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Scaling regularities are examined associated with the effect of additive noise on a system driven by an
external quasiperiodic force with the golden-mean frequency ratio near the terminal point of the torus-doubling
bifurcation curve �TDT point�. This point was studied in the context of the problem of the onset of a strange
nonchaotic attractor on the basis of renormalization group �RG� analysis �Kuznetsov et al., Phys. Rev. E 57,
1585 �1998�� and observed in experiments with a quasiperiodically driven resistor-inductor-diode circuit
�Bezruchko et al., Phys. Rev. E 62, 7828 �2000��. The method implemented in the present paper is based on
a generalization of the RG approach of Crutchfield et al. �Phys. Rev. Lett. 46, 933 �1981�� and Shraiman et al.
�Phys. Rev. Lett., 46, 935 �1981��, originally developed for the period-doubling transition to chaos in the
presence of noise. At the TDT point, a constant determining the rescaling rule for the intensity of noise is found
to be �=20.048 637 7. It means that a decrease of the noise amplitude by this factor ensures the possibility of
observing one more level of the fractal-like structure of the dynamics, with increase of the characteristic time
scale by ���5+1� /2�3. Numeric results demonstrating evidence of the expected scaling are presented, e.g.,
portraits of the noisy attractors and Lyapunov charts on the parameter plane in different scales.
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I. INTRODUCTION

In nonlinear dynamics the renormalization group �RG�
approach was introduced by Feigenbaum �1� and later ap-
plied successively for analysis of different types of transi-
tions to chaos, e.g., via period doubling �1,2�, intermittency
�3�, and quasiperiodicity �4�. As commonly recognized, this
is an effective and powerful theoretical instrument uncover-
ing deep and fundamental features of the dynamics between
order and chaos, like quantitative universality and scale in-
variance �scaling� for subtle fractal structures in phase space
and in parameter space, which are associated with the tran-
sitions.

In the class of quasiperiodically forced dissipative sys-
tems a typical attribute of the dynamics between order and
chaos is the occurrence of a strange nonchaotic attractor
�SNA�. Therefore, it is natural to expect that RG analysis
may be relevant for understanding the nature of SNAs, the
mechanisms of their creation, and, perhaps, for fundamental
quantitative regularities intrinsic to these phenomena. Origi-
nally, this idea was advanced in �5�, and later it was applied
to several types of critical points in parameter space of qua-
siperiodically driven maps with the golden-mean frequency
ratio �critical points of the torus-doubling terminal �TDT�
�6�, torus-collision terminal �7�, and torus fractalization �TF�
�8��. Dynamics near the TDT critical point was actualized
and observed in experiment with quasiperiodically driven
resistor-inductor �RL� diode circuit �9�. The Occurrence of
the TF critical point in a model of a driven Josephson junc-
tion was validated numerically in Ref. �10�.

In real physical systems one must account for the inevi-
table noise, which obliterates fine details of fractal-like self-
similar structures in phase space and parameter space asso-

ciated with transitions to chaos or SNA. Thus, understanding
the effect of noise is a problem of crucial significance, e.g.,
for analysis and interpretation of experimental studies of
these transitions.

A theoretical approach to the description of the effect of
noise based on a RG analysis was suggested first by Crutch-
field et al. and Shraiman et al. �11� in application to the
period-doubling transition to chaos in dissipative systems.
They obtained a universal factor �=6.619 036… responsible
for the scaling properties of the transition with respect to the
effect of noise; namely, a decrease of the amplitude of noise
by that factor ensures the possibility of observing one more
level of the period doubling. Later, analogous approaches
were developed and corresponding scaling factors estimated
for many other types of critical behavior, e.g., for period
doubling in conservative systems and area-preserving maps
�12�, for bicritical behavior of unidirectionally coupled
period-doubling systems �13�, for transition to chaos via the
golden-mean quasiperiodicity in dissipative �14� and conser-
vative �15� systems, and for the period-tripling cascade in
complex analytic maps �16�.

This paper is devoted to the problem of the effect of noise
on dynamics at the TDT critical point introduced and studied
in the work of Kuznetsov, Feudel, and Pikovsky �6�. The
basic model is a quasiperiodically driven quadratic map �18�

xn+1 = � − xn
2 + � cos 2�un,

un+1 = un + w �mod 1� , �1�

where w= ��5−1� /2 is the inverse golden-mean constant.
The TDT point is located at
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�c = 1.158 096 856 726, �c = 0.360 248 020 507. �2�

One more relevant value for the model �1� is a “scaling cen-
ter” for the phase variable,

uc = 0.395 218 826 46. �3�

At this phase the critical attractor at the TDT point
touches the extremum of the map x=0 and is characterized
by a property of self-similarity in respect to scale change
along the axes x and u with the following factors extracted
from the RG analysis:

a = 3.963 766 561 57, b = − 1/w3 = − 4.236 067 977 50.

�4�

�I present here improved values in comparison with those in
the original work �6�.�

Section II is devoted to discussion of some empirical nu-
merical results for the stochastic version of the model �1�
with additive noise. In Sec. III RG analysis of the effects of
noise on the TDT cicritical behavior is developed. I derive
the RG equation and obtain a high-precision value for the
universal constant responsible for scaling properties with re-
spect to the noise amplitude. In Sec. IV conclusions follow-
ing from the RG analysis are discussed in application to the
stochastic version of the model system �1�. Computer illus-
trations for scaling regularities are presented including por-
traits of the noisy attractors and gray-scale charts for the
Lyapunov exponent on the parameter plane near the TDT
point in different scales and at different noise levels.

II. EFFECT OF NOISE: EMPIRICAL RESULTS

Let us introduce a sequence �n that represents a discrete-
time white noise. It means that terms of the sequence at
different steps of time are assumed to be statistically inde-
pendent. The average for �n is zero, ��n�=0, and the standard
deviation is some constant, �=���n

2�. Then let us consider
the following stochastic map:

xn+1 = � − xn
2 + � cos 2�un + ��n,

un+1 = un + w �mod 1� , �5�

where � characterizes the intensity of the additive noise
source.

If the amplitude of noise is small, and behavior on large
time scales is examined, the concrete form of the probability
distribution for �n appears not to be essential, and the behav-
ior of the noisy system will be of a universal nature �the
same is true for other critical situations allowing analysis in
terms of the RG method; cf. �17��. In derivation of the RG
equations in the next section I will assume the noise to be
Gaussian. In computations, accounting for the expected uni-
versality, I define �n as random numbers uniformly distrib-
uted over an interval �−0.5,0.5�. Hence, �=1/�12.

In Fig. 1 Lyapunov charts are shown on the plane of the
control parameter � versus the amplitude of driving � with-
out noise ��=0� and in the presence of noise ��=0.03�. The
Lyapunov exponent has been computed via the relation

	 � N−1 	 ln
2xn
 �6�

at each pixel of the picture. Negative values of 	 are coded
in gray scale, The lighter the color, the less negative is the
Lyapunov exponent; positive 	 associated with chaotic dy-
namics are designated by black. Location of the TDT critical
point is indicated on the panel �a�. Comparing the diagrams
�a� and �b� one can observe a result of the effect of noise,
which is rather obvious: it obliterates subtle details of the
picture of the dynamical regimes. In Fig. 2 portraits of the
attractor at the TDT critical point are plotted on iteration
diagrams, in coordinates �xn ,xn+1�. Diagram �a� corresponds
to a pure dynamical case �no noise�, diagrams �b� and �c� to
the presence of noise of smaller and larger amplitudes, re-
spectively. Diagram �d� is reproduced from Ref. �9� and re-
lates to the experiment with the quasiperiodically driven RL
diode circuit. �It is remarkable that the experimental portrait
resembles more the noisy attractors �b� and �c� than that
without noise.�

III. RENORMALIZATION GROUP ANALYSIS

In application to all situations of the golden-mean quasi-
periodisity, the main idea of the RG analysis consists in ex-
amination of evolution operators defined for time intervals
given by subsequent Fibonacci numbers Fk :F0=0 ,F1
=1 ,Fk+2=Fk+1+Fk.

Let us suppose that in the presence of noise the equations
governed dynamics at the TDT point for Fk and Fk+1 steps of
discrete time are

xi+Fk
= 
k�xi,yi� + ��i�k�xi,yi� ,

yi+Fk
= yi + wFk = yi − �− w�k �mod 1� �7�

and

xi+Fk
= 
k+1�xi,yi� + ��i�k+1�xi,yi� ,

FIG. 1. Lyapunov charts on the plane of control parameter �
versus amplitude of driving � for the model �5� without noise �a�
and in the presence of noise �b�. Gray tones designate negative
values of the Lyapunov exponent �the lighter the color, the less
negative is the exponent�. Positive values �chaos� are designated by
black. On the panel �a� the nature of the main dynamical regimes is
explained with inscriptions in the respective areas �torus T1,
doubled torus T2, SNA, chaos�, and the location of the TDT critical
point is indicated. The white area in the right top corner corre-
sponds to divergency of the iterations
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yi+Fk+1
= yi + wFk+1 = yi − �− w�k+1 �mod 1� , �8�

where y=u−uc is the phase variable measured from a scaling
center �3�, �i is a random sequence with properties formu-
lated in the previous section, the noise amplitude parameter
� is supposed to be small, and �k�x ,y� and �k+1�x ,y� are
some auxiliary functions. Obviously, the model �5� corre-
sponds to a particular version of these relations: at F1=F2
=1 we set


1�x,y� = 
2�x,y� = �c − x2 + �ccos 2��y + uc� ,

�1�x,y� = �2�x,y� � 1. �9�

By a composition of Eqs. �7� and �8�, retaining terms up
to the first order in �, we obtain an equation for evolution
over Fk+2 steps of discrete time:

xi+Fk+2
= 
k„
k+1�xi,yi�,yi − �− w�k+1

… + ���i
k�„
k+1�xi,yi�,yi

− �− w�k+1
…�k+1�xi,yi� + �i+Fk+1

�k„
k+1�xi,yi�,yi

− �− w�k+1
…� . �10�

In respect to the stochastic terms, we make the following
remark. Let us suppose that at some moment an orbit starts at
�xi ,yi�. Consider an ensemble of the Gaussian random num-
bers ��i ,�i+Fk+1 of zero mean and mean square �2, and com-
pose them with coefficients given by functions of �xi ,yi�. As
��i ,�i+Fk+1 are statistically independent, the sum can be rep-
resented again as a Gaussian random number of zero mean
and mean square �2, multiplied by some function of xi and yi
namely,

�i
k�„
k+1�xi,yi�,yi+1…�k+1�xi,yi� + �i+Fk+1
�k„
k+1�xi,yi�,yi+1…

= �̃i�k+2�xi,yi� . �11�

Now, we set


k+2�x,y� = 
k„
k+1�x,y�,y − �− w�k+1
… �12�

and rewrite Eq. �10� in a form analogous to Eqs. �7� and �8�,
with redefined random variable and functions 
 and �:

xi+Fk+2
= 
k+2�xi,yi� + ��̃i�k+2�xi,yi� . �13�

To obtain closed functional equations, we square both
parts of Eq. �11� and perform averaging over an ensemble of

realizations of the noise. As ��̃i
2�= ��i

2�=�2 and ��i�i+Fk+1
�=0,

we come to the relation

��k+2�x,y��2 = �
k�„
k+1�x,y�,y − �− w�k+1
…�2��k+1�x,y��2

+ ��k„
k+1�x,y�,y − �− w�k+1
…�2. �14�

In accordance with the basic content of the renormaliza-
tion approach, now we implement a scale change
x�x /�k , u� �−w�ku, where

� = �3 a = 1.582 593 423 013…

is the scaling constant for the critical TDT dynamics �6�.
Then, in terms of the rescaled functions

gk�x,y� = �k
k„�
−kx,�− w�ky… ,

fk�x,y� = �k
k+1„�
−kx,�− w�ky… ,

k�x,y� = ��k„�
−kx,�− w�ky…�2,

�k�x,y� = ��k+1„�
−kx,�− w�ky…�2, �15�

the above equations imply that

gk+1�x,y� = �fk�x/�,− wu� ,

fk+1�x,y� = �gk„fk�x/�,− wu�,− wu + w… ,

k+1�x,y� = �2�k�x/�,− wu� ,

�k+1�x,y� = �2��gk�„fk�x/�,− wu�,− wu + w…�2�k�x/�,− wu�

+ k„fk�x/�,− wu�,− wu + w… . �16�

These relations define the RG transformation for a set of
functions �gk , fk ,k ,�k. The procedure may be repeated
again and again to get the functions for larger and larger k,
i.e., to determine the renormalized evolution operators for
the set �gk , fk ,k ,�k at larger Fibonacci numbers of steps
of discrete time Fk.

As follows from the RG analysis undertaken in Ref. �6�,
at the TDT critical point, the sequence of functions
gk�x ,y� , fk�x ,y� converges asymptotically to a period-3
fixed-point solution of the RG equation ��g1 , f1� , �g2 , f2� ,
�g3 , f3�, which obeys

FIG. 2. Portraits of attractor at the TDT critical point �2� on iteration diagrams in coordinates �xn ,xn+1� obtained from computer
simulation: diagram �a� corresponds to the pure dynamical case �no noise�, diagrams �b� and �c� to the presence of noise of smaller and larger
amplitudes, respectively. Diagram �d� is reproduced from Ref. �9� and relates to the experiment with a quasiperiodically driven resistor-
inductor-diode circuit.
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g2�x,y� = �f1�x/�,− wy� ,

f2�x,y� = �g1„f1�x/�,− wy�,− wy + y… ,

g3�x,y� = �f2�x/�,− wy� ,

f3�x,y� = �g2„f2�x/�,− wy�,− wy + y… ,

g1�x,y� = �f3�x/�,− wy� ,

f1�x,y� = �g3„f3�x/�,− wy�,− wy + y… , �17�

or

g3�x,y� = �2g1„�
−1g2�x/�,− wy�,w2y + w… ,

g1�x,y� = �2g2„�
−1g3�x/�,− wy�,w2y + w… ,

g2�x,y� = �2g3„�
−1g1�x/�,− wy�,w2y + w… . �18�

Numerical data for polynomial expansion of the universal
functions g1,2�x ,y� �over even powers of x and all integer
powers of y� may be found in Ref. �19�.

Convergence of the functions g and f to the period-3 so-
lution of the RG transformation implies that the recursive
linear functional equations for the functional pairs
�k�x ,y� ,�k�x ,y� is determined asymptotically by an ei-
genvector associated with the largest eigenvalue � for the
eigenproblem

��

�
� = R̂3R̂2R̂1�

�
� , �19�

where R̂k are linear operators expressed, in accordance with
the right-hand parts of the two last equations �16�, as

R̂k�

�
� = � �2��x/�,− wu�

�2��gk�„fk�x/�,− wu�,− wu + w…�2��x/�,− wu� + „fk�x/�,− wu�,− wu + w…
� . �20�

As mentioned, the universal functions gk�x ,y� are known
from numerical solution of the set of functional equations
�18� in the form of expansion over powers of the arguments
�6,19�. Using these data, I have constructed the functional
transformation of the right-hand part of Eq. �19� as a com-
puter program. The unknown functions ��x ,y� ,��x ,y�
were represented by a set of their values at nodes of a grid in
a rectangular �−1.2�x�1.2,−w�y�1, and by an interpo-
lation scheme between them. Taking random initial condi-
tions for ��x ,y� ,��x ,y�, the program performed the func-
tional transformation many times and normalized the
resulting functions at each step as 0�x ,y�
=�x ,y� /�0,0� ,�0�x ,y�=��x ,y� /�0,0�, until the form
of the functions stabilized. The value of �0,0� �before the
normalization� converges to the eigenvalue

� = 401.947 874 114. �21�

Now, in linear approximation with respect to the noise
amplitude, the stochastic map for the evolution over F3k+q
and F3k+q+1 steps at the TDT critical point may be written in
terms of the renormalized variables at large k as

xi+F3k+q
= gq�xi,yi� + ��k�i�q�xi,yi�, yi+F3k+q

= yi − 1,

�22�

where q=1, 2, 3 and

�q�x,y� = �q
0�x,y�, � = �� = 20.048 637 712. �23�

Next, if we consider a small shift of parameters � and �
from the TDT critical point, some additional perturbation
terms will appear in the equations, which correspond to two

relevant eigenmodes of the RG equation linearized at the
period-3 fixed point solution �see �6��. With account of them
and of noise we have to write

xi+F3k+q
= gq�xi,yi� + C1�1

khq
�1��xi,yi� + C2�2

khq
�2��xi,yi�

+ ��k�i�q�xi,yi� , �24�

where q=1, 2, 3 and �h1
�1��x ,y� ,h2

�2��x ,y� ,h3
�1��x ,y� and

�h1
�2��x ,y� ,h2

�2��x ,y� ,h3
�2��x ,y� are the respective egenfunvec-

tors. The eigenvalues �1 and �2 have been presented in Ref.
�6�; here I give the improved numerical results:

�1 = 10.502 983 5, �2 = 5.188 118 1. �25�

The coefficients C1 and C2 in Eq. �24� depend on the
parameters of the original map and vanish at the TDT critical
point. In a close neighborhood of the critical point it is suf-
ficient to account for only the leading, linear terms of the
expansions in respect to the original parameters, proportional
to �−�c and �−�c.

Now, we are ready to formulate the basic scaling property
of the dynamics near the TDT point in the presence of noise
that follows from Eq. �24�.

If we decrease the parameter shift from the TDT point in
such a way that the coefficients C1 and C2 are reduced by
factors �1 and �2, respectively, and decrease the noise ampli-
tude � by a factor �; then the form of the stochastic map �24�
remains unchanged. Thus, at the new parameters, the noisy
system will demonstrate statistically similar behavior as at
the old ones, but with a characteristic time scale multiplied
by Fk+3 /Fk�W3= ���5+1� /2�3.
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IV. SCALING PROPERTIES AND THEIR
DEMONSTRATION IN NUMERICAL COMPUTATIONS

Now let us discuss some manifestations of the effects of
noise on dynamics of the model map �5� at the TDT point
and in its vicinity in numerical experiments in view of the
scaling properties stated in the previous section.

A. Noisy critical attractor

In the presence of noise, the subtle structure of the attrac-
tor is smeared out level by level, as the intensity of noise
grows. In accordance with the conclusions of the previous
section, each new level of the structure blurs when we in-
crease the magnitude of the noise source by factor �.

To examine scaling properties of the critical attractor at
the TDT point it is convenient to use a graphical representa-
tion on the phase plane �u ,x� rather than on the iteration
diagram as done in Sec. II. Without noise, the attractor looks
like a kind of fractal curve �Fig. 3�. To reveal its true fractal
nature, let us note, first, that it manifests a nontrivial property
of self-similarity near the scaling center x=0,u=uc. Indeed,
if one rescales x and y=u−uc, respectively, by factors a
=3.9367… and b=w−3=4.2360…, the curve must be locally
invariant under this transformation as follows from the RG
analysis of Ref. �6�. As seen from Fig. 3, this is indeed the
case: the picture inside a selected box reproduces itself under
subsequent magnifications by these factors. To possess the
scaling property, the curve must behave locally as x� 
�u
�
with �=ln a / ln b�0.954. The exponent � is close to 1, so
visually the curve looks broken at the point of singularity.
Due to ergodicity of the quasiperiodic motion, the singularity
of the invariant curve at the origin implies the presence of
singularities of the same type at all preimages of this point.
Due to the quasiperiodic nature of the motion, they occupy a
dense set of points on the invariant curve. As � is less than 1,

it follows that the invariant curve is nowhere differentiable,
i.e., it is fractal.

Figure 4 shows portraits of the noisy attractors of the
model system �5� at the TDT critical point at the noise inten-
sity parameter �=0.0008 �a� and �=0.0008/��0.000 04
�b�. Right-hand panels represent small boxes from the previ-
ous diagrams with enlargement. In comparison with diagram
�a� the magnification for the plot �b� is increased by factors a
and b along the vertical and horizontal axes, respectively.
Observe the similarity of the pictures in the right-hand pan-
els.

B. Lyapunov exponent in the presence of noise

In accordance with the results of Sec. III, at the TDT
critical point the system will demonstrate similar behaviors
for the noise intensity values � and � /�, but with character-

FIG. 3. Attractor of the forced quadratic map �1� at the TDT
critical point �the top panel� and illustration of the basic local scal-
ing property: the structure reproduces itself under magnification
with factors a=3.963 76… and b=W3=4.2360… along the vertical
and the horizontal axes, respectively.

FIG. 4. Portraits of the noisy attractors of the model system �5�
at the TDT critical point �=�c=1.158 096 8… , �=�c

=0.360 248 4… at a larger �a� and smaller �b� noise intensity pa-
rameter �. The right-hand panels represent boxes from the previous
diagrams, with a magnification that differs for the plots �a� and �b�
by factors a=3.963 76… and b=−W3=−4.2360… along the vertical
and horizontal axes, respectively

FIG. 5. Plots for the Lyapunov exponent versus the noise inten-
sity �. A selected box is shown with magnification by the factor
W3=4.236… along the vertical axis, and by the factor �
=20.0486… along the horizontal axis.
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istic time scale multiplied by W3=w−3=4.2360… in the sec-
ond case. Hence, the magnitude of the Lyapunov exponent at
� /� must be less by this factor than that at �. Figure 5 shows
the plots for the Lyapunov exponent versus the noise inten-
sity �. A selected box is shown with magnification by a fac-
tor W3 along the vertical axis, and by a factor � along the
horizontal axis. Observe the self-similarity of the pictures
under this scale change. Clearly, at smaller scales the degree
of coincidence will become better.

Let us estimate a critical index for the Lyapunov exponent
with respect to the intensity of noise. Taking account of the
fact that a change of � by a factor � is accompanied by a
change of Lyapunov exponent by a factor W3, we conclude
that the relation must hold,

	 � �� �26�

where �=3 log�W=0.481 506 953. Figure 6 shows the de-
pendence of 	 on � in a double logarithmic scale. The points
obtained in numerical computations evidently follow on av-
erage a straight line with slope �. The dependence has oscil-
lations, which are of period ln � along the � axis in accor-
dance with the scaling law derived from the RG analysis.

It is worth emphasizing a kind of noisy stabilization of the
dynamics at the TDT point. Indeed, the effect of noise at the
TDT point promotes a decrease of the Lyapunov exponent,
i.e., a decrease of sensitivity with respect to the initial con-
ditions, and delays the onset of chaos.

C. Self-similar arrangement of a vicinity of the TDT point
in the parameter plane for the noisy system

As mentioned, the structures visible on the Lyapunov
chart blur out as the intensity of noise grows �see Fig. 1�. On
the basis of the scaling arguments of Sec.III we can reveal
now a quantitative aspect of this effect.

To observe the scaling regularities in the vicinity of the
critical point we need to define an appropriate local coordi-
nate system �”scaling coordinates”�. As origin, we naturally
take the TDT point itself. Then, the coordinate axes should
be directed in such a way that a shift along the first axis gives
rise to the mode of perturbation of the evolution operators
associated with eigenvalue �1 of the linearized RG transfor-
mation, and a shift along the second axis produces the mode
with �2. In fact, an axis corresponding to the larger eigen-
value �1 may be defined almost arbitrarily, say, along the �
axis in the original coordinates, but the second one must be
selected carefully to exclude a contribution of the first eigen-
mode in the solution. As found numerically, for the model
�5�, appropriate new coordinates �c1 ,c2� and parameters
�� ,�� are linked as follows:

FIG. 6. Plot of the Lyapunov exponent versus noise intensity at
the TDT critical point on double logarithmic scale �dots�. The
straight line slope corresponds to the relation �26�.

FIG. 7. Lyapunov charts demonstrating scaling in a neighborhood of the TDT critical point in scaling coordinates �27� without noise �a�
and in the presence of noise �b�. At each pixel of the pictures, the Lyapunov exponent was computed over approximately 1597W3k iterations,
where k is a number of the diagram in a row. Gray-scale coding is analogous to that in Fig. 1 and redefined at each new level of magnification
to make the similarity clearly visible. On the first diagram �a� the nature of the main dynamical regimes is explained with inscriptions �torus
T1, doubled torus T2, SNA, chaos�, and the location of the TDT critical point is indicated. In the bottom row, the noise intensity parameter
is decreased from one picture to another by a factor �=20.048 664… .
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� = �c + c1 + c2, � = �c + 0.3347c2. �27�

Figure 7�a� illustrates the scaling property of the
Lyapunov charts for the case of absence of noise. The gray-
scale coding rules are analogous to those in Fig. 1. Each next
picture shows the interior of a selected rectangle from the
previous diagram with enlargement by factors �1 and �2
along the horizontal and vertical axes, respectively. The
Lyapunov exponent is inversely proportional to a character-
istic time scale. Therefore, to outline the similarity of the
pictures, the coding rule is redefined at each next level of
magnification in such a way that it corresponds to a decrease
of the Lyapunov exponent by a factor W3. In the first diagram
inscriptions are given, that explain the nature of dynamics in
the corresponding areas �torus T1, doubled torus T2, SNA,
and chaos�. On subsequent diagrams the disposition of the
areas is analogous. Note that all the named regimes may be
found in any arbitrarily small vicinity of the TDT critical
point.

Figure 7�b� shows the analogous Lyapunov charts in the
presence of noise. To observe scaling, one needs additionally
to decrease the noise intensity at each next step of magnifi-
cation by a factor �. For the first diagram �=0.007; for the
second and the third ones the parameter values are �
=0.007/��0.000 35 and ��0.007/�2�0.000 017 5, re-
spectively.

Good correspondence of the pictures at higher levels of
magnification supports the stated scaling regularities. It is
worth mentioning that in the presence of noise, the original
TDT point with coordinates �2� appears to be placed inside
the area of the noisy torus rather than at the border of chaotic
or strange nonchaotic behavior.

V. CONCLUSION

In this paper scaling regularities associated with the effect
of additive noise near the torus-doubling terminal point in a
model system with golden-mean quasiperiodic driving have
been discussed. A renormalization group analysis of the ef-
fect of noise was developed, and the corresponding universal
constant was computed. I also presented a number of com-
puter graphical illustrations for the scaling regularities. In
particular, I put attention on the smearing of the fine structure
of the critical attractor due to the presence of noise. A self-
similar structure of the Lyapunov charts on the parameter
plane near the TDT critical point was outlined.

I considered here only one particular representative of the
universality class �forced one-dimensional quadratic map�.
One more example is a quasiperiodically driven supercritical
circle map �7,20�. On the basis of RG argumentation it may
be conjectured that the same regularities will be intrinsic to a
wide class of systems, namely, the dissipative period-
doubling systems under additional periodic driving with the
golden-mean ratio of involved frequencies. �An example is
the resistor-inductor-diode circuit studied in Ref. �9�.� As ex-
pected, the results will be helpful for analysis and interpre-
tation of experimental studies aimied at observation and in-
vestigation of behavior at the onset of complex behavior in
quasiperiodically forced systems of different physical nature.

ACKNOWLEDGMENTS

The work has been performed under partial support from
the Russian Foundation of Basic Research �Grant No.04-02-
04011� and from the Max Planck Society.

�1� M. J. Feigenbaum, J. Stat. Phys. 19, 25 �1978�; 21, 669
�1979�; Physica D 7, 16 �1983�.

�2� P. Collet, J.-P. Eckmann, and H. Koch, Physica D 3, 457
�1981�; M. Widom, and L. P. Kadanoff, ibid. 5, 287 �1982�; A.
P. Kuznetsov, S. P. Kuznetsov, and I. R. Sataev, ibid. 109, 91
�1997�.

�3� B. Hu, and J. Rudnick, Phys. Rev. Lett. 48, 1645 �1982�; J. E.
Hirsch, M. Nauenberg, and D. J. Scalapino, Phys. Lett. 87A,
391 �1982�.

�4� S. J. Shenker, Physica D 5, 405 �1982�; M. J. Feigenbaum, L.
P. Kadanoff, and S. J. Shenker, ibid. 5, 370 �1982�; D. Rand,
S. Ostlund, J. Sethna, and E. D. Siggia, Phys. Rev. Lett. 49,
132 �1982�.

�5� S. P. Kuznetsov, A. S. Pikovsky, and U. Feudel, Phys. Rev. E
51, R1629 �1995�.

�6� S. Kuznetsov, U. Feudel, and A. Pikovsky, Phys. Rev. E 57,
1585 �1998�.

�7� S. Kuznetsov, E. Neumann, A. Pikovsky, and I. Sataev, Phys.
Rev. E 62, 1995 �2000�.

�8� S. P. Kuznetsov, Phys. Rev. E 65, 066209 �2002�.
�9� B. P. Bezruchko, S. P. Kuznetsov, and Y. P. Seleznev, Phys.

Rev. E 62, 7828 �2000�.
�10� S. P. Kuznetsov, and E. Neumann, Europhys. Lett. 61, 20

�2003�.
�11� J. Crutchfield, M. Nauenberg, and J. Rudnick, Phys. Rev. Lett.

46, 933 �1981�; B. Shraiman, C. E. Wayne, and P. C. Martin,
ibid. 46, 935 �1981�.

�12� G. Gyorgyi and N. Tishby, Phys. Rev. Lett. 58, 527 �1987�.
�13� J. V. Kapustina, A. P. Kuznetsov, S. P. Kuznetsov, and E.

Mosekilde, Phys. Rev. E 64, 066207 �2001�.
�14� A. Hamm and R. Graham, Phys. Rev. A 46, 6323 �1992�.
�15� G. Gyorgyi and N. Tishby, Phys. Rev. Lett. 62, 353 �1989�.
�16� O. B. Isaeva, and S. P. Kuznetsov, Regular Chaotic Dyn. 5,

459 �2000�.
�17� D. Fiel, J. Phys. A 20, 3209 �1987�; S.-Y. Choi and E. K. Lee,

Phys. Lett. A 205, 173 �1995�.
�18� K. Kaneko, Prog. Theor. Phys. 72, 202 �1984�; A. Arneodo,

Phys. Rev. Lett. 53, 1240 �1984�; S. P. Kuznetsov, JETP Lett.
39, 133 �1984�; S. P. Kuznetsov and A. S. Pikovsky, Phys.
Lett. A 140, 166 �1989�.

�19� B. P. Bezruchko, S. P. Kuznetsov, A. S. Pikovsky, Ye. P.
Seleznev, and U. Feudel, Appl. Nonlin. Dyn. �Saratov� 5, 3
�1997� �in Russian�; http://www.sgtnd.narod.ru/science/
alphabet/eng/goldmean/tdt.htm.

�20� U. Feudel, A. S. Pikovsky, and J. Kurths, Physica D 88, 176
�1995�.

EFFECT OF NOISE ON THE DYNAMICS AT THE… PHYSICAL REVIEW E 72, 026205 �2005�

026205-7


