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We study stationary patterns arising from a combination of flow and diffusion in a two-dimensional �2D�
reaction-diffusion system in a channel with Poiseuille flow. Both transverse and longitudinal modes are inves-
tigated and compared with numerical computations.
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I. INTRODUCTION

Flow- and diffusion-distributed structures �FDS� are sta-
tionary periodic patterns that appear in reaction-diffusion
systems with open flow if a constant perturbation from a
uniform steady state is applied at the inlet �1,2�. Unlike Tur-
ing patterns �3� and differential-flow instability �DIFI� �4�,
such structures can be observed even for identical diffusion
and flow rates of the reactants. The mechanism of formation
of these structures was discovered theoretically by Kuz-
netsov et al. �1� and subsequently Andresén et al. �2� identi-
fied its important role as a new model of pattern formation.
Soon after the theoretical discovery these structures were
first obtained in an experiment by Kærn and Menzinger �5�.
They studied a system without differential transport and, to
underline the kinematic nature of the observed patterns, re-
ferred to them as flow-distributed oscillations �FDO�. The
role of differential transport was later studied by Satnoianu et
al. �6,7� and by McGraw and Menzinger �8�. Generalized
structures of this kind became known as FDS, and Míguez et
al. �9� carried out the first experimental observation of such
structures. Now FDS patterns attract much interest. Theoret-
ical �10–13� and experimental �14–17� studies have ad-
dressed different properties of these structures. Also, the FDS
mechanism is relevant in biological systems �18,19�.

All previous theoretical studies of FDS were made for a
1D model system. Experiments were also carried out for sys-
tems with negligible transverse variations in flow rate and
chemical concentrations �5,14,15�. This situation is rather ar-
tificial and in our paper we introduce a more realistic 2D
model that employs a channel with a parabolic velocity pro-
file �Poiseuille flow �20��.

The only experiment with a Poiseuille flow was published
by Kærn and Menzinger �5�. The experiment was unsuccess-
ful and Kærn and Menzinger concluded that flow-distributed
oscillations cannot be obtained in a system with a parabolic

velocity profile. However, we believe that this problem
should be studied in more detail and in the present paper the
possible existence of such structures is examined numeri-
cally and analytically.

II. FORMULATION

We consider as a model system the 2D version of the
well-known Lengyel-Epstein equations for the CIMA
�chlorite-iodide-malonic acid-starch� reaction �7,21,22�:

ut + ��y�ux − �u = a − u − 4uv/�1 + u2� , �1a�

vt + ��y�vx − ��v = b�u − uv/�1 + u2�� . �1b�

Here u�u�x ,y , t� and v�v�x ,y , t� are the dimensionless dy-
namical variables related to the interacting chemical species,
a�0 and b�0 are constant parameters related to the chemi-
cal species, � is the 2D Laplacian, and ��0 is the ratio of
the diffusion rates for v and u. Subscripts denote partial de-
rivatives and ��y� is the velocity profile of the flow along
the channel in the x direction. For Poiseuille flow,

��y� = ��1 − y2/h2�, − h � y � h , �2�

where ��0 is the central flow rate and 2h is the width of the
channel. The geometry of our model is shown in Fig. 1. At
the walls of the channel it is assumed that the flux of chemi-
cal species vanishes:

uy�x,y = ± h,t� = vy�x,y = ± h,t� = 0. �3�

The system �1�–�3� admits the homogeneous steady-state
solution uS=a /5, vS=1+a2 /52. In the absence of flow ��
=0� this is destabilized by the Hopf or Turing modes whose
growth rates become positive at the critical points,

bH = �3a2 − 125�/�5a� �4�

and

bT = ��125 + 13a2 − 4a�10�25 + a2��/�5a� , �5�*Corresponding author. Electronic address: kupav@mail.ru
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respectively �3,21,22�. Hopf instability results in uniform
temporal oscillations while Turing instability produces a sta-
tionary pattern. The Turing instability can be observed only
if the differential diffusion coefficient � is sufficiently high
�3�. Note that instability occurs for values of b below the
critical points �4� and �5�.

In the 1D case, where �2� is replaced by �=� with �
constant, FDS solutions are obtained by applying a constant
perturbation at the inlet. The transition to FDS takes place if
the flow rate is above a critical value. The results of a linear
stability analysis show that the critical flow rate and corre-
sponding wave number are �1,2,12�

�FDS =�40a3b�� + 1�2 − �3a2� + 5ab − 125��2

�25 + a2��� + 1��3a2 − 5ab − 125�
, �6�

kFDS =��3a2 − 5ab − 125�
�25 + a2��� + 1�

. �7�

Note that �FDS diverges and kFDS vanishes at b=bH, i.e., in
the 1D case the FDS domain coincides with the Hopf domain
�6�.

III. NUMERICAL RESULTS

In this section we report the numerical solutions of
�1�–�3�. The solutions are obtained using the Peaceman-
Rachford method of variable directions �23�. To produce pat-
tern formation in our 2D flow system, we apply constant
boundary conditions at the inlet,

u�x = 0,y,t� = uS + Ubnd�y� , �8a�

v�x = 0,y,t� = vS + Vbnd�y� , �8b�

where at least one of the profiles Ubnd�y� and Vbnd�y� is non-
zero. In most of the numerical experiments reported here a
uniform inlet perturbation is taken and, in general, it is as-
sumed that Ubnd� �y= ±h�=Vbnd� �y= ±h�=0, consistent with
�3�. Also, an outlet condition �uxx ,vxx�x=X=0 is applied,
where X is the length of the reactor.

Typically, in numerical experiments with our 2D model
stationary patterns of two types are encountered: stripes
transverse to the flow and longitudinal stripes. Transverse
solutions correspond to y-dependent versions of FDS in 1D
systems, while longitudinal ones are specific to the 2D case.

Figure 2 shows some typical transverse patterns obtained
when the flow rate is sufficiently high. In Fig. 2�a� the width
of the reactor is small �h=1.5� and the pattern is similar to
that of a 1D FDS structure. The transverse stripes are uni-
form, i.e., have almost constant width and only slight curva-

ture associated with the y dependence of the flow. However,
an increase in the value of h results in some significant
changes. Figure 2�b� shows the transverse pattern for h
=6.5. The stripes are now nonuniform. In the middle they are
thick with more or less constant width and small curvature
whereas the ends are thin and more curved. This suggests the
development of a boundary-layer structure as h→�.

The mechanism of transverse pattern formation is similar
to that of the 1D case. These patterns appear in the Hopf
instability domain. Flow and diffusion are responsible for the
distribution of the Hopf oscillation in space while the con-
stant condition at the inlet fixes the initial phase and provides
the stationarity of the pattern. In addition, transverse diffu-
sion synchronizes the solution across the channel so that the
pattern extends into the regions of slow flow near the walls.

Our simulations show that, similar to the 1D case, the
transverse solution appears when the flow rate is above a
critical value �t and that the corresponding critical wave
number kt is nonzero. The behavior of �t and kt as functions
of h is quite interesting and is analyzed in Sec. IV.

Figure 3 illustrates a longitudinal solution. Figure 3�a�
shows how the stationary pattern forms behind a moving

FIG. 1. Sketch of a 2D reactor with parabolic Poiseuille flow.

FIG. 2. Transverse steady-state solutions to the system �1�–�3� at
a=30, b=12, �=3, and �=17. Gray levels are proportional to the
values of u: the lighter tone represents higher values. �a� h=1.5, �b�
h=6.5. Ubnd�y��0.5, Vbnd�y��0.

FIG. 3. Longitudinal solutions for n=6. a=30, b=12, �=9, h
=9, Ubnd�y��0.5, Vbnd�y��0. �a� is a snapshot of the formation of
the stationary pattern behind the moving arrowed front, �=25. �b�
is the steady state for �=0 when the structure �a� is taken as the
initial state.
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front that has an arrowlike structure. Unlike the transverse
stripes, the flow is not vitally important for the longitudinal
solution. Figure 3�b� indicates that this solution survives,
even when �=0. Though an arbitrary initial state results in a
traveling wave solution, a fully developed longitudinal pat-
tern obtained for ��0 remains nearly unaltered if the flow
vanishes. The modifications mostly concern the boundary
layer near the inlet, which becomes much shorter when the
flow rate is reduced.

The longitudinal solutions, unlike the transverse ones, are
specific to the 2D case. As we analyze in Sec. IV, the longi-
tudinal pattern is associated with the Turing instability be-
cause, from �1�, the flow ��y� has no effect on a solution for
u and v that is independent of x. Transport in the longitudinal
direction synchronizes the solution in that direction and pro-
duces a structure homogeneous in x.

The number of stripes in the longitudinal solution depends
on h. It is convenient to count these solutions with index n.
This index gives the number of inflections of u and v in the
y direction so that n+1 is the number of lighter and darker
stripes. An even index corresponds to an axially symmetric
profile u�−y�=u�y�, while an odd index corresponds to a pro-
file with odd symmetry u�−y�=−u�y�. For the solutions in
Fig. 3, n=6.

The longitudinal solutions with n odd are difficult to ob-
tain when the inlet profiles are uniform in y because they
force the axially symmetric modes of the system. Odd inlet
profiles, however, can produce odd solutions, as shown in
Fig. 4, where use of the step function at the inlet results in
the growth of odd solutions with n=1 and n=3. Higher odd
values of n require the use of more complicated inlet profiles
because these solutions are more easily damped by the even
modes.

When the transverse and longitudinal modes appear si-
multaneously, the interaction between them results in the for-
mation of more complicated patterns. Figure 5 presents an
example of this. In Fig. 5�a� the flow rate is far below the
critical point for the transverse solution �t, and the space is
occupied by the longitudinal stripe that exists at any �. The
toothlike pattern along the edges of the stripe is nonstation-
ary and travels in the x direction. In Fig. 5�b� the transverse
solution appears, since � exceeds the critical value �t. The

longitudinal solution is still admitted and, being partially
damped, is manifested as a raised area along the axis of the
reactor.

Figure 6 shows another example of the interaction be-
tween the modes: a remarkable spot pattern appears as a
combination of longitudinal and transverse structures. Note
that here different mechanisms of pattern formation act in the
x and in the y directions, leading to a new type of spot
formation. This is different from the classical spots associ-
ated with the Turing instability only �24�.

IV. LINEAR ANALYSIS

In this section we use a linear analysis to investigate con-
ditions for the appearance of stationary solutions. Neglecting
temporal dependence, we consider a solution to Eqs. �1� rep-
resenting a small deviation from the basic state: u�x ,y , t�
=uS+U�y�eqx, v�x ,y , t�=vS+V�y�eqx, where q is, in general,
complex. Then U�y� and V�y� satisfy the equations

U� = �q��y� − q2 − j11�U − j12V , �9a�

FIG. 4. Odd longitudinal solutions forced by the inlet profiles
Ubnd�y�=0.5 sign�y� and Vbnd�y��0. a=30, b=12, �=9, �=10. �a�
h=1.5, n=1, �b� h=4.5, n=3.

FIG. 5. Transition from the longitudinal solution �a� to the trans-
verse one when the flow rate grows. a=30, b=12, �=9, h=2.8,
Ubnd�y��0.5, Vbnd�y��0. �a� �=5, �b� �=18 ��t�16.0�. The so-
lution in �b� is stationary, while in �a� the toothlike pattern travels in
the x direction.

FIG. 6. The stationary spot solution as a composition of the
transverse and longitudinal structures. a=30, b=12, �=7, �=30,
Ubnd�y��2, Vbnd�y��0. �a� h=8, �b� h=13.

PATTERN FORMATION IN A TWO-DIMENSIONAL… PHYSICAL REVIEW E 72, 036216 �2005�

036216-3



�V� = − j21U + �q��y� − �q2 − j22�V , �9b�

where primes denote derivatives in y and jnm are the coeffi-
cients of the Jacobian matrix, j11=3−200/ �25+a2�,
j12=−20a / �25+a2�, j21=2a2b / �25+a2�, and j22=−5ab / �25
+a2�. In addition, the boundary conditions,

U��y = ± h� = V��y = ± h� = 0, �10�

should be satisfied.
Transverse modes are periodic in x, so that, in general,

Im q=k�0 and Re q=0. Substituting q= ik into Eqs. �9�, we
obtain a two-point boundary-value problem that has a non-
trivial solution at specific values of �=�t and k=kt. The
eigenvalues �t�0 and kt�0 are the critical flow rate and
wave number, respectively, of the transverse solution. We
search for the eigenvalues �t and kt numerically by a shoot-
ing method �25� which reduces the problem to locating the
zeros of a 4�4 determinant.

Figure 7 presents a numerical solution to the two-point
boundary-value problem �9� and �10�. Figure 7�a� shows the
critical flow rate �t as a function of h and Fig. 7�b� shows the
corresponding wave numbers kt. Labels 1 and 2 indicate dif-
ferent values of b. It can be shown from �9� and �10� that

�t → 3�FDS/2 and kt → kFDS, �11�

as h→0, equivalent to the fact that for small h the average
flow rate �2h�−1�−h

h ��y�dy must exceed �FDS. From Eqs. �6�
and �7�, this gives �t→9.566 and kt→0.458 as h→0 for
case 1, and �t→4.187, kt→0.642 as h→0 for case 2. An
extrapolation of the numerical values obtained in Fig. 7 pro-
duced agreement with these results to within a relative pre-
cision of 10−5.

Figure 7 shows that the transverse solution contains at
least two branches. In case 1, corresponding to a higher value
of b, the branches are separated with a gap where nondecay-
ing transverse structures do not exist. The critical flow rate
diverges at the edges of the gap while the wave number
vanishes. When b becomes smaller, as in case 2, the branches
overlap and the gap degenerates to a single point of intersec-
tion. Dashed segments of the curves correspond to transverse
structures that are not, in general, selected by the system.

The numerical results of Fig. 2 correspond to either side
of the gap in case 1. Figure 2�a� corresponds to the structure
below the gap that is similar to a 1D FDS pattern with slight
curvature in y, and Fig. 2�b� illustrates the structure that ap-
pears above the gap, where there are nonuniform transverse
stripes. It is possible that the parameters used in the Poi-
seuille flow experiment by Kærn and Menzinger �5� corre-
spond to the gap in solutions, and so stationary transverse
structures were not observed.

The gap can be found from the conditions at its edges
�t→�, kt→0. Substituting kt=0 and 	=�tkt into Eqs. �9�
and keeping Re q=0, we obtain a new boundary-value prob-
lem for the gap edges hgap. Figure 8 presents hgap as a func-
tion of b. When b is decreased, the lower boundary ap-
proaches the upper one and they merge. Below this point the
nonuniform transverse stripes appear before the point at
which �t diverges and, as a result, the gap degenerates into a
point.

Figure 7 shows only two branches of the transverse solu-
tion. The accurate numerical solution of the system �9� and
�10� requires significant computational resources, especially
as h increases. It is possible that a further investigation at
higher values of h may reveal more branches with gaps or
intersection points, but this is beyond the scope of the
present study.

Let us now consider longitudinal modes. These are uni-
form in x and hence q=0. Contrary to the previous case, the
transition to the longitudinal solution is not controlled by the
flow rate, and the eigenvalue problem �9� and �10� deter-
mines h as a function �, a, and b. It has a nontrivial solution
h=nhl �n=1,2 ,3 , . . . �, where hl±=
 / �2kl±� and

kl±
2 = �±��3a2� + 5ab − 125��2 − 160a3b� + 3a2� − 5ab

− 125��/�2��25 + a2�� . �12�

The requirement for hl to be real means that kl
2 should be

real and positive. Thus, there is a critical point when the

FIG. 7. �a� The critical flow rate of the transverse mode and �b�
the wave number. a=30, �=3, �1� b=12, and �2� b=7. The trans-
verse solution always decays in the gap between the curves 1. The
dashed parts of the curves 2 indicate solutions that are not, in gen-
eral, selected by the system.

FIG. 8. The shaded area indicates a location of the gap where a
nondecaying transverse solution does not exist. a=30, �=3.
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square root vanishes, provided the rest of the expression is
positive. Another critical point appears if kl− or kl+ vanishes.
However, it can be shown that this happens when the deter-
minant of the Jacobian matrix of the system is zero, which is
not relevant for a reaction-diffusion system. Here, the critical
point for CIMA obtained from �12� is �=�l, where

�l =
5ab�125 + 13a2 + 4a�10�25 + a2��

�125 − 3a2�2 . �13�

A longitudinal solution appears when ���l, i.e., this type
of solution requires the differential diffusion to be suffi-
ciently high. It can be shown that the identical critical value
of � is given by the equation b=bT, where bT is the Turing
critical point �5�. Hence, we conclude that the longitudinal
solution is the Turing structure that fits within the channel
walls.

Each kl in �12� produces a series of longitudinal modes
with profiles,

U�y�,V�y� � 	 sin�yn
/�2h�� , for odd n ,

cos�yn
/�2h�� , for even n ,

 �14�

where n is the index of the longitudinal mode introduced in
Sec. III. The eigenfunctions �14� can be used as inlet profiles
to produce the longitudinal solutions with either an odd or
even index. This works well in the numerical simulations,
although this would be difficult to arrange experimentally.

In the nonlinear system higher harmonics can allow satis-
faction of the boundary conditions �10� even if h does not
exactly match the spectrum nhl. Thus, nhl gives the lower
bound of h for which the longitudinal solution with corre-
sponding index n is admitted. In particular, the smallest ei-
genvalue hl=
 / �2kl+� determines the minimum size of the
reactor for which longitudinal solutions are allowed at all.

V. SUMMARY

In this brief paper we have presented a preliminary inves-
tigation of FDS patterns in a 2D reaction-diffusion-advection
system with a parabolic flow profile. Pattern formation in
this system is shown to take place via two mechanisms. The
first is a y-dependent version of the 1D FDS mechanism that
breaks the symmetry in x along the flow. The diffusion and
flow generate a spatial oscillation whose initial phase is fro-
zen by a constant inlet condition. This results in transverse
stripes similar to 1D FDS patterns. The second mechanism
breaks the symmetry in y and the Turing instability produces
a solution homogeneous in x that fits within the sidewalls of
the channel.

The longitudinal pattern separates the reactor into areas
where the concentrations of the species remain constant
along the flow. It is important to note that this takes place
even if the inlet distributions of the concentrations are uni-
form. This symmetry-breaking effect resulting in the dy-
namical separation of the species may be useful for experi-
mental studies as well as in industrial processes.

When both mechanisms of pattern formation are engaged,
a combination of transverse and longitudinal structures re-
sults in some interesting and complex patterns. In particular,
remarkable spot patterns are observed. The 1D FDS mecha-
nism is already known to be relevant in biological systems as
a model for axial segmentation �18,19�, and it is likely that
the present results can also be interpreted in this context.

We believe that our results can be reproduced for other
model systems and observed in experiments, although fur-
ther work is first needed to examine the stability of the so-
lutions found here. A more detailed analysis will be pre-
sented in subsequent papers.
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