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WAVE THEORY OF A TRAVELING-WAVE TUBE OPERATED
NEAR THE CUTOFF

A.P.Kuznetsov,1 S. P.Kuznetsov,1 A. G. Rozhnev,2∗

E.V.Blokhina,2 and L. V. Bulgakova 3 UDC 621.385.6

We outline the main principles of the wave theory of interaction between an electron beam and
waves in a slow-wave structure near the edge of the transmission band. Formulation of the
basic equations and the boundary conditions is considered taking consistently into account that
the interaction parameter is small. A comparison of the results with a discrete version of the
theory is discussed. We also consider the starting conditions for the oscillation regime, the
linear amplification regimes, and some effects found within the framework of the nonstationary
nonlinear theory, e. g., parasitic self-excitation in the amplification regime and hard excitation of
the oscillation regime.

1. INTRODUCTION

In the history of Saratov workshops on microwave electronics, one can distinguish several problems of
particular importance, whose discussion always attracted considerable attention. Among such problems, we
should mention the theory of a traveling-wave tube (TWT) with a chain of coupled cavities (coupled-cavity
TWT) or, more generally, the theory of interaction between an electron beam and an electromagnetic field
near the edge of the transmission band of a slow-wave system. This problem was intensely studied in the
eighties. At the workshops, lectures discussing discrete interaction [1] and the theory of excitation of periodic
structures [2, 3] were presented and the results of our studies in the wave theory of a TWT operated near
the cutoff [4–14] were reported. The objective of the present paper is to generalize the results which we
obtained and to clarify the physical picture of interaction between an electron beam and a field near the
edge of the transmission band of a slow-wave system.

Our main task was to develop a theory describing the main physical effects observed during interaction
between an electron beam and a field near the edge of the transmission band using the minimum set of
dimensionless parameters. This theory should, in a certain sense, be a counterpart of the Pierce theory
in this frequency region. The fundamental approach consists in development of a theory for exactly the
processes near the cutoff and ensuring that this theory transforms to the Pierce theory for a fairly large
detuning from the cutoff frequency.

A coupled-cavity TWT represents a sequence of coupled cavities through which an electron beam
moves (Fig. 1a). Since the electrodynamic structure is periodic, its dispersion curve in the wavenumber–
frequency diagram is also periodic and has a period 2π/d. The dispersion curve of an electron beam with
velocity v0 is a straight line. It is clearly seen that, by varying the accelerating voltage V0, it is possible to
provide for beam–wave interaction in the middle of the transmission band, near the high-frequency cutoff,
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Fig. 1. Coupled-cavity TWT: sketch of the device (a) and the dispersion curve (b).

Fig. 2. Relativistic orotrons: the oscillator and amplifier (a) and the dispersion curve (b).

Fig. 3. Gyro-devices operated near the cutoff frequency of a smooth waveguide.

and near the low-frequency cutoff (Fig. 1b). The possibility of gradually passing from interaction with
forward waves to interaction with backward waves by tuning the accelerating voltage is the most interesting
feature of this system from the theoretical viewpoint.

It appears that the developed theory applies not only for a coupled-cavity TWT, but also for a broad
range of electron devices. One of them is a relativistic orotron, which represents a corrugated waveguide in
which a relativistic electron beam moves (Fig. 2a). The degree of corrugation is fairly weak, and, therefore,
the dispersion curve of the system is obtained by periodically continuing the dispersion curve of a smooth
waveguide.
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Different spatial harmonics are coupled, forming the dispersion curve of a corrugated waveguide
(Fig. 2b), near the wavenumbers β = π (2n + 1)/d, where n = 0,±1, . . . . The beam–field synchronism is
realized near the low-frequency cutoff where β0 ∼ 2π/d, and, hence, an orotron is called a 2π device. An
orotron can be operated in both oscillation and amplification modes.

Notably, the same physical concept and the same equations of excitation describe the operation of
devices in which the periodic structure is absent, but the interaction takes place, as in the previous case,
near the cutoff frequency. A gyrotron is an example of such a device (Fig. 3a). Without going deep into the
details, we only mention that with the variation in the magnetic field, the dispersion curve of an electron
beam is shifted parallel to itself, and the interaction can occur both with forward or backward waves and
in the immediate vicinity of the edge of the transmission band (Fig. 3b).

It is interesting to note that the stationary theory of a gyrotron with nonfixed field structure was
proposed in 1973 [15], a long time before the papers discussed here appeared, while the nonstationary
theory [16], somewhat later than the equations of the nonstationary theory of a coupled-cavity TWT were
published [4].

2. BASIC EQUATIONS

As for any electron device, the theory of interaction near the edge of the transmission band comprises
equations of excitation of a field and motion of electrons. The equations of motion are identical to the
equations of the conventional theory of TWT. The main problems are related to the formulation of the
equations of excitation. We will not make an historical review of various attempts to derive the equations of
excitation near the cutoff and only mention that a considerable contribution to the solution of this problem
was done by V. A. Solntsev and his disciples [17–21]. There are several methods of deriving these equations,
and they all lead to the same result if only the time-dependent processes whose spectrum is located in the
immediate vicinity of the edge of the transmission band are described. If a chain of relatively weakly coupled
cavities is considered, then it seems most reasonable to use the equations of excitation of periodic structures
as the basis for deriving these equations [22].

We represent the total electric field as a series of eigenfunctions with an additional term responsible
for the space-charge field:

E(x, y, z, t) =
∑

s

∑
n

Csn(t)E0s(x, y, z − nd) −∇Φ(x, y, z). (1)

Here, Csn(t) is the amplitude of the s-type oscillation localized near the nth cavity and Es(x, y, z, t) =
ΣnCsn(t)E0s(x, y, z − nd) is the field distribution of this type of oscillations. Since the cavities are assumed
identical, the oscillations localized near the nth cavity are obtained by translation of oscillations of the
“zeroth” cavity. It is important to mention that the boundary-value problem which permits one to calculate
the eigenfunctions Ens = E0s(x, y, z − nd) is formulated such that this eigenfunction is not localized in one
cavity, but is also nonzero in other cavities. This makes it possible to take into account the “penetration”
of the oscillation fields from the “own” cavity to the “neighboring” ones.

The following equations are valid for the coefficients Csn:

∂Csn(t)
∂t

− i
∑
m

ωsmCs (n−m)(t) = −
∫

j(x, y, z, t)E∗
0s(x, y, z − nd) dV. (2)

Here, j(x, y, z, t) is the current density of the electron beam, the integration is performed over the entire
waveguide volume, and ωsn are the coefficients of expansion of the dispersion characteristic in a Fourier
series:

ωs(β) =
∑
n

ωsn exp(inβd). (3)

Equations (1)–(3) are rigorous and can, in principle, be used to develop the theory of a coupled-cavity TWT,
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but this will be a discrete version of the theory. Our goal is to obtain wave equations based on the fact that
small parameters, associated with a narrow spectrum of wavenumbers and weak interaction, exist in this
problem.

We make the usual assumption that an electron beam efficiently interacts with one electrodynamic-
structure mode synchronous to it. Then we leave one term, corresponding to the synchronous field, in the
sum over the index s in Eq. (1). Applying continuous Fourier transform over the longitudinal coordinate z
to this field, we obtain

Es(x, y, t, β) = E0s(x, y, β)
∑

n

Csn(t) exp(iβnd),

E0s(x, y, β) =

+∞∫
−∞

E0β(x, y, z) exp(−iβz) dz, j(x, y, β, t) =

+∞∫
−∞

j(x, y, z, t) exp(−iβz) dz. (4)

Then we make the following assumptions:
— the spectral components of a signal are located near the cutoff wavenumber β0;
— the transverse distribution of the field for wavenumbers in the region |β−β0| � β0 can be assumed

independent of β;
— the nonsynchronous terms on the right-hand side of excitation equation (1) can be neglected.
With allowance for these approximations, we expand the dispersion relation at the extremum point

in a Taylor series near the cutoff wavenumber and keep two main terms

ωs(β) = ω0s ∓ |ω′′
s (β0)|
2

(β − β0)2, |β − β0| � β0, (5)

where ω0s = ωs(β0) and the prime denotes the derivative with respect to the argument. Hereafter in all
equations, the upper and lower signs correspond to the case of interaction near the high- and low-frequency
cutoffs, respectively.

The second assumption permits one to represent the field of a cavity as the product of vector eigen-
functions and the field amplitude:

E0s(x, y, β) ≈ E0s(β0)ψ(x, y), Es(x, y, β, t) ≈ Es(β, t)ψ(x, y), (6)

where E0s is the amplitude of the longitudinal component of the electric field of the mode, synchronous to
the electron beam, on the system axis and ψ(x, y) is the vector eigenfunction normalized by the condition
ψz(0, 0) = 1. The excitation equation

∂Es(β, t)
∂t

− iωs(β0)Es(β, t) ± i
|ω′′

s (β0)|
2

(β − β0)2Es(β, t) = −|E0(β0)|2 I(β, t)

I(β, t) =
∫
S⊥

j(x, y, β, t)ψ∗(x, y) dS, (7)

is satisfied for Es(β, t) in the (β, t) representation. Here I(β, t) is the excitation integral and S⊥ is the cross
section of the cavity.

To obtain equations in the spatio-temporal representation, one should introduce the slowly varying
amplitudes E(z, t) = Re[E(z, t) exp[i (ω0st−β0z)]] and I(z, t) = Re[J(z, t) exp[i (ω0st−β0z)]] of the field and
the current, respectively, extract the components, corresponding to the wave with wavenumber β0, from the
total field, and perform inverse Fourier transform over the coordinate. As a result, we obtain the excitation
equation of the slowly varying amplitude of the field (hereafter the subscript s is omitted for brevity):

∂E
∂t

± i
|ω′′(β0)|

2
∂2E
∂z2

= −|ω′′(β0)|β3
0

2
RJ(z, t). (8)
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This equation describes the effect of the electron beam on the field. It is easy to understand that
the equation takes into account only two spatial harmonics synchronous to the beam in the case where
the dispersion characteristics of the electron beam and the slow-wave system are crossed in the vicinity of
the extremum point. Equation (8) comprises a quantity R with impedance dimension, which we call the
modified coupling impedance:

R =
2 |E0(β0)|2
|ω′′(β0)|β3

0

. (9)

This quantity is constant and frequency-independent. Straightforward methods can be proposed to measure
R, and it can be shown that the modified coupling impedance is expressed in terms of the conventional
coupling impedance R±(β) of spatial harmonics by the formula

R = lim
β→β0

β − β0

β0
R±(β). (10)

Excitation equation (8) is parabolic, and its appearance in the theory is directly related to the use of
approximate expansion (5) for the dispersion relation of the synchronous mode. Obviously, the condition of
applicability of this expansion relates the quantity ∆ω = max |ω−ω0|, defined over all frequency components
of the signal amplified or generated in the system (the quantity ∆ω specifies the localization of the Fourier
spectrum near the cutoff frequency) and the total observation time T . The form of this relationship depends
on the particular type of the dispersion relation. For example, the condition ω′′′(β0) = 0 is satisfied in many
cases for symmetry reasons. The validity conditions for the parabolic equation are given by two inequalities

∆ω � |ω′′(β0)|2/|ωIV(β0)|, (∆ω)2 T ≤ |ω′′(β0)|2/|ωIV(β0)|.

As was mentioned above, the equations of motion remain the same as for the conventional theory of
TWT. If the electron phase is introduced as θ = ω0t− β0z, then the equation of motion is written in terms
of Lagrange variables as

dθ
dz

=
ω0

vz
− β0, (11)

dr
dz

=
p
pz
,

dp
dz

= − e

vz
(E + [v,B]) , (12)

where p = m0γv is the momentum, γ is the Lorentz factor, and m0 is the electron rest mass.
Since our goal is to develop a very simple theory which could adequately describe the features of

interaction near the cutoff, we adopt the following conventional approximations:
(i) the damping in this system at this stage is neglected;
(ii) the variation in the electron energy is assumed small;
(iii) the electron beam is assumed nonrelativistic;
(iv) the space-charge effects can be neglected;
(v) an unbounded focusing magnetic field is present.
Any of approximations (i)–(iv) can easily be rejected, if necessary, within the framework of the

one-dimensional theory. Taking into account the bounded focusing magnetic field requires consideration of
three-dimensional motion of electrons, which is possible, in principle, but significantly complicates numerical
simulation and is therefore not considered here.

Introducing dimensionless variables and parameters, which are discussed later, we arrive at the sys-
tem of equations describing the nonstationary processes near the cutoff frequency of a periodic slow-wave
structure

∂F

∂τ
± i

∂2F

∂ξ2
= iI, I =

1
π

2π∫
0

exp(−iθ) dθ0, (13)

360



TABLE 1.

τ = |ω′′(β0)| β2
0tε/2 Normalized time

ξ = εβ0z Normalized coordinate
F = E/(β0V0ε

2) Slowly varying amplitude of the field
I = J/I0 Slowly varying amplitude of the currrent
l = εβ0L Dimensionless length of the system

Bl = (β0 − ω0/v0)L Relative angle of transit of the electron beam
and the field at the cutoff frequency

Ωl2 = 2 (ω − ω0)L2/|ω′′(β0)| Frequency detuning from
cutoff

ε4 = I0R/(2V0) Interaction parameter

∂2θ

∂ξ2
= −Re[F (ξ, τ) exp(iθ)]. (14)

Equations (13) and (14) should be supplemented by conditions for electron phases in the plane of entry to
the interaction space and the initial conditions for the field:

θ(0) = θ0,
dθ
dξ

∣∣∣∣
ξ=0

= −B, θ0 ∈ [0, 2π], (15)

F (ξ, τ = 0) = F0(ξ). (16)

Along with conditions (15) and (16), the boundary conditions for the field F (ξ, τ) at the ends of the
interaction space are also required for complete formulation of the boundary-value problem. These will be
conditions written below. The presented equations describe the processes near the low- or high-frequency
edge of the transmission band depending on the chosen sign in excitation equation (13).

We note that when deriving equation of motion (14), one more approximation was used implicitly.
Since we consider wave packets in which the synchronous components have wave numbers close to β0, the
group velocity of an electromagnetic wave along the system is small, and the field distribution F (ξ, τ) can
be assumed almost constant during the time of transit of particles through the system. Hence, the time
derivative is absent in Eq. (14).

The dimensionless variables and parameters are presented in Table 1. Table 1 also includes I0, the
total current of the electron beam, and V0, the accelerating voltage of the electron beam. It is convenient
to use the parameters B, Ω, and I for numerical calculations and the parameters Bl, Ωl2, and l for analysis
of the results, since the first two parameters in such a form are independent of the electron-beam current.

3. BOUNDARY CONDITIONS FOR ELECTRON MICROWAVE DEVICES OPERATED NEAR
THE CUTOFF FREQUENCY

A significant feature of the theory describing a device operated near the cutoff frequency of an
electrodynamic structure is adequate formulation of the boundary conditions responsible for the reflection
of waves from the ends of a slow-wave system. Unlike the conventional TWT theory, which describes the field
in terms of waves propagating in the positive and negative directions and converting into each other due to
system inhomogeneities, the total field in our equations cannot be divided into such waves. Description of the
reflection processes using reflection coefficients is meaningless near the cutoff. This is still more important
since we want to describe not only propagating waves, but also the waves (with imaginary wavenumbers)
outside the frequency band, for which the conventional notion of a reflection coefficient is absent.

Nevertheless, if reflection coefficients are used for the formulation of boundary conditions, then the
following obstacle can be encountered. Let a small irregularity (see insert in Fig. 4) exist in a certain regular
structure having a cutoff frequency (it does not matter whether this structure is homogeneous or periodic).
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Generally, it can be shown that the coefficient of reflection from this irregularity behaves as is shown in Fig. 4.
This magnitude of this reflection is exactly unity at the cutoff frequency ωc and has the root singularity
Γ(ω) = −1 + C √ω − ωc, where C is a certain constant, at this point. Thus, the reflection coefficient is a
nonanalytical function of frequency near the cutoff and, therefore, is strongly varied even with the small
variation in frequency.

In order to understand what can be used instead

Fig. 4. Qualitative view of the dependence |Γ(ω)|
for a wave reflected from an irregularity in a
smooth waveguide.

Fig. 5. Equivalent scheme of a simple model of a
periodic structure based on coupled cavities. The
dashed line shows one cell of the system.

of the reflection coefficient, consider the following situa-
tion [5]. Let a wave with frequency Ω be incident from the
left onto the irregularity and be reflected from it. Assum-
ing the time-harmonic dependence in the form exp(iΩτ),
we obtain for the wave a stationary equation in which
the squared wavenumber is equal to ±Ω for the low- and
high-frequency cutoff, respectively:

d2F

dξ2
+ k2F = 0, k(Ω) =

√±Ω. (17)

Let us represent the solution in the form of a sum of two
waves with amplitudes F+ and F−:

F (ξ) = F+ exp[−ik(Ω)ξ] + F− exp[ik(Ω)ξ]. (18)

Differentiating Eq. (18) and assuming that the amplitudes
of the waves incident on the irregularity and reflected from
it are related in the plane ξ = 0 by the reflection coeffi-
cient, F+(0) = Γ(Ω)F−(0), we obtain an equation relating
the derivative of the total field and the field itself,

[F ′(ξ) + iα(Ω)F (ξ)]ξ=0 = 0, (19)

in which the function α(Ω) is determined by the expres-
sion

α(Ω) = k(Ω)
1 − Γ(Ω)
1 + Γ(Ω)

. (20)

Despite the fact that k(Ω) and Γ(Ω) have singularities, α(Ω) is an analytical function of frequency within
the transmission band and can be continued beyond the transmission band. Equation (19) represent the
desired boundary condition for the field.

As an example, we consider a simple model of a periodic structure in the form of a chain of LC
circuits coupled by inductances (Fig. 5). The irregularity in the system is modeled using the impedance Z0

equal to the wave impedance of the energy-output line. Fairly simple calculations yield the expressions (in
terms of dimensionless variables)

Γ(ω) = −1 +
√

2Z0ω
1/2
0

ω
√
L1/C0

√
ω − ω0 + . . . , α(ω) =

ωL1

Z0d

[
1 − 2L1C0√

L0C0
(ω − ω0) + . . .

]
(21)

for the reflection coefficient and the function α(Ω). Here, ω0 = 1/
√
L0C0, L1/d is the inductance per unit

length, and d is the typical size of a cell. It is seen that α(ω) is indeed an analytical function of the frequency,
although Γ(ω) has a root singularity. Since the function α(ω) is analytical, it can be assumed constant, i. e.,
α(ω) ≈ α(ω0), in a small frequency range near the cutoff frequency, and we will use this assumption in what
follows.
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Fig. 6. The models used for the description of
energy output in gyro-devices: perfect matching
in the cross section ξ = 0 [15, 16] (a) and the
waveguide loaded by a horn with a small opening
angle [23] (b).

Fig. 7. Function α(Ω) for the systems with diffrac-
tion energy output. The dashed line corresponds
to the case of perfect matching, and the solid lines,
to the case where the waveguide is loaded by a horn
with a small opening angle.

It appears that for a number of devices, specifying the energy-output device permits one to obtain
the function α(Ω) in explicit form. There are several types of boundary conditions for which this can be
done. We briefly consider two of them. Historically, perfect-matching conditions [15] were the first form of
boundary conditions used for the description of reflections in relativistic devices with nonfixed field structure.
These conditions were formulated for a gyrotron with nonfixed field structure, in which the electrodynamic
structure represents a smooth waveguide with radius slowly varying along the longitudinal axis. The model
used in [15] for the formulation of boundary conditions is shown in Fig. 6a. It is assumed that the region
of field–beam interaction is located at ξ < 0 and that this region can be nonuniform. The waveguide is
uniform on the right of the point ξ = 0, so that the wave reflection is absent in this region. Then, only
the waves escaping from the interaction region must exist for ξ > 0. Assuming that the signal spectrum in
such a system is narrow, it is easy to obtain boundary conditions in form (19), in which the function α(Ω)
is defined as follows:

α(Ω) =
√

Ω . (22)

If the signal frequency is not too close to the cutoff, then the assumption that reflections are absent
is valid. However, if the signal spectrum is very close to the cutoff frequency, then this approximation
ceases to be physically reasonable. It suffices to say that exactly at the cutoff frequency, as was mentioned
above, an infinitesimal inhomogeneity on the right of the output cross section leads to the appearance of
finite reflections. Hence, for any actual system, the signal components with frequencies close to cutoff will
undergo strong reflections. Since the regimes of generation or amplification of oscillations near the cutoff
in the mentioned systems is of particular interest, it seems natural to consider a more realistic system in
which the interaction space ends with a horn used for energy output (Fig. 6b). In this case, the boundary
condition retains form (19), while the function α(Ω) is equal to [23]

α(Ω) = κ0 exp(5iπ/6)
Ai′(exp(iπ/3)Ω/κ2

0)
Ai(exp(iπ/3)Ω/κ2

0)
, κ0 =

(2Ψν2
nm)1/3

R0
, (23)

where Ai(x) is an Airy function, νnm are the roots of a Bessel-function derivative, J ′
n(νnm) = 0, and the

parameter κ0 is expressed in terms of geometric parameters of the system, i. e., the opening angle Ψ of the
horn and the waveguide radius R0. The modulus and argument of the function α(Ω) are plotted by the solid
lines in Fig. 7. The same quantities for the function α(Ω) given by Eq. (22) are shown by the dashed lines.
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Fig. 8. Function G(τ) for nonstationary boundary
conditions (24). The dashed lines correspond to
the case of perfect matching, and the solid lines,
the case where the waveguide is loaded by a horn
with a small opening angle.

Fig. 9. The model of a coupled-cavity TWT used
for the analysis: 1 , the input waveguide, 2 , the
interaction space, 3 , the output waveguide, and
T1 and T2, the matching devices.

The obtained boundary conditions are valid for one spectral component. Obtaining boundary con-
ditions in the temporal representation requires using the inverse Fourier transform for Eq. (19). Then the
nonstationary boundary condition takes the form

F (0, τ) − i

τ∫
0

G(τ − τ ′)
∂F (0, τ − τ ′)

∂ξ
dτ ′ = 0, (24)

where
G(τ) = exp(iπ/4)/

√
πτ (25)

for the case of perfect matching [16], i. e., where the function α(Ω) is given by Eq. (22), and

G(τ) = exp(iπ/3)
∞∑

n=1

exp(−a′n exp(iπ/6)τ)
a′n

(26)

if a horn is used as the output device [23] (the function α(Ω) is given by Eq. (23)). In Eq. (26), a′n are
the absolute values of the arguments for which the Airy-function derivative becomes zero. A method for
efficient calculation of the sum in Eq. (26) is presented in [23]. The form of the function G(τ) for both cases
is shown in Fig. 8 (the solid lines correspond to Eq. (26) and the dashed lines, to Eq. (25)).

It should be mentioned that the obtained nonstationary boundary conditions are nonlocal in time,
i. e., the field in the output plane at the time instant τ depends on the field values at all the previous
time instants. The presence of such nonlocal coupling is explained by the strong dispersion of the waves
propagating in the output device at near-cutoff frequencies.

Returning to boundary conditions for description of the processes in a coupled-cavity TWT, we note
that the periodic structure in such a device is connected to the input and output sections via the matching
devices T1 and T2, as is shown in Fig. 9, and the parameters are chosen such that to minimize dispersion
in the input and output sections for the operating frequency range. In this case, the function α(Ω) in the
boundary condition is slowly varied in the operating frequency range, and can be assumed constant with good
accuracy [5]. This considerably simplifies modeling of nonstationary processes since in this approximation,
the boundary conditions in the nonstationary case have the same form as in the stationary theory.

It can be assumed that in the most general formulation, the signals are fed into the system from both
the gun and the collector ends. We designate their amplitudes by Finput(τ) and Fcount(τ). Reflections of
these waves from the ends of the system as well as output of energy from the interaction space in the feed
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sections result in the formation of waves traveling off the periodic structure. We designate their amplitudes
by Frefl(τ) and Foutput(τ) (see Fig. 9). Then the boundary conditions describing these processes at both
ends of the interaction space take the form [5]

[
∂F (ξ, τ)
∂ξ

± iα1F (ξ, τ)
]

ξ=0

= Finput(τ), (27a)

[
∂F (ξ, τ)
∂ξ

∓ iα1F (ξ, τ)
]

ξ=0

= Frefl(τ), (27b)

[
∂F (ξ, τ)
∂ξ

∓ iα2F (ξ, τ)
]

ξ=l

= Fcount(τ), (27c)

[
∂F (ξ, τ)
∂ξ

± iα2F (ξ, τ)
]

ξ=l

= Foutput(τ). (27d)

In these formulas, the choice of the sign is determined by the cutoff type: the upper sign corresponds to the
high-frequency, and the lower sign, the low-frequency edge of the transmission band. Rigorously speaking,
only Eqs. (27a) and (27c) are the boundary conditions in Eq. (27), while the remaining Eqs. (27b) and (27d)
determine the signals Frefl(τ) and Foutput(τ) escaping from the system in the input and output sections.

Hereafter, to reduce the number of parameters, we consider various operation regimes of the device
assuming that the feed sections and the matching transformers are identical and the system is completely
matched at a certain point of the transmission band. Then the dimensionless parameters α1l and α2l are
equal to each other and are approximately determined by the formula α1l = α2l = αl ≈ |βmatch − β0|L,
where βmatch is the wavenumber of the “cold” wavenumber of the system at the matching point. According
to estimates, the realistic values of the parameter αl for a coupled-cavity TWT amount to about 5−50 [5,
6].

Equations (13)–(16) together with boundary conditions (27a) and (27c) completely determine the
dynamics of the system in all possible operation regimes.

4. LINEAR THEORY OF A COUPLED-CAVITY TWT: AMPLIFICATION AND PARASITIC
SELF-EXCITATION

For considering stationary linear operation regimes of a coupled-cavity TWT, we assume that all
quantities have the time-harmonic dependence exp(iΩτ). Then, transforming the equations of motion of
electrons to the equation for the dimensionless current amplitude I(ξ), we obtain the following equations
describing the operation of the device [6, 7, 12]:

∓d2F (ξ)
dξ2

+ ΩF (ξ) = iI(ξ),
(

d
dξ

− iB

)2

I(ξ) = iF (ξ). (28)

These equations are supplemented by the boundary conditions for the current at ξ = 0,

I(0) = 0, I ′(0) = 0, (29)

as well as by the boundary conditions for the field, which follow from Eqs. (27a) and (27c), putting Fcount =
0 and Finput(τ) = F̄input exp(iΩτ) and omitting the common exponential factor. We find the complex
amplitude F̄output of the output signal from Eq. (27d) transformed in the same manner.

The dependences of the gain of a coupled-cavity TWT in the linear regime on the mismatch parameter
B, calculated for different frequencies, are shown in Figs. 10 and 11 for the high- and low-frequency edges
of the transmission band, respectively. The results obtained using the discrete approach [6] are shown
by dots in these figures for comparison. It is seen that the coincidence of the results calculated near the
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Fig. 10. Gain of a coupled-cavity TWT in the linear regime in the case of interaction near the high-frequency
cutoff. The dots correspond to a calculation in terms of the discrete theory [6].

high-frequency cutoff is fairly good. The dependences for a different number N of cells in the slow-wave
system for the low-frequency edge are shown in Fig. 11. A certain difference in the results disappears as N
increases.

One of the important problems in the study of

Fig. 11. Gain of a coupled-cavity TWT in the lin-
ear regime in the case of interaction near the low-
frequency cutoff. The dots correspond to a calcula-
tion in terms of the discrete theory.

operation regimes of a TWT is analysis of the par-
asitic self-excitation at frequencies near cutoff [7, 9].
The starting conditions of parasitic generation can be
found by joint solution of Eqs. (28) of the linear theory,
conditions (29) for the current, and boundary condi-
tions (27a) and (27c), in which one should put Finput = 0
and Fcount = 0. The requirement that a nontrivial so-
lution of this system of equations should exist leads to
the starting conditions of generation:

4∑
i=1

(ki ± α1) (ki ± α2) exp(−ikil)
ki + (ki ± Ω)/(ki +B)

= 0, (30)

where ki are the roots of the dispersion equation

(k2 ± Ω) (k +B)2 − 1 = 0. (31)

If the boundary-condition parameters α1 = α2 = α and the mismatch parameter are fixed, then
complex equation (30) permits one to find the real quantities l and Ω, i. e., the dimensionless starting length
and the self-excitation frequency. We represent the calculation results in the form of the dependences l(Bl)
and

√|Ω| l(Bl).
Consider at first the self-excitation near the high-frequency cutoff. The results of numerical calcu-

lation of the starting parameters are presented in Fig. 12 for different values of the parameter αl. In these
diagrams, an increase in the parameter Bl corresponds to an increase in the accelerating voltage of the
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Fig. 12. Starting conditions of self-excitation of a TWT near the high-frequency cutoff. In the upper plots,
the dashed line shows the starting conditions for a BWT and the dotted line separates the domains in which
the absolute and convective instabilities in a system with infinite length are realized.

electron beam and a transition from the regime of predominant interaction with a backward wave to the
regime of predominant interaction with a forward wave.

Two mechanisms responsible for the excitation of a TWT near the high-frequency cutoff can be
mentioned. The first mechanism is realized for large values of αl and is related to the excitation of resonant
modes. By definition, the quantity αl determines the properties of a “cold” system and the intensity of
the electromagnetic field radiated from it. For large values of this parameter, the resonance properties of
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Fig. 13. Starting conditions of self-excitation of a TWT near the low-frequency cutoff. The designations for
the lines are the same as in Fig. 12.

the system have an effect, and the electron beam efficiently interacts with the forward wave component
(resonant mode) if nπ < Bl < nπ+ 2π or with the backward wave component if nπ− 2π < Bl < nπ. If one
of these conditions is satisfied, then self-excitation of the nth mode will occur for the corresponding current,
and the starting lines

√|Ω| l(Bl), determining the starting frequencies, will resemble steps with frequency
varied only slightly with the variation in the electron-beam velocity.

With decrease in the parameter αl, the system loses its resonance properties, and the described
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self-excitation picture changes. In the case of small αl, the mechanism of excitation of oscillations in the
system is not related to reflections of an electromagnetic wave from the ends of a slow-wave system, and the
mechanism stipulated by the presence of distributed feedback due to interaction with a backward wave is
realized in this case. In the region of the negative values of Bl, the self-excitation occurs in the same way as
in a conventional TWT, as is clearly seen in Fig. 12 for αl = 10, where the dashed line corresponds to the
starting conditions of BWT self-excitation. In the case of synchronism between the electron beam and the
forward wave (Bl > 0), the self-excitation occurs due to the specific mechanism related to the possibility of
existence of the absolute instability in the system near the high-frequency cutoff even if synchronism with
predominantly forward waves takes place [8]. The dashed line in the same figure separates the domains in
the parameter plane (Bl, l) in which the absolute and convective instabilities in an infinitely long system
described by dispersion equation (31) are realized.

It is interesting to note that the minimum starting current corresponds to such an accelerating voltage
of the electron beam for which the synchronism point is still located on the forward branch of the dispersion
curve. This fact explains the increased hazard of self-excitation of a coupled-cavity TWT exactly near the
high-frequency edge of the transmission band [7].

For the case of interaction near the low-frequency cutoff, the results of calculation of the starting
conditions are shown in Fig. 13. Now, an increase in voltage (or in the parameter Bl) leads to a transition
from interaction between the electron beam and the forward branch of the dispersion curve of the cold
system to interaction with the backward branch. On the whole, the starting characteristics of the parasitic
generation remain qualitatively the same as for the case of a high-frequency cutoff. However, in the case of
small reflections from the ends of a slow-wave system, self-excitation on the forward branch now corresponds
to very large starting currents. This is related to the fact that the boundary between the absolute and
convective instabilities now corresponds to the value Bl = 0 (dashed line in Fig. 13). Hence, if the electron
beam is in synchronism with the forward wave, then reflections of a signal from the ends of the system are
the only reason for self-excitation. It is interesting to note that in the case of exact synchronism between the
electron beam and the field at the cutoff frequency, the starting current turns out to be equal to the infinity.
The minimum of the starting current lies in the region of synchronism with backward waves. As the level of
reflections from the ends of the system increases gradually, the resonance mechanism of self-excitation also
begins to be play a role (see Fig. 13 for αl=30; 50).

5. NONSTATIONARY EFFECTS

To study the broader range of problems related to interaction between an electron beam and an
electromagnetic field, one should use the approach based on nonstationary nonlinear equations describing
this interaction [4, 13, 14]. The main advantage of the nonstationary approach is that it allows not to
make a priori assumptions on the nature of the stationary regime of oscillations. This regime is found in a
natural way as a result of modeling of the temporal behavior of the system, and the problem of stability of
the found regime is also solved correspondingly. In such complex distributed dynamic systems as “electron
beam —electromagnetic wave,” various oscillation regimes, including stationary, periodic, and chaotic, are
possible, and some nontrivial effects, whose prediction and analysis are possible only within the framework
of the nonstationary approach, can also occur there. Several such effects are considered below.

To study the nonstationary processes, we performed numerical simulation of Eqs. (13) and (14),
supplemented with initial conditions (15) and (16). The boundary condition for the field at the right-hand
end of the interaction space was specified by Eq. (27c). It was assumed in this equation that Fcount =0, and
the boundary condition at the gun end of the tube was determined by the type of the problem being solved.

As the first effect, we consider the self-excitation of a coupled-cavity TWT, initiated by an amplified
signal. We assume that a monochromatic signal is fed at the tube input. In this case, the boundary condition
for ξ = 0 should be taken in form (27a) by putting Finput(τ) = F 0

input exp(iΩτ) for τ > 0, where Ω is the
frequency of the input signal.

Consider at first the process of onset of the stationary regime of amplification where the interaction
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occurs near the low-frequency edge of the transmission band. Figure 14 shows the temporal dependences
of the output-signal amplitude for Ωl2 = 121, Bl = −3.5π, l = 4.5, and α1l = α2l = 20. The curves in
this figure correspond to different values of the initial amplitude of the input signal. It is seen that all
the transient processes at the low-frequency cutoff lead to the onset of stationary oscillations with constant
amplitude and frequency equal to the frequency of the signal fed to the input, even if the input-signal
amplitude is fairly large. Taking into account nonlinear effects at the low-frequency edge of the transmission
band leads only to a decrease in the gain with increase in the input-signal amplitude.

A different process can be observed at the high-

Fig. 14. Onset of the stationary regime of ampli-
fication in the case of interaction near the low-
frequency cutoff. The curves correspond to differ-
ent values of the input-signal power.

frequency edge of the transmission band. Let, e. g., the
parameters Bl = 2.8π, l = 3.5, and Ωl2 = −30.6 be cho-
sen. In this case, if the input-signal amplitude is relatively
small (F 0

input = 2.0), then stationary regimes are settled
after the transient process (Fig. 15a). However, if a fairly
powerful signal with F 0

input = 4.0 is supplied to the input,
then signal-amplitude oscillations not decaying with time
are observed.

Figure 15 also shows the input-signal spectra in
both cases. For a small input power, the spectrum com-
prises a single line whose frequency is equal to the input-
signal frequency. In the second case, the spectrum is dis-
crete and contains a component at the frequency of the
amplified signal and the main parasitic component having
the frequency Ωl2 ≈ −9.9 close to the eigenfrequency of
the first resonant mode of the “cold” system (Ωl2 ≈ −π2). The remaining lines in the spectrum represent
various combinations of these frequencies.

The considerably different behavior of the system near the low- and high-frequency edges of the
transmission band is related to the nonlinear effects of deceleration of the electron beam by the radiation
field. The black circles in Figs. 12 and 13 show the points in the parameter plane (Bl, l) at which the
simulation was performed. For the high-frequency cutoff, deceleration of the electron beam and a decrease
in its average velocity lead to an efficient decrease in the parameter Bl. In this case, the operating point
in Fig. 12 is shifted to the left and enters the self-excitation area. Near the low-frequency cutoff, on the
contrary, a decrease in the parameter Bl owing to the nonlinear deceleration shifts the operating point off
the self-excitation area (see Fig. 13), and, therefore, the parasitic oscillation does not occur.

Hard excitation of oscillations is another nonlinear effect that can be observed in a coupled-cavity
TWT during interaction near the cutoff. As an example, we consider interaction near the high-frequency
cutoff. The triangles in Fig. 12 show the points at which the onset of oscillations in the system was simulated
in the absence of the input signal. The initial distribution of the field was assigned in the form of the first
resonance mode F (ξ, 0) = F0 sin(πξ/l), and the calculations were performed for different values of the
initial amplitude F0. The obtained results are given in Fig. 16 in the form of temporal dependences of the
amplitudes of the signals radiated from the system into the output section (solid line) and the input section
(dashed line). Figure 16a corresponds to the parameters Bl = 2.5 and l = 3.4, Fig. 16b, to the parameters
Bl = 3 and l = 4, and Fig. 16c, to the parameters Bl = 3.5 and l = 4.7. The effect of hard excitation of
oscillations was observed. In all three cases. For small amplitudes of the initial distribution of the field,
oscillations completely decay with time. However, if the quantity F0 exceeds a certain threshold value, then
stationary oscillations are settled in the system as a result of the transient process. In this case, the field
distribution along the interaction space and the oscillation frequency correspond to the first resonance mode
of the “cold” system.

Hard excitation is also related to the fact that for a large signal amplitude, the nonlinear deceleration
of the electron beam in the chosen parameter region in the plane (Bl, l) improves interaction between
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Fig. 15. The self-excitation initiated by a high-power input signal during interaction near the high-frequency
cutoff. Onset of oscillations for relatively small (a) and large (b) input powers. The upper plots show the
temporal dependences of the output-signal amplitude, and the lower plots, the output-signal spectra.

Fig. 16. Hard excitation of oscillations in a
coupled-cavity TWT for Bl = 2.5 and l = 3.4
(a), Bl = 3 and l = 4 (b), and Bl = 3.5 and
l = 4.7 (c). The solid and dashed lines correspond
to the signals radiated from the collector and the
gun ends of the system, respectively.

the electrons and the field of the first resonance mode. While this process is inefficient in the linear regime,
the oscillations turn out to be self-sustained in the nonlinear regime, i. e., for a large signal amplitude.
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Observation of the hysteresis phenomenon near the boundary of the oscillation domain also becomes pos-
sible owing to the possibility of hard excitation of oscillations in the system. When passing through this
boundary, oscillations with finite amplitude will arise in the system, but if, by varying the parameters, the
linear oscillation domain is reached, then these oscillations will exist till their quenching for a certain finite
displacement from the oscillation-domain boundary.

6. CONCLUSIONS

Development of the wave theory of interaction between electron beams and electromagnetic waves
near the edge of the transmission band is of fundamental interest for microwave electronics. Indeed, such
a theory should bridge the obvious gap. While interaction separately with forward or backward waves was
qualitatively understood and theoretically studied a long time ago, the problem of describing the intermediate
situation where the synchronism region of an electron beam and oscillations in the electrodynamic structure
is located near the cutoff has for a long time presented difficulties and, fundamentally, remained unsolved.
At the same time, understanding of the features of the interaction near the cutoff is important for a variety
of microwave electronic devices such as a coupled-cavity TWT, an orotron, a gyrotron, etc.

From the theoretical viewpoint, a study of devices operated at the cutoff is of particular interest since
they combine in a nontrivial way the features typical of devices with forward waves and with counterprop-
agating waves as well as devices with localized cavity oscillations. The use of the nonstationary nonlinear
theory for describing the dynamics of electron oscillators and amplifiers operated near the cutoff is especially
important since in this case, the realized regime is specified immediately during numerical simulation of the
onset of oscillations.

The series of papers included in the present overview developed the wave theory of interaction between
an electron beam and the field of an electrodynamic structure near the cutoff, in which all fundamental
difficulties were overcome. This theory is constructed with allowance for the specific features of the long-term
interaction, is simple, and offers the minimum set of significant parameters. Moreover, this theory includes
all the main effects realized near the cutoff of the transmission band and gives a qualitatively clear picture
of these effects. All the variables and parameters used in the model do not have singularities or divergences
and, therefore, are good for measurement and practical application. Obviously, the developed theory and
the picture of phenomena based on it will help considerably with the development and optimization of
microwave electron devices operated near the cutoff.

This work was supported by the Russian Foundation for Basic Research (project Nos. 03–02–16192
and 02–02–17317).
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