures) and jumps very fast from one minimum to another. This is seen
more clearly fromFig. 9which shows the trajectory of the domain boundary and positions of the minima ofUFDS.
Because the FDS solution does not depend on time, the position of the FDS-Hopf boundary is found in this figure as
the point where|∂U/∂t| attains 0.01 for the the first time (0.01 is an arbitrary small value). Panel (a) ofFig. 9presents
the imposed convective instability at high flow rate and at large inflow perturbation. The trajectory of the domain
boundary looks like a staircase: the boundary moves slowly near the minima ofUFDS (dashed vertical lines in the
figure) and runs very fast being close to the maxima. Panel (b) shows the trajectory when the flow rate is small and
does not produce the imposed convective instability. The stepwise slowing-down of the boundary is observed. Every
successive minimum holds the domain boundary longer than the previous one, and, finally, the boundary stops.
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Fig. 6. Rigid transition to FDS for a larger value of the parameterB: A = 1,B = 3.3, σ = 1, andv = 1.416 (vca ≈ 1.612,vst ≈ 0.943). Such
a specific value ofv is taken just to compare this figure with the next one, and the effect remains observable for any larger flow rate that falls
below the critical valuevca. In panel (a), the inflow perturbationUin = 0.5 is insufficient to grow, while in panel (b), lager perturbationUin = 1
produces the FDS and the imposed convective instability. (Notice that the original Hopf structure is not seen in panel (b) because the large time
interval is taken.)

Let us consider some point near the FDS-Hopf domain boundary. In the small vicinity of this point the dynamics
can be treated as a Hopf oscillations near the steady state (UFDS, VFDS). Locally, these oscillations may be described
by the Brusselator equation where the actual control parametersA andB are substituted with the valuesAloc and
Bloc. These local control parameters can be found fromEq. (3) asAloc = UFDS,Bloc = UFDSVFDS. The bifurcation
point for the Hopf oscillations is now 1+ A2

loc. This value is, obviously, large in the maxima ofUFDS and small
in the minima. There is no simple estimation forBloc, but from the mentioned above figures we can assume that it
have the opposite phase:Bloc is large in the minima ofUFDS and small in the maxima. Therefore, fast decaying of
the Hopf oscillations in the maxima ofUFDS takes place becauseBloc is far below the bifurcation point 1+ A2

loc.
As a result, the FDS-Hopf domain boundary runs over these points very fast. On the contrary, in the minima the
distance from the bifurcation point is small, and this manifests itself as a long staying of the domain boundary near
these points. IfBloc < 1 + A2

loc in every point, the imposed convective instability takes place as inFig. 9(a). But if
Bloc in the minima ofUFDS falls above the critical point, the domain boundary stops and the imposed convective
instability disappears as inFig. 9(b).

4.2. Imposed convective instability

Let us now discuss in more details the transition to the imposed convective instability. In this analysis and below,
we shall assume thatσ = 1.
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Fig. 7. Same asFig. 6, but forv = 1.414 in panel (a) andv = 1.413 in panel (b). For both panelsUin = 5. The effect of coexistence of the FDS
and Hopf solutions in panel (a) emerges now in the very narrow band of the flow rates. Small increment of the flow rate results in the appearance
of the rigid transition to FDS and the imposed convective instability, as inFig. 6(b), while the small decrement results in the vanish of the FDS
domain, as shows panel (b).

It is natural to suppose that the imposed convective instability takes place if the amplitude of FDS exceeds some
critical valueαimp. To findαimp, we use the following ansatz for the solution toEq. (2):

U(x, t) → αUFDS(x) + U(x, t), V (x, t) → αVFDS(x) + V (x, t). (8)

U(x, t) andV (x, t) in the right part denote the Hopf solution that should be determined.UFDS(x) andVFDS are the
sinusoidal functions with the periods and phases as the actual FDS solution and with the amplitudes controlled by
the parameterα. We determineUFDS(x) andVFDS form the stationary solution to the linearizedEq. (2) neglecting
the real parts of the complex conjugated eigenvalues:

UFDS(x) = 1
2KUeiΛx + c.c., VFDS(x) = 1

2KVeiΛx + c.c., (9)

where “c.c.” denote the complex conjugated terms,Λ is the real wave number (equation forΛ is not written here
becauseΛ does not appear in the resulting equations), and (KU,KV ) is the eigenvector

KU = 1, KV = 1 − A2 − B +
√

(1 + A2 − B)2 − 4A2

2A2
. (10)

Notice that becauseKU = 1,α is, in fact, the amplitude of the componentU. Because we are searching for the Hopf
solution, we can suppose thatU(x, t) andV (x, t) vary in space much slower thanUFDS(x) andVFDS(x). Thus, after
the substitution (8), we can averageEq. (2) over the period of FDS treatingU(x, t) andV (x, t) as constants. As a
result, we obtain the set of equations without the explicit dependence onx. After linearization and decomposition
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Fig. 8. Examples of the rigid transition to FDS and the FDS-Hopf coexistence forσ = 0.8 (vca ≈ 1.361,vst ≈ 1.022). The other parameters
are as in Figs. 3 and 4. In both panels,Uin = 0.5. In panel (a),v = 1.2, and the FDS invades the space. In panel (b),v = 1.1. The FDS-Hopf
domain boundary stays in a fixed position, and two solutions coexist.

over the elementary waves est+qx, we obtain the dispersion equation:

d(s, q) = A2 + (v q− q2 + s)2 + α2

2
+ (v q− q2 + s)

(
3 − A2 − B + α2 + α2(B − 1)

2A2
+ 4(A4 − A2)

2A2 + α2

)
.

(11)

In absence of FDS atα = 0, this equation coincides with the dispersion equation for the Brusselator with flow (4).
Thus, we have the well known problem of transition from absolute to convective instability, but, unlike the ordinary
case, now the flow rate is known, andα should be determined. To find the critical amplitudeα = αimp, we solve
Eqs. (11) and (1) numerically. From these equations we obtain thatαimp = 0 for v = vca, andαimp grows whenv
decreases. This is shown inFig. 10.

4.3. Critical inflow perturbation

It is interesting to compare the theoretical valueαimp with the critical inflow perturbationαrig for which the rigid
transition to FDS takes place. To findαrig, we set the left boundary condition as

Uin = US + αUFDS(0), Vin = VS + αVFDS(0), (12)
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Fig. 9. Trajectory of the boundary between the FDS and Hopf domains. The boundary is founded as a point where|∂U/∂t| exceeds 0.01 for
the first time. The parameters in panels (a) and (b) are as in Fig. 3(b) and 4(b), respectively. In panel (a), the flow rate is large, and the FDS
expands. In panel (b), the flow rate is small, and the domain boundary tends to a fixed position. The vertical dashed lines mark the minima of
UFDS. Notice the staircase structure of the trajectory: the boundary moves slowly near the minimum for some time, then jumps over the FDS
period, and moves slowly again near the next minimum.

Fig. 10. Critical inflow perturbationαrig for the rigid transition to FDS, critical amplitude of FDSαimp for the imposed convective Hopf instability,
and amplitude of FDSαFDS near the domain boundary.αimp is the numerical solution toEqs. (11) and (1). αrig andαFDS are obtained directly
from the numerical solutions toEqs. (2). The vertical asymptotic line for curveαrig separates the regions where the rigid transition to the FDS
takes place and where the FDS and Hopf solutions coexist. The parameters areA = 1,B = 3, andσ = 1.
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Fig. 11. Distribution ofU andV in the fixed time moment (after the large transient time) when the flow rate is small and the inflow perturbation
is large, i.e., when the FDS and Hopf solutions coexist. The parameters are as inFig. 4(b). Dashed vertical line separates the FDS and Hopf
domains. This domain boundary is found as inFig. 9(b). Solid horizontal line marks the critical amplitude for the imposed convective instability
αimp. Observe that the inflow perturbation is larger thenαimp and the FDS amplitude (we define it as an amplitude ofU) decays until attains
αimp. It is this point where the domain boundary is located.

whereUFDSandVFDSare given byEq. (9). Then we solveEq. (2) numerically at differentαwaiting for jumps of the
domain boundary from one minimum ofUFDS to another. If at last four jumps are recorded during the observation
time, we decide thatα > αrig while the less number of jumps are treated as the approaching to the fixed position at
α < αrig. Using the bisection we findαrig with required precision.

The actual precision of our computations is sufficiently low because described direct method works very slow.
For everyα the numerical solution to the system (2) should be found for a very long time before we can come to a
conclusion, wetherα is above the critical point or not.

Fig. 10shows the dependence ofαrig on the flow rate.αrig grows with decreasing of the flow rate and diverges.
This curve and its vertical asymptotic line (dashed line in the figure) split the plane onto three regions. To the right
of the asymptotic line and below the curveαrig the Hopf solution occupies the whole space, as inFig. 3(a). Above
this curve the rigid transition to the FDS takes place. In this region, the FDS expands and produces the imposed
convective Hopf instability, as illustrated in Figs. 3(b) and 8(a). To the left of the asymptotic line sufficiently large

Fig. 12. Hopf incrementQ(α), Eq. (14), and FDS incrementP(β), Eq. (19), for A = 1, B = 3, v = 1.35. The FDS-Hopf competition takes
place whenα andβ are inside their bands of competition whereQ(α) > 0 andP(β) > 0 simultaneously. Notice that the FDS amplitudeα has
larger band of competition. Hence, to win the competition, it should have sufficiently large initial value.
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Fig. 13. Phase plane for the competition equations (23). (α0, β0) and (α1, β1) are the fixed points. The arrowed curves are their stable and
unstable manifolds. The fixed points are joined by the heteroclinic orbit. Two thin curves starting from the bullet points are the trajectories that
illustrate the cases when either the Hopf solution or the FDS solution wins the competition. Notice how result of the competition depends on
the position of the initial point relatively to the heteroclinic orbit. The parameters areA = 1,B = 3, v = 1.35.

Fig. 14. Absolute Hopf instability in the Lengyel–Epstein model (A.1).a = 11, b = 0.5, c = 1.5, δ = 5, φ = 0.8. The inflow perturbation is
absent,Uin = Vin = 0.

inflow perturbation produces the limited FDS domain near the inlet. The FDS and Hopf solutions coexist, and the
FDS-Hopf domain boundary stays in a fixed position. This case is illustrated in Figs. 4 and 8(b).

Observe that curvesαrig andαimp in Fig. 10behave different. It means that the rigid transition to FDS can not be
deduced just from the imposed convective instability and contains at leats two stages. The first one happens near the
inlet, and its result depends on the inflow perturbation. If the perturbation is higher thanαrig, the FDS suppresses the
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Fig. 15. Rigid transition to the FDS in the Lengyel–Epstein model (A.1). The parameter are similar toFig. 14. In panel (a), the inflow
perturbationUin = 0.1 is insufficient to develop into the FDS, while in panel (b), large inflow perturbationUin = 0.5 grows and produces the
imposed convective Hopf instability.

Hopf oscillations. Notice that at large flow rate the critical inflow perturbationαrig is smaller than the critical FDS
amplitudeαimp, while near the asymptotic lineαrig is much more larger thanαimp. On the second stage the FDS
solution attains the stationary amplitude, and, if this is larger than the critical valueαimp, the imposed convective
instability takes place, as observed to the right of the asymptotic line inFig. 10.

4.4. FDS amplitude

Let αFDS denotes the amplitude of FDS near the domain boundary. We define this as the amplitude of the
componentU and obtain directly from the numerical solutions toEq. (2). The measurement of this value is performed
at different flow rates for the fixed inflow perturbation (12) whereα is taken being large enough for FDS to grow.1

After a large transient time we find the position of the domain boundary, then search the nearest minimum ofUFDS
(this can be found to the left or to the right from the boundary), and, finally, measure the amplitude in this point as
U − US. Performing this procedure for several successive time steps, we average the measurements and obtain the
resulting FDS amplitudeαFDS.

Fig. 10 shows the dependence ofαFDS on the flow rate. As we expected, in the right part of this figure the
amplitude of FDS is always larger than the critical amplitudeαimp. This is responsible for the emergence of the
imposed convective instability.

1 αFDS is rather insensible to the choice ofα. In Fig. 10α = 2 for v ≤ 1.34 andα = 0.5 for v > 1.34. Observe that there is no breakup at
v = 1.34.
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Fig. 16. Coexistence of the FDS and Hopf solutions in the Lengyel–Epstein model (A.1). The flow rateφ = 0.72 is insufficient for the imposed
convective instability to take place. Large inflow perturbationUin = 2, however, develops into the localized FDS domain near the inlet. All other
parameters are as inFig. 14.

In the right part of the plane inFig. 10, the amplitude of FDS decreases with decreasing of the flow rate. To
explain this, we should take into account that the formation of the FDS is determined by two opposite influences.
The kinetics of the system is responsible for the growth of the inflow perturbation to the periodic structure, while
the diffusion tends to flatten the spatial inhomogeneity. The FDS with a small period is more inhomogeneous than
this having a large period. As known[11,12], the FDS period is proportional to the flow rate. Thus, when the flow
rate decreases, the action of the diffusion becomes more intensive and, hence, the amplitude of the FDS becomes
smaller.

In the left part ofFig. 10, the FDS amplitude becomes smaller than the critical valueαimp and the imposed
convective Hopf instability disappears. But if the inflow perturbation (12) is such thatα > αimp the FDS, while
relaxing, produces the local imposed convective instability. The domain boundary moves until the FDS amplitude
remains above the critical value. This is illustrated inFig. 11. As seen, the domain boundary has attained the point
where the FDS amplitude is equal toαimp. (Notice also that in the left part ofFig. 10αFDS is equal toαimp at the
average.) This results in the formation of a localized domain of the FDS near the inlet. This case is illustrated in
Figs. 4(b) and 8(b).

The curveαFDS(v) in the left part ofFig. 10 has a stepwise structure. Every growing segment of this curve
corresponds to the staying of the FDS-Hopf boundary near one of the minima ofUFDS, and shows the growth of
the amplitude in this point. This minimum is the last one with the amplitude that is larger thanαimp. The jump to
the next minimum (and emergence of the subsequent segment of the curve) happens when its amplitude becomes
enough to produce the imposed convective instability. Observe that the slopes of the segments are similar to the
slope of the curveαFDS(v) in the right part of the figure.
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Fig. 17. Rigid transition to FDS for the system (A.2).p = 0.2, δ = 5,µ = 0.7, φ = 0.3. (a) The inflow perturbationUin = 0.01 is small. (b)
The inflow perturbationUin = 0.05 is sufficient for the rigid transition.

As we discussed above, seeFig. 5, decreasing of the flow rate results in the shrink and vanish of the FDS domain.
For sufficiently small flow rate even very large inflow perturbation does not produce the local imposed convective
instability. This takes place because the stationary FDS amplitude (i.e., the amplitude which could be attained in
absence of the Hopf oscillations) is much smaller thanαimp. The inflow perturbation decays very fast right near the
inlet, and the FDS domain does not appear.

4.5. Amplitude equations for the FDS-Hopf competition

Let us now analyze the competition between the FDS and Hopf solutions near the inlet after a short time of
evolution. We assume again thatσ = 1.

Let α be the amplitude of the FDS solution, andβ denotes the Hopf amplitude. First, we suppose that the FDS
exists in the system and find the condition for the Hopf instability. The following ansatz is used:

U(x, t) → αUFDS(x) + U(t), V (x, t) → αVFDS(x) + V (t), (13)

where in the right part the functionsUFDS(x) andVFDS(x) are the sinusoidal approximation (9) of the FDS solution,
α is the FDS amplitude, andU(t) andV (t) denote the Hopf solution that should be determined. After substitution
(13) to (2) and averaging over the FDS period, we linearize the equation near the steady state and obtain the set
of two linear ordinary differential equations forU(t) andV (t). Two eigenvalues of these equations are complex
conjugated and their the real part is

Q(α) = −3 + A2 + B + 1 − 2A2 − B

2A2
α2 + 4A2(1 − A2)

2A2 + α2
. (14)
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Fig. 18. Coexistence of the FDS and Hopf solutions in the system (A.2).φ = 0.25,Uin = 2. The other parameters are the same as inFig. 17.

Thus, the temporal growth (or decaying) of the Hopf solution (U(t), V (t)) can be estimated as

U(t), V (t) ∝ exp(Q(α)t). (15)

Hence, we can write the following equation for the Hopf amplitudeβ:

∂β

∂t
= Q(α)β. (16)

Notice that in this equationα is treated as the control parameter, andβ is the dynamical variable depending ont.
Similarly, we can obtain the equation for the FDS amplitudeα controlled by the Hopf amplitudeβ. Let us suppose

that the Hopf solution presents in the system. As well as for the FDS solution, we do not know the exact Hopf
solution and use the sinusoidal approximation instead:

UH(t) = 1
2KUeiΩt + c.c., VH(t) = 1

2KVeiΩt + c.c., (17)

whereΩ is the Hopf frequency, andKU andKV are given byEq. (10). To find the condition for the FDS instability
on the Hopf background, we use the ansatz

U(x, t) → βUH(t) + U(x), V (x, t) → β VH(t) + V (x), (18)

whereβ is now the constant control parameter, and (U(x), V (x)) is the FDS solution that should be determined.
Substituting the ansatz toEq. (2), then averaging, and, finally, linearizing near the steady state, we find that the
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linear increment forU(x) andV (x) is

P(β) = v−
√
R+ + √

R−
4A2 + 2β2

, (19)

where

R± = 4A4(2 + 2A2 − 2B + v2) ± 2A2
√
R0 + (4A2(3 + 2A2 − B + v2) ±

√
R0)β2

+ (2 + 6A2 + 2B + v2)β4 +
(

(−1 + 2A2 + B)

A2

)
β6, (20)

R0 = 16A4(A4 + (B − 1)2 − 2A2(B + 1)) + 16A2(2 + A4 − 2B − A2(B + 3))β2

+ 4(2+ 5A4 − 2(B − 2)B − 2A2(B + 3))β4 +
(

4(−2 + A2 + 2A4 + (2 + A2)B)

A2

)
β6

+
(

(−1 + 2A2 + B)2

A4

)
β8, (21)

Hence, we can write the equation for the FDS amplitudeα as

∂α

∂x
= P(β)α. (22)

In this equation,α is the dynamical variable depending onx, andβ is treated as the control parameter.
We have obtained two amplitudeEqs. (16) and (22). The first one describes the temporal evolution of the Hopf

amplitudeβ, and the other one determines the spatial evolution of the FDS amplitudeα. To describe the FDS-Hopf
competition, we need to combine these equations into the equations set. A possible way is as follows. First, we
suppose thatα in Eq. (16) depends onx, andβ in Eq. (22) depends ont. Then, we consider the dynamics of
Eqs. (16) and (22) along the directionx = t = ξ in the space-time coordinate plane. Thus, we can build the set of
the amplitude equations describing the FDS-Hopf competition:

P form
E nce, we
c It
e
i

crease
w ly
i f
o d
o the
c
N to
l

α he
f

∂α

∂ξ
= P(β)α,

∂β

∂ξ
= Q(α)β. (23)

roperties of the functionsQ(α) and P(β) determines the dynamics of the system (23). As seen
qs. (14) and (19) these functions are symmetric for the change of signs of their arguments, and, he
an consider only the positive values ofα andβ. Whenα = 0,Q(0) gives the condition for the Hopf instability.
asy to check thatQ(0)> 0 if B is above the Hopf bifurcation point, i.e.,B > 1 + A2. Similarly,P(0) is the FDS

ncrement, and this is positive in the Hopf instability domain whenv > vst, seeEq. (6).
FunctionsQ(α) andP(β) are plotted inFig. 12. They are positive when their arguments are zeros, and de

henα andβ grow. Such behavior is responsible for the FDS-Hopf competition. Whenα andβ are simultaneous
nside their bands of competition, which are determined by the inequalitiesQ(α) > 0 andP(β) > 0, the growth o
ne of the solutions results in the reduction of the increment of the other one and vice versa. Ifα leaves its ban
f competition first,Q(α) becomes negative whileP(β) is still positive. In this case, the FDS solution wins
ompetition. Its amplitudeα diverges andβ decays. Similarly, the Hopf solution wins ifP(β) < 0 andQ(α) > 0.
otice that the band of the competition forα is much larger than this band forβ. It means thatα have a chance

eave its band first if the initial value ofα is much larger than the initial value ofβ.
The competition equations (23) have the fixed point (α0, β0) = (0,0) and four fixed points (±α1,±β1), where

1 is found from the equationQ(α1) = 0 andβ1 satisfies the equationP(β1) = 0. Because of the symmetry of t
unctionsQ(α) andP(β), we shall consider only (α0, β0) and (α1 > 0,β1 > 0).
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Linearization ofEq. (23) near (α0, β0) gives the eigenvalues and eigenvectors:

Λ1 = P(0), 
ν1 = (1,0), (24)

Λ2 = Q(0), 
ν2 = (0,1). (25)

At v > vst both eigenvalues are positive, hence, both eigendirections are unstable and (α0, β0) is an unstable node.
The eigendirections of this node correspond to the unlimited growth of one of the variables while the other one is
zero. Ifv < vst, thenΛ1 < 0. In this case, (α0, β0) becomes the saddle whose stable manifold coincides with axis
α. Only the Hopf solution can grow in this case.

For the second fixed point (α1, β1) we have:

Λ1 = −
√
α1β1Q′(α1)P ′(β1), 
ν1 =

(
1,

√
β1Q′(α1)

α1P ′(β1)

)
, (26)

Λ2 =
√
α1β1Q′(α1)P ′(β1), 
ν2 =

(
1,−

√
β1Q′(α1)

α1P ′(β1)

)
, (27)

where primes denote the derivatives. BecauseQ′(α1) < 0 andP ′(β1) < 0, the eigenvalues and the eigenvectors are
real. The point (α1, β1) is the saddle whenv > vst. At v < vst the fixed point (α1, β1) disappears becauseP(β) does
not crosse zero.

Fig. 13presents the phase plane for the competitionEq. (23) at v > vst (because of the symmetry only the first
quarter is presented). The fixed points (α0, β0) and (α1, β1) as well as their manifolds are shown. The manifolds are
obtained numerically via the Runge–Kutta method.

As seen fromFig. 13, there is the heteroclinic orbit in the phase plane that leaves (α0, β0) as the unstable manifold
and attains (α1, β1) being the stable manifold of this point. This orbit plays the key role in the competition. If the
staring point is above this orbit, the Hopf amplitudeβ grows while the FDS amplitudeα decays. But if we start
below the heteroclinic orbit, the FDS solution wins the competition.

The orbit is tangent to the axisα in the point (α0, β0) and, moreover, contains the large segment that passes
asymptotically close to this axis. This determines the conditions for startingα (i.e., inflow perturbation in the
original system (2)) and forβ (initial conditions) that are required for the rigid transition to emerge: if startingβ

i value
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f e have
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5

tflow of
a s the
b pends on
t ctor (the
f is in an
o e last one
i

varied by
v value of
s small but finite,α should be sufficiently large to fall below the heteroclinic orbit. Notice that the critical
or the inflow perturbation depends on the initialβ. For example, very small initialβ permits the rigid transitio
or a sufficiently small inflow perturbation. This is the reason for a lot of troubles which, as noted above, w
et during the computation ofαrig for Fig. 10. Besides, this, probably, can be the source of difficulties in

xperimental determination of the critical inflow perturbation for the rigid transition to FDS.

. Manifestation of the rigid transition to FDS in experiments

Usually, an experimental setup for observation of FDS involves a tubular reactor that is fed from the ou
continually stirred tank reactor (CSTR)[12,21–23]. The state of the reaction medium in CSTR determine

oundary forcing at the tubular reactor inlet. This state is controlled by the residence time that, in turn, de
he rate of pumping of reagents mixture into CSTR as well as on the rate of feeding them to the tubular rea
ormer is, in fact, the flow rate that is appears in the discussed reaction–diffusion equations). The CSTR
scillatory state when the residence time is long and in a steady state when the residence time is short. Th

s the case of our interest.
The steady state of CSTR corresponds to the constant inflow perturbation of the tube reactor which can be

arying of the residence time. Thus, if the flow rate is varied without the keeping constant residence time, the
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the inflow perturbation is varied too. In this case the rigid transition can confuse the interpretation of the experimental
results. Indeed, the decreasing of the flow rate, on the one hand, may result in decreasing of the boundary perturbation,
and, on the other hand, approaches the system to the critical pointvst where FDS solution disappears. If the system
is in the soft transition domain, the decreasing of the inflow perturbation does not influence the formation of the
FDS, and the FDS disappears only when the flow rate falls below the critical valuevst. But if the transition to FDS is
rigid, the decreasing of the flow rate can make the inflow perturbation to be insufficiently large for the FDS to grow.
As a result, the oscillating solution, that is absolutely unstable in the domain of rigid transition, starts to dominate
over the FDS, and this is observed above the critical valuevst. This looks like a failure of the theoretic prediction.

Similar situation is reported in[23]. Here, the FDS pattern becomes unstable at the flow rate 0.08 sm/s instead
of the expected 0.01 sm/s; furthermore, near the threshold point the competition is observed between the FDS and
the oscillating solution which seems to be absolutely unstable. We guess that these observations can be interpreted
as a manifestation of the rigid transition to FDS.

6. Conclusion

We considered the stationary flow and diffusion distributed structures (FDS) for the reaction–diffusion system
with flow in the Hopf instability domain. The FDS is known to emerge when the constant inhomogeneous boundary
condition is applied at the inlet and the Hopf mode is convectively unstable. In this paper, the FDS solution was
considered when the Hopf mode was unstable absolutely. In this case, two solutions tend to invade the space and
compete with each other.

The result of the competition depends on the flow rate and on the inflow perturbation. When the flow rate is large
and the inflow perturbation is small, the Hopf solution suppresses the FDS. But if the inflow perturbation becomes
large, the rigid transition to FDS takes place. In this case, the FDS solution expands in space producing the imposed
convective Hopf instability. When the flow rate is small, the FDS appears at the sufficiently large inflow perturbation
but does not expand in space. The FDS-Hopf domain boundary stays in a fixed position and two solutions coexist.

To describe the competition between the FDS and Hopf solutions, we derived a kind of coupled amplitude
equations. Analysis of these equations clarifies the details of the rigid transition to FDS. In particular, we obtained
that the critical inflow perturbation for the rigid transition to FDS slightly depends on the initial conditions in the
system. This can obstruct the direct numerical or experimental determination of the critical inflow perturbation for
t

urbation.
I he flow
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A

A

de more
e

ensional
s onditions
a

he rigid transition to FDS.
In experiments, decreasing of the flow rate may be accompanied with the decreasing of the inflow pert

n the domain of the rigid transition to FDS this may result in destruction of the FDS solution even when t
ate is above the critical value.
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ppendix A

The Brusselator is rather an artificial model for the reaction–diffusion system. In this appendix, we provi
xamples illustrating our effects in two others, more realistic, systems.

As has done above for the Brusselator model, we perform the series of numerical simulations for one-dim
ystems. The left, inflow, boundary is supposed to be constant, while at the outlet the zero flux boundary c
re applied.
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The first our example is the Lengyel–Epstein model. This is the well-known two variable equation set for the
chlorite–iodide–malonic acid–starch reaction (CIMA) reaction[26] (we have added the convective therm to these
equations):

∂u

∂t
= a− u− 4uv

1 + u2
+ ∂2u

∂x2
− φ

∂u

∂x
,

∂v

∂t
= δ

[
b

(
u− uv

1 + u2

)
+ c

∂2v

∂x2
− φ

∂v

∂x

]
. (A.1)

Here,u andv are the dynamical variables,a andb are the control parameters,c is the ratio of diffusion constants,
φ is the flow rate, andδ is the rescaling factor also responsible for the differential transport. The dynamics of this
model is studied in[27]. The FDS instability for this system is discussed in[16].

Fig. 14illustrates the spatio-temporal dynamics of this system with homogeneous inflow boundary conditions.
For the selected parameters set, the system is in the Hopf domain, and the Hopf instability is absolute. InFig. 15(a),
the small inflow perturbation is applied. It decays right near the inlet. Whole space is still occupied by the Hopf
oscillations. But if the perturbation becomes larger, as inFig. 15(b), the rigid transition to FDS takes place, and
the imposed convective Hopf instability is observed. Decreased flow rate inFig. 16is insufficient to produce the
imposed convective instability. The localized FDS domain appears near the inlet instead. FDS and Hopf solutions
coexist in this figure.

The other example is the reaction–diffusion system with the mixed-order nonlinearity. The model equations are
derived in[28]. Detailed investigation of the FDS instability in this system is performed in[16].

∂a

∂t
= δ

∂2a

∂x2
− δφ

∂a

∂x
+ µ− pab− (1 − p)ab2,

∂b

∂t
= ∂2b

∂x2
− φ

∂b

∂x
+ pab+ (1 − p)ab2 − b. (A.2)

Here,a, b are the dynamical variables,µ is the control parameter, the parameterp ∈ [0,1] measures the strength of
the quadratic nonlinearity against the cubic one,φ is treated as the flow rate, andδ is responsible for the differential
transport.

Fig. 17demonstrates the rigid transition to FDS for the system (A.2). In panel (a), the inflow perturbation is
small. This decays very fast and is not even visible in the figure. The spatio-temporal diagram for the case of the
homogeneous boundary looks identical and is not presented. In panel (b), the inflow perturbations is a little bit
larger. This results in the rigid transition to FDS and in the imposed convective instability. InFig. 18, the flow
rate is sufficiently small, and the rigid transition to FDS disappears. The localized FDS domain develops near the
i that the
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sition to
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nlet instead. The FDS-Hopf domain boundary stays in a fixed position, and two solutions coexist. Notice
patio-temporal dynamics of the system (A.2) is more complicated than in our previous illustrations: the fr
f the Hopf oscillations becomes different in presence of the constant boundary. The similar effect is disc

29,18] for the complex Ginzburg–Landau equation.
We presented two additional examples of the reaction–diffusion systems with flow where the rigid tran

DS takes place. For these systems, as well as for the Brusselator model, development of the FDS in p
he absolute Hopf instability depends on the flow rate and on the inflow perturbation. If the flow rate is suffi
igh, increasing of the inflow perturbation results in the rigid transition to FDS and in the imposed convecti

nstability. But when the flow rate is small, even large inflow perturbation does not produce the imposed co
nstability. The localized FDS domain appears near the inlet instead.
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