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In many fields of mathematics and physics researchers use to classify entities according to their 
codimension, or degree of structural stability. In particular, this is a fundament of bifurcation theory and 
catastrophe theory. After Feigenbaum's discovery of the period-doubling universality  and development 
of the renormalization-group (RG) method, it seems natural to use analogous approach to situations, 
which occur in multi-parameter families of nonlinear systems at the onset of chaos, and manifest scaling 
regularities (specific for each particular universality class). Now, a number of such situations has been 
discovered [1]. In concern to possible observation of these behaviors in physical systems, a question of 
principle significance is analysis of effect of inevitable noise, which destroys subtle details of the fractal-
like self-similar structures in phase space and in parameter space associated with the transitions. 

Theoretical approach to description of effect of noise based on the RG analysis was suggested in 
pioneering works of Crutchfield et al. and Shraiman et al. [2] in application to the period-doubling 
transition to chaos in dissipative systems. They obtained a universal factor γ=6.619036… responsible for 
the scaling properties of the transition in respect to the effect of noise. Namely, decrease of amplitude of 
noise with that factor ensures a possibility to observe one more level of the period doubling. In the fol-
lowing table we summarize relevant information for the case of the Feigenbaum critical behavior. 

Critical point type: F (Feigenbaum) 
Scaling factors for state space and parameter space: 
α=−2.502907, δ=4.669201 
Noise scaling factor [2]: γ=6.619036  

Model map:  εξ+λ− 21 xx

Critical point location: 
λ=1.401155189092 

The above table is a pattern for other types of critical behavior, which are reviewed in this report. The 
noise is introduced in the equations by means of a random value ξ with 0>=ξ<  and 12

12 >=ξ< . 
For each type of critical behavior, we present respective universal constants responsible for scaling 

properties in respect to noise obtained from the RG analysis. The scaling properties are illustrated, e.g., 
with portraits of noisy critical attractors of model systems and gray-scale charts of Lyapunov exponents in 
the parameter planes in different scales (Fig.1). Also, we discuss feasible systems manifesting the critical 
behavior of the mentioned classes and possibility of experimental observation of the stated regularities. 

Types of critical behavior intrinsic to one-dimensional maps  

T (Tricritical) 
α=−1.690303,  
δ1=7.284686, δ2=α2=2.857124 
Noise scaling factor: γ=8.243911 

Model map:  εξ++− 3xBxAx

Critical point location: 
A=0.242698757, B=1.594901356 

S (six-power) 
α=−1.467742,  
δ1=9.296247, δ2=α4=4.640870, δ3=α2=2.154268, 
Noise scaling factor: γ=10.0378864 

Model map:  εξ+−−− CxBxAxx 421
Critical point location: 
A=1.872448192, B=−1.625205285, 
C=1.094016102 

E (eight-power) 
α=−1.358017,  
δ1=10.948624, δ2=α4=3.401114, δ3=α2=1.844211, 
Noise scaling factor: γ=11.593865 

Model map:  εξ+−−− CxBxAxx 421
Critical point location: 
A=2.449366934, B=−1.260415730, 
C=0.700954625 

Critical behavior of complex analytic maps at points of accumulation of M-tripling cascades 

GSK3 (Golberg-Sinai-Khanin, period-tripling) 
α=−1.131475+3.260011i 
δ=−0.852664−18.1097279i 
Noise scaling factor: γ=12.206641 

Model map:  εξ+− 2zAz

Critical point location: 
A=0.220536522+0.798246947i 
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Critical behavior intrinsic to period-doubling systems with unidirectional coupling 

B (Bicritical) 
α=−2.502907, β=−1.505318, 
δ1=4.669201, δ2=2.392724 
Noise scaling factors: γ1=6.619036, γ2=2.713695 

Model map:  
)1,1(),( 2

22
1

2 ξε+−−ξε+λ− BxAyxyx  
Critical point location at B=0.375: 
λ=1.401155189092, A=1.124981403 

Types of critical behavior intrinsic to two-dimensional maps 

H (Hamiltonian period-doubling) 
α=−4.018077, β=16.363897, 
δ1=8.721097, δ2=2 
Noise scaling factor [3]: γ=17.016534 

Model map:  
),1(),( 2 xbyaxyx εξ+−−  

Critical point location:  
b=1, a=4.136166804 

FQ (Feigenbaum + Quasiperiodicity) 
α=−1.900072, β=−4.008158, 
δ1=6.326319, δ2=3.444710 
Noise scaling factor: γ=8.206143 

Model map:  
)1,1(),( 2 bxydxyaxyx −εξ++−  

Critical point location at d=0.3:  
a=1.76719290, b=1.62967802 

C (“Cycle”, period-quadrupling) 
α=6.565350, β=22.120227, 
δ1=92.431263, δ2=4.192444 
Noise scaling factor: γ=51.06903 

Model map:  
),(),( 22 dyxbyxayx +−εξ++−  

Critical point location at b=−0.6663: 
a=0.24990280, d=0.452902880 

Critical behavior of the golden-mean quasiperiodic orbits 

GM (critical Golden-Mean quasiperiodicity) 
α=−1.288574,  
δ1=−2.833611, δ2=α2=1.660424 
Noise scaling factor [4]: γ=2.306185 

Model (the circle map):  
)1(mod2sin)2( εξ+ππ−+ xKrxx  

Critical point location:  
K=1, r=0.6066610634701 

TDT (Torus Doubling Terminal) 

α3=3.963766,  
δ1=10.502983, δ2=5.188118 
Noise scaling factor: γ=20.048638 

Model map:  
),2sin(),( 2 wyyKxyx +εξ+π+−λ  

Critical point at 2)15( −=w :  
λ=1.1580968567, K=0.3602484021 

 
Fig. 1. Parameter plane scaling near the GM critical point in the circle map with noise. Gray tones designate 
negative values of the Lyapunov exponent Λ (the lighter the color, the less negative Λ is). Domains of zero Λ are 
white, and those of Λ>0 are black (chaos). The main diagram in coordinates (r, K) corresponds to the noise level 
ε=0.03. In the last two panels shown separately in special local coordinates (C1, C2) the horizontal and vertical 
scales are changed by ...833.21 −=δ  and ...660.12 =δ , and the noise level is decreased by ...306.2=γ   
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