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Stationary flow- and diffusion-distributed structu@D$S) patterns appear in a reaction-diffusion-advection
system when a constant forcing is applied at the inlet of the reactor. We show that if the forcing is subject to
noise, the FDS can be destroyed via the noise-induced Hopf instability. However, the FDS patterns are restored
if the flow rate is sufficiently high. We demonstrate that the critical flow rate which is required for the
stabilization of FDS has a power-law dependence on the noise amplitude.
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Flow- and diffusion-distributed structure$DS) are a  when noise is applied at the inlet. Our concrete example is
relatively new type of stationary pattern formed in reaction-the well-known Lengyel-Epstein model for the chlorite-
diffusion systems in the presence of an open flow. Thes@dide-malonic acid-starctCIMA) reaction[5,16,17,
patterns appear due to a constant forcing being applied at the

inlet boundary of the reactor when the flow rate becomes U+ Pl — Uy =a— U= 4up/(1 +u), (1)
sufficiently high[1-5]. If the inlet is subjected to fluctua-
tions, the FDS may be destroyed. This was reported in the U+ Uy — Suy = b[u— uv/(1 +u?)]. (2

experimental work$6,7]. The FDS was observed for suffi- ) )
ciently high flow rate while slowing down the flow results in "€ chemical reactants are supplied at one end of the reactor
the appearance of nonstationary structures. and flow down through it at a speegl The dynamic vari-

The effect of the inlet noise on convectively unstable dis-ablesu(x,t) andv(x,t) describe the concentrations of the two

tributed systems was studied by a lot of authors. We recalftéracting chemical species, aads the ratio of the diffu-

that in a convectively unstable system the growing perturbaSion coefficients for these reagengsandb stand for two
tion drifts with the flow and decays when observed from aCther species presented in excess and are considered as ki-
fixed point. On the other hand, the absolute instability of the"€ticS parameters. This system aIIowg f20r the uniform
system means that the initially localized perturbation givestéady-state solutions=a/5 andvs=1+a’/5" which can

rise to a nonzero amplitude pattern at any fixed point inlose its stability via either the Hopf or the Turing bifurcation.

space[1,8-10 (see also therein references to the earlierThe critical points as obtained from the linear stability

works). Due to the extreme sensitivity of the convectively analy/%e bH:(3az—53)/ (5a),  b;=g53+ 13a2'
unstable state to perturbations, several autfibts13 con- ~ —4ay10(5°+a?)]/(5a), respectively. Below we shall restrict

clude that wave patterns may be generated and sustained deiérselves to the case of the Hopf instability taking> by
to amplification of fluctuations from an upstream noiseandb< by (for the CIMA system supercritical values bfie
source. A more subtle than a straightforward amplification ofoelow bifurcation points Although the Hopf bifurcation can
noise interplay between fluctuations and dynamics is rebe either super- or subcritical, our analysis remains valid in
vealed in[14] where the onset of turbulence in flow systemsboth cases since we consider the system far from the bifur-
is treated as a kind of noise-induced transition. Kuznetsogation point.
[15] has studied the effect of the inlet noise on a spatially In the presence of constant inlet forcing a stationary struc-
uniform reaction-diffusion-advection system. The noise-ture appears near the inlet, which decays in space if the flow
induced absolute instability is observed: the inlet noise infate is small. When the flow rate grows, the uniform steady
creases the critical flow rate of transition from absolute tostateus andvs becomes spatially unstable with respect to
convective instability and the new critical value demon-perturbations that are constant in tifiig2]. Using this con-
strates the power-law dependence on the noise amplitude. dition we obtain from the dispersion equation the critical
This paper describes the behavior of reaction-diffusion{0int ¢gps above which the constant inlet forcing gives rise
advection systems that undergo a Hopf instability and alsé0 @ nondecaying FD§5],

can sustain FDS patterns. We study the stability of the FDS e \/4Oa3b(5+ 1) (3226 + Bab- 12502
P57 N (25 +a?)(s+1)(3a2 - 5ab- 125
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FIG. 2. Spatial distributions of the time variance for diagrams in

200
"\4 Fig. 1 (the letters correspond to the panels of Fig.Decaying of

190 the curve(c) confirms the stabilization of the FDS at high flow rate
180 as observed in Fig.(t).
170 (4) at different flow rates. The spatiotemporal diagrams in
160 this figure are qualitatively similar to the experimental re-

-l sults in[6], Fig. 4 and in[7], Fig. 2c).
150 o 1 In panel(a) of Fig. 1 the FDS appears near the inlet and

1

(b) 100 Lol 200 2ell 60 S50 grows until the temporal perturbations remain small. Then,
around the pointx=75 the FDS is destroyed. Behind this
200 point the Hopf solution appears instead. Note the high regu-
larity of this solution. The only source of the irregularity is
190 Co I
the smooth variation in space of the phase of oscillations.
180 This example is obtained for sufficiently small noise ampli-
“170 tude. Higher noise amplitude results in the higher irregularity
to the phase distribution, but the whole structure remains
160 ordered.
150 Panel(b) of Fig. 1 is obtained for a higher flow rate. As in
i) 0 50 100 150x200 250 300 350 the previous case, the FDS again grows from the inlet and

the noise manifests itself at about 75. From this figure one

FIG. 1. FDS in the presence of the boundary noise. The flowS€es that the interval-Ox<75 is ne.arly. e‘?lEJa' to thg bound-
rate grows from(a) ¢=6 to (b) $=6.5 and to(c) #=7. In panel(@) ary layer where thg FI_DS rgaches its limiting amplitude. The
the noise destroys the FDS and induces the absolute Hopf instabi0fluence of the noise in this panel is much weaker. The FDS
ity, while in panel(c) FDS is stabilized by the high flow rate.  Pattern keeps its overall structure, but the stripes are cut and
=20,b=6, §=3, Up,=0.1, =0.05. joined again with the shift between the upper and lower
parts. This remarkable coordination between the FDS stripes
and the wave of perturbation was earlier reported in the work

FDS (here ¢, is the critical point of the transition from .
absolute to convective instability that can be found from theOf Kuptsovet al.[19], where the perturbation to FDS by the

dispersion equation of a systei®,9]). This case is referred moving particle was studied. We also note that coexisting

to as a soft transition to FDELO 13 But if, however, ¢ stationary and traveling waves have been observed in the
H . ) 1Y¥ca . H

> > depg the expanding FDS appears provided that the®yStem without nois¢20].

flow rate and the inflow forcing are sufficiently high. This is Th'ln pan<|a|(c_) othig. 1bt.|he ﬂ.OW re;tltié)ssin{:/reased el'lven mot:e.
the case of the rigid transition to FD&0,18. Below we Is results in the stabilization o - Very small perturba-

shall concentrate on the case of the soft transition. tions emerge near the poir&75 but rapidly decay, and the

The inlet boundary condition in the presence of noisehole picture looks identical to the FDS without noise.
takes the form The curves in Fig. 2 present the spatial distributions of the

variance calculated for the time series at every fixed point
U(x=0,t) =ug+ Upyd 1 + 64(1)], v(x=0,t)=vs. (4) for the solutions in Fig. 1. Obviously, the distribution is iden-
tically zero for ideal FDS. All the curves grow exponentially
Here ug andug is the uniform steady statey,,q is the con-  with nearly identical rates within the boundary layer of the
stant part of the inlet forcingg(t) e [-1,1] is the noise with  FDS 0<x< 75. From this point the first curvé), that cor-
uniform distribution, andd controls the noise amplitude. We respond to the fully destroyed FDS in Fig(al, rapidly
also checked the response to Gaussian noise and obtainsldws down and reaches the saturated value at akout
qualitatively similar results. =130. The curveb) drawn for the intermediate case in Fig.
Figure 1 presents numerical solutions to the systéin  1(b) behaves qualitatively similar as the previous one but its
and (2). Here and below the solutions are obtained via aapproaching to the limiting value is much slower. On the
semi-implicit Cranck-Nicholson scheme with the steps ofcontrary, the curvec) corresponding to the stable FDS in
discretizationtAx=~0.1 andAt=0.0125. The figure describes Fig. 1(c) decays exponentially behind the poi#: 75. This
three typical cases observed in the presence of the inlet noisgearly indicates that the FDS in Fig(cl is indeed insensi-
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FIG. 4. Stabilization flow ratebs,,vs the noise amplitudé for
different steps of the temporal numerical gra=20, b=6, §=3,
drps=4.46. Step of the spatial grid isx=0.1. Points present the
numerical data and the lines are the approximating functiéhs
Line At=0 is obtained via the extrapolation and have the coeffi-
cients ¢=5.27, x=2.52, ando=0.31.

[Fl

that there exists the critical flow ratg,, at which the sta-
bilization of the FDS takes place. Let us find this critical
value and analyze its dependence on the noise amplitude.
First of all, we need to estimate the degree of FDS pattern
destruction. For this purpose the variances of the temporal
oscillations are calculated at fixed valuesxoWithin some
interval near the outlet and then these variances are averaged.
We have considered that the FDS is destroyed if the mean
varianceVar is above the threshold O[this is the maximal
value of the variancéc) in Fig. 2]. For given ¢= ¢, the
©) 1 2 3 4 5 6 7 respective noise amplitude can be found as the numerical
solution to the equatioiar(6)=0.1. Performing this proce-
FIG. 3. Fourier spectra of time oscillations near the outlet fordure for differenteg,, we obtain the dependenagyd6).
solutions in Fig. 1. The dashed lines indicate the Hopf frequencyThis function is found to be approximated well by the power
Note that in pane{a) the Hopf frequency dominates, while in pan- law
els (b) and(c) frequency band shifts to the low-values area.

0.02
0.015
= 001

0.005

Dstap= o + X, (5
tive to the noise and it is not destroyed even far ahead from
the inlet. where ¢y, x, and o can be calculated from the numerical
Above we have observed that when the FDS is destabidata by the least-squares method. This is shown in Fig. 4. We
lized by the noise, the Hopf solution appears behind. To proobserve that increasing the noise intensity requires a higher
vide a more careful verification of this observation, we stabilizing flow rate; vice versa, the growth of the flow rate
present in Fig. 3 the Fourier spectra of the temporal oscillamakes the FDS less sensitive to the noise.
tions near the outlet. Figuré® corresponds to Fig.(4) and The data and the approximating coefficients depend on
presents the case of the destabilization. Though the inldhe step of the temporal discretizatiai that is applied to
noise has a uniform spectrum, the frequency selection takdiid the numerical solutions of Eqél) and(2). (We found,
place so that the spectrum at the outlet is sufficiently narrowhowever, that the data are insensitive to the spatial grid step
The bulk of spikes in the spectrum is located a little bitAx.) To estimate the functiobs,{ 6) for the continuous sys-
above the Hopf frequency indicated by the dashed line. Thigem, we use linear extrapolation and find the coefficients
shift appears because the Hopf structure is not perfectly hodo(At), x(At), anda(At) at At=0. The extrapolating graph is
mogeneous in space. As seen from Fi@) 1deformations of shown in Fig. 4.
the structure are distributed by the flow and appearing trav- The extrapolatedp,, that is written in the caption of Fig.
eling waves result in increasing of the dominating frequency4, is definitely higher thamprps It means that for the flow
So, we can conclude that the temporal oscillations in thisvithin the interval ¢prps< < ¢y the FDS pattern is abso-
case are mostly determined by the internal kinetics of thdutely sensitive to the noise: the noise, regardless of its am-
system. In the intermediate parb) low-frequency harmon- plitude, always destroys the FDS. This, in particular, ob-
ics are mostly selected. The humplike structure of the specstructs the experimental verification of the critical flow rate
trum corresponds to the horizontal bars that join shiftedgrps
stripes in Fig. 1b). Finally, for the case of the stabilization in We have checked several parameter sets and observed that
panel(c) the spectrum becomes more uniform while the am-the width of the zone of the absolute sensitivity— drps
plitudes of the spikes are very small. depends on the control parametersand b but is varied
Transition from pane(a) to panel(c) in Fig. 1 indicates sufficiently slowly with u,,q and 8. The coefficients of the
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approximating functiors and y depend both oa andb and The critical flow rate demonstrates the power-law depen-
0N Upng and 8. dence on the noise amplitude. Similar dependence is reported

The destruction and stabilization of the FDS in the presby Kuznetso(15] for the system with the uniform boundary
ence of the noise can be treated as an implementation of Rerturbed by the noise. Thus, we can conclude that this is
noise-induced absolute instability. In the noiseless system thenhe of the characteristic features of the noise-induced abso-
Hopf mode is convectively unstable and the FDS expandite instability. _ .
over the whole space. If the noise is applied at the inlet, the We have studied the particular case of the FDS which
FDS pattern performs a kind of a frequency selection that iforms when t,he, HOPf oscnl'atory solution is allowed in th‘?
controlled by the flow rate. When the flow rate is sufficiently system, and it is this solution that appears when the noise

small, the selected frequencies are resonant to the Hopf frlestructs the FDS. On the other hand, the FDS is known to

quency. As a result, the noise-induced absolute Hopf instaaPPear when the Hopf mode is staple5). It is interesting to

bility takes place. When the flow rate is above the Criticalanalyze the stability of the FDS in this case. This will be the

. . subject of our subsequent paper.
point, the selected frequencies are detuned from the reso- ) q pap

nance. The absolutely unstable Hopf mode is not excited and P.V.K. acknowledges support from the Royal Society and
the FDS pattern becomes stable. The Hopf mode in this case¢ATO/British FCO Chevening Postdoctoral Fellowship

is convectively unstable again. Programme.
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