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Stationary flow- and diffusion-distributed structuressFDSd patterns appear in a reaction-diffusion-advection
system when a constant forcing is applied at the inlet of the reactor. We show that if the forcing is subject to
noise, the FDS can be destroyed via the noise-induced Hopf instability. However, the FDS patterns are restored
if the flow rate is sufficiently high. We demonstrate that the critical flow rate which is required for the
stabilization of FDS has a power-law dependence on the noise amplitude.
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Flow- and diffusion-distributed structuressFDSd are a
relatively new type of stationary pattern formed in reaction-
diffusion systems in the presence of an open flow. These
patterns appear due to a constant forcing being applied at the
inlet boundary of the reactor when the flow rate becomes
sufficiently high f1–5g. If the inlet is subjected to fluctua-
tions, the FDS may be destroyed. This was reported in the
experimental worksf6,7g. The FDS was observed for suffi-
ciently high flow rate while slowing down the flow results in
the appearance of nonstationary structures.

The effect of the inlet noise on convectively unstable dis-
tributed systems was studied by a lot of authors. We recall
that in a convectively unstable system the growing perturba-
tion drifts with the flow and decays when observed from a
fixed point. On the other hand, the absolute instability of the
system means that the initially localized perturbation gives
rise to a nonzero amplitude pattern at any fixed point in
spacef1,8–10g ssee also therein references to the earlier
worksd. Due to the extreme sensitivity of the convectively
unstable state to perturbations, several authorsf11–13g con-
clude that wave patterns may be generated and sustained due
to amplification of fluctuations from an upstream noise
source. A more subtle than a straightforward amplification of
noise interplay between fluctuations and dynamics is re-
vealed inf14g where the onset of turbulence in flow systems
is treated as a kind of noise-induced transition. Kuznetsov
f15g has studied the effect of the inlet noise on a spatially
uniform reaction-diffusion-advection system. The noise-
induced absolute instability is observed: the inlet noise in-
creases the critical flow rate of transition from absolute to
convective instability and the new critical value demon-
strates the power-law dependence on the noise amplitude.

This paper describes the behavior of reaction-diffusion-
advection systems that undergo a Hopf instability and also
can sustain FDS patterns. We study the stability of the FDS

when noise is applied at the inlet. Our concrete example is
the well-known Lengyel-Epstein model for the chlorite-
iodide-malonic acid-starchsCIMA d reactionf5,16,17g,

ut + fux − uxx = a − u − 4uv/s1 + u2d, s1d

vt + fvx − dvxx = bfu − uv/s1 + u2dg. s2d

The chemical reactants are supplied at one end of the reactor
and flow down through it at a speedf. The dynamic vari-
ablesusx,td andvsx,td describe the concentrations of the two
interacting chemical species, andd is the ratio of the diffu-
sion coefficients for these reagents.a and b stand for two
other species presented in excess and are considered as ki-
netics parameters. This system allows for the uniform
steady-state solutionuS=a/5 and vS=1+a2/52 which can
lose its stability via either the Hopf or the Turing bifurcation.
The critical points as obtained from the linear stability
analysis are bH=s3a2−53d / s5ad, bT=df53+13a2

−4aÎ10s52+a2dg / s5ad, respectively. Below we shall restrict
ourselves to the case of the Hopf instability takingbH.bT
andb,bH sfor the CIMA system supercritical values ofb lie
below bifurcation pointsd. Although the Hopf bifurcation can
be either super- or subcritical, our analysis remains valid in
both cases since we consider the system far from the bifur-
cation point.

In the presence of constant inlet forcing a stationary struc-
ture appears near the inlet, which decays in space if the flow
rate is small. When the flow rate grows, the uniform steady
stateuS and vS becomes spatially unstable with respect to
perturbations that are constant in timef1,2g. Using this con-
dition we obtain from the dispersion equation the critical
point fFDS above which the constant inlet forcing gives rise
to a nondecaying FDSf5g,

fFDS=Î40a3bsd + 1d2 − s3a2d + 5ab− 125dd2

s25 +a2dsd + 1ds3a2 − 5ab− 125d
. s3d

Note that the denominator vanishes atb=bH, i.e., the domain
of FDS coincides with the Hopf domainf4g. If the flow rate
passes abovefFDS while the Hopf instability is convective,
i.e., f.fFDS.fca, any small inlet perturbation grows to
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FDS shere fca is the critical point of the transition from
absolute to convective instability that can be found from the
dispersion equation of a systemf8,9gd. This case is referred
to as a soft transition to FDSf10,18g. But if, however,fca
.f.fFDS, the expanding FDS appears provided that the
flow rate and the inflow forcing are sufficiently high. This is
the case of the rigid transition to FDSf10,18g. Below we
shall concentrate on the case of the soft transition.

The inlet boundary condition in the presence of noise
takes the form

usx = 0,td = uS+ ubndf1 + ujstdg, vsx = 0,td = vS. s4d

Here uS and vS is the uniform steady state,ubnd is the con-
stant part of the inlet forcing,jstdP f−1,1g is the noise with
uniform distribution, andu controls the noise amplitude. We
also checked the response to Gaussian noise and obtained
qualitatively similar results.

Figure 1 presents numerical solutions to the systems1d
and s2d. Here and below the solutions are obtained via a
semi-implicit Cranck-Nicholson scheme with the steps of
discretizationDx<0.1 andDt<0.0125. The figure describes
three typical cases observed in the presence of the inlet noise

s4d at different flow rates. The spatiotemporal diagrams in
this figure are qualitatively similar to the experimental re-
sults in f6g, Fig. 4 and inf7g, Fig. 2scd.

In panelsad of Fig. 1 the FDS appears near the inlet and
grows until the temporal perturbations remain small. Then,
around the pointx=75 the FDS is destroyed. Behind this
point the Hopf solution appears instead. Note the high regu-
larity of this solution. The only source of the irregularity is
the smooth variation in space of the phase of oscillations.
This example is obtained for sufficiently small noise ampli-
tude. Higher noise amplitude results in the higher irregularity
to the phase distribution, but the whole structure remains
ordered.

Panelsbd of Fig. 1 is obtained for a higher flow rate. As in
the previous case, the FDS again grows from the inlet and
the noise manifests itself at aboutx=75. From this figure one
sees that the interval 0,x,75 is nearly equal to the bound-
ary layer where the FDS reaches its limiting amplitude. The
influence of the noise in this panel is much weaker. The FDS
pattern keeps its overall structure, but the stripes are cut and
joined again with the shift between the upper and lower
parts. This remarkable coordination between the FDS stripes
and the wave of perturbation was earlier reported in the work
of Kuptsovet al. f19g, where the perturbation to FDS by the
moving particle was studied. We also note that coexisting
stationary and traveling waves have been observed in the
system without noisef20g.

In panelscd of Fig. 1 the flow rate is increased even more.
This results in the stabilization of FDS. Very small perturba-
tions emerge near the pointx=75 but rapidly decay, and the
whole picture looks identical to the FDS without noise.

The curves in Fig. 2 present the spatial distributions of the
variance calculated for the time series at every fixed pointx
for the solutions in Fig. 1. Obviously, the distribution is iden-
tically zero for ideal FDS. All the curves grow exponentially
with nearly identical rates within the boundary layer of the
FDS 0,x,75. From this point the first curvesad, that cor-
respond to the fully destroyed FDS in Fig. 1sad, rapidly
slows down and reaches the saturated value at aboutx
=130. The curvesbd drawn for the intermediate case in Fig.
1sbd behaves qualitatively similar as the previous one but its
approaching to the limiting value is much slower. On the
contrary, the curvescd corresponding to the stable FDS in
Fig. 1scd decays exponentially behind the pointx<75. This
clearly indicates that the FDS in Fig. 1scd is indeed insensi-

FIG. 1. FDS in the presence of the boundary noise. The flow
rate grows fromsad f=6 to sbd f=6.5 and toscd f=7. In panelsad
the noise destroys the FDS and induces the absolute Hopf instabil-
ity, while in panel scd FDS is stabilized by the high flow rate.a
=20, b=6, d=3, ubnd=0.1, u=0.05.

FIG. 2. Spatial distributions of the time variance for diagrams in
Fig. 1 sthe letters correspond to the panels of Fig. 1d. Decaying of
the curvescd confirms the stabilization of the FDS at high flow rate
as observed in Fig. 1scd.
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tive to the noise and it is not destroyed even far ahead from
the inlet.

Above we have observed that when the FDS is destabi-
lized by the noise, the Hopf solution appears behind. To pro-
vide a more careful verification of this observation, we
present in Fig. 3 the Fourier spectra of the temporal oscilla-
tions near the outlet. Figure 3sad corresponds to Fig. 1sad and
presents the case of the destabilization. Though the inlet
noise has a uniform spectrum, the frequency selection takes
place so that the spectrum at the outlet is sufficiently narrow.
The bulk of spikes in the spectrum is located a little bit
above the Hopf frequency indicated by the dashed line. This
shift appears because the Hopf structure is not perfectly ho-
mogeneous in space. As seen from Fig. 1sad, deformations of
the structure are distributed by the flow and appearing trav-
eling waves result in increasing of the dominating frequency.
So, we can conclude that the temporal oscillations in this
case are mostly determined by the internal kinetics of the
system. In the intermediate panelsbd low-frequency harmon-
ics are mostly selected. The humplike structure of the spec-
trum corresponds to the horizontal bars that join shifted
stripes in Fig. 1sbd. Finally, for the case of the stabilization in
panelscd the spectrum becomes more uniform while the am-
plitudes of the spikes are very small.

Transition from panelsad to panelscd in Fig. 1 indicates

that there exists the critical flow ratefstab at which the sta-
bilization of the FDS takes place. Let us find this critical
value and analyze its dependence on the noise amplitude.
First of all, we need to estimate the degree of FDS pattern
destruction. For this purpose the variances of the temporal
oscillations are calculated at fixed values ofx within some
interval near the outlet and then these variances are averaged.
We have considered that the FDS is destroyed if the mean
varianceVar is above the threshold 0.1fthis is the maximal
value of the variancescd in Fig. 2g. For givenf=fstab the
respective noise amplitudeu can be found as the numerical
solution to the equationVarsud=0.1. Performing this proce-
dure for differentfstab we obtain the dependencefstabsud.
This function is found to be approximated well by the power
law

fstab= f0 + xus, s5d

where f0, x, and s can be calculated from the numerical
data by the least-squares method. This is shown in Fig. 4. We
observe that increasing the noise intensity requires a higher
stabilizing flow rate; vice versa, the growth of the flow rate
makes the FDS less sensitive to the noise.

The data and the approximating coefficients depend on
the step of the temporal discretizationDt that is applied to
find the numerical solutions of Eqs.s1d and s2d. sWe found,
however, that the data are insensitive to the spatial grid step
Dx.d To estimate the functionfstabsud for the continuous sys-
tem, we use linear extrapolation and find the coefficients
f0sDtd, xsDtd, andssDtd at Dt=0. The extrapolating graph is
shown in Fig. 4.

The extrapolatedf0, that is written in the caption of Fig.
4, is definitely higher thanfFDS. It means that for the flow
within the intervalfFDS,f,f0 the FDS pattern is abso-
lutely sensitive to the noise: the noise, regardless of its am-
plitude, always destroys the FDS. This, in particular, ob-
structs the experimental verification of the critical flow rate
fFDS.

We have checked several parameter sets and observed that
the width of the zone of the absolute sensitivityf0−fFDS
depends on the control parametersa and b but is varied
sufficiently slowly with ubnd and d. The coefficients of the

FIG. 3. Fourier spectra of time oscillations near the outlet for
solutions in Fig. 1. The dashed lines indicate the Hopf frequency.
Note that in panelsad the Hopf frequency dominates, while in pan-
els sbd and scd frequency band shifts to the low-values area.

FIG. 4. Stabilization flow ratefstabvs the noise amplitudeu for
different steps of the temporal numerical grid.a=20, b=6, d=3,
fFDS=4.46. Step of the spatial grid isDx=0.1. Points present the
numerical data and the lines are the approximating functionss5d.
Line Dt=0 is obtained via the extrapolation and have the coeffi-
cientsf0=5.27,x=2.52, ands=0.31.
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approximating functions andx depend both ona andb and
on ubnd andd.

The destruction and stabilization of the FDS in the pres-
ence of the noise can be treated as an implementation of a
noise-induced absolute instability. In the noiseless system the
Hopf mode is convectively unstable and the FDS expands
over the whole space. If the noise is applied at the inlet, the
FDS pattern performs a kind of a frequency selection that is
controlled by the flow rate. When the flow rate is sufficiently
small, the selected frequencies are resonant to the Hopf fre-
quency. As a result, the noise-induced absolute Hopf insta-
bility takes place. When the flow rate is above the critical
point, the selected frequencies are detuned from the reso-
nance. The absolutely unstable Hopf mode is not excited and
the FDS pattern becomes stable. The Hopf mode in this case
is convectively unstable again.

The critical flow rate demonstrates the power-law depen-
dence on the noise amplitude. Similar dependence is reported
by Kuznetsovf15g for the system with the uniform boundary
perturbed by the noise. Thus, we can conclude that this is
one of the characteristic features of the noise-induced abso-
lute instability.

We have studied the particular case of the FDS which
forms when the Hopf oscillatory solution is allowed in the
system, and it is this solution that appears when the noise
destructs the FDS. On the other hand, the FDS is known to
appear when the Hopf mode is stablef4,5g. It is interesting to
analyze the stability of the FDS in this case. This will be the
subject of our subsequent paper.
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