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We review several critical situations, linked with period-doubling transition to chaos, which require using at least
two-dimensional maps as models representing the universality classes. Each of them corresponds to a saddle solution
of the two-dimensional generalization of Feigenbaum-Cvitanovi¢ equation and is characterized by a set of distinct
universal constants analogous to Feigenbaum’s o and 5. We present a number of examples (coupled Hénon-like
maps, coupled driven oscillators, coupled chaotic self-oscillators), which manifest these types of behavior.

An important aspect of the problem of turbulent dynamics in spatially extended systems is the question:
how does the spatio-temporal chaos originate from simple regular regimes as we vary one or more control
parameters? The breakthrough in understanding the onset of chaos in low-dimensional systems was Fei-
genbaum's discovery of the period-doubling universality and the renormalization-group (RG) approach
[1,2]. The one-dimensional non-invertible iterative maps represent the simplest class of systems, which
exhibit the Feigenbaum type of behavior. However, the period-doubling transition to chaos with the same
universal quantitative regularities occurs in many multi-dimensional dissipative nonlinear systems [3].

For a spatially extended system, as long as the Feigenbaum theory is applicable, it allows understand-
ing the onset of regimes of only restricted complexity, associated with certain spatial forms, which are
governed by one variable and described in terms of a one-dimensional iterative map. When new modes
consequently come into play in a course of parameter variation on a road to developed spatio-temporal
chaos, effective dimension of the dynamics increases, and description in terms of the one-dimensional
maps inevitably becomes insufficient. In this paper, we review several situations associated with period
doubling, which require at least two-dimensional maps as models for representation of the dynamics. These
situations may arise in the context of multi-parameter analysis of transition to chaos in multidimensional
systems.

Generalizing concept of "scenario" for a multi-parameter case, we may think of some configuration of
domains of distinct regimes in the parameter space. Generic one-parameter Feigenbaum scenario occurs at
the critical surface, a limit of a sequence of the period-doubling bifurcation surfaces. Behaviors that are
more special may occur at some curves and points on this surface. In the multi-parameter analysis, we are
obliged to consider them too, as phenomena of codimensions two and three, respectively. As believed,
these critical situations, like the Feigenbaum one, allow RG analysis, which must reveal the intrinsic quan-
titative regularities.

To analyze types of critical behavior intrinsic to two-dimensional maps due to presence of an addi-
tional dimension of phase space, we use a two-dimensional generalization of the renormalization equation
of Feigenbaum — Cvitanovi¢ [4,5]. In assumption that a coordinate system in the two-dimensional phase
space is selected in such way that the rescaling transformation, performed in a course of the procedure, is
diagonal (X—>X/a, Y—Y/P ), the equations read

g (X.Y) = ag(g(X/a, Y/B), f(X/o, Y/B)),
Jin(X,Y) =B, f(g(X/a, Y/), f(X/a, Y/B)),
where o and [ are some constants, specific for each type of critical behavior. A pair of functions
{g,(X.Y), f,(X,Y)} defines appropriately normalized evolution operator for 2* units of discrete time
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dynamics under consideration. One can apply this procedure called the RG transformation repeatedly to
obtain a sequence of the evolution operators for larger and larger time scales.

A critical situation usually corresponds to convergence of the operator sequence to some definite
limit, a fixed point of the RG transformation, or, as alternative, to a periodic point or a cycle. However, the
last possibility is not conceptually different, because in the case of period p one can speak of a fixed point
of the RG transformation composed of p steps of the original construction.

The next step in the RG analysis consists in consideration of small perturbations of the solution asso-
ciated with the critical situation under study. It gives rise to eingenvalue problem for a set of functional



equations obtained from linearization of the RG transformation (1) near a fixed point or a periodic solution.
Among the eigenmodes one should select the relevant ones, which have |[v[>1 (they are responsible for
asymptotic behavior of the solution at subsequent repetition of the RG transformation), and exclude modes
associated with infinitesimal variable changes. The number of relevant modes n corresponds to codimen-
sion of the critical point.

Critical situations of higher codimensions deserve accurate study and classification because they rep-
resent “organizing centers” of the parameter space structure, where domains of all relevant characteristic
dynamical regimes of the system are concentrated locally. An important task of the theory is also
constructing of model systems, the simplest representatives of the universality classes, which would play
for them the same role as the one-dimensional quadratic map for the Feigenbaum scenario.

1. Conservative Period-Doubling Criticality in the Context of Dissipative Dynamics

Soon after the works of Feigenbaum, several authors noticed that infinite sequences of period-
doubling bifurcations occur not only in dissipative but also in conservative systems [6,7]. In contrast to the
dissipative case, the convergence rate is a distinct universal factor, 8=8.72. An appropriate version of the
RG analysis was developed [6,7,4]. We prefer to separate terminologically this type of critical behavior
from the classic Feigenbaum class and call it the Hamiltonian period-doubling criticality (H-type).

This critical behavior may occur in situations like motion of charged particles in vacuum in electric
and magnetic fields, or in systems of celestial mechanics with gravitational interaction. If one wish to ap-
proach H-type criticality, say, in experiments with a forced nonlinear oscillator actualized as a mechanical
device or an electronic circuit, a straightforward idea is to exclude the energy loss. In this case, in princi-
ple, we may speak only of more or less satisfactory approximation for a conservative system. Alterna-
tively, we may try to arrange H-type of criticality not in a conservative, but in a self-oscillatory system. In
this case, H type will appear not due to vanishing dissipation, but due to compensation of dissipation from
external non-oscillatory source of energy. In this case the H criticality appears as phenomenon of codimen-
sion 2: we must control two parameters, one responsible for strength of nonlinearity, and another for the
energy balance in the system.

Let us consider a van der Pol oscillator driven by a sequence of short pulses of period 7, and assume
that amplitudes of the kicks depend on an instantaneous value of the dynamical variable as F(x). The dy-
namical equation reads

i-(e—w’)x+x=Y F(x)3(t—mT). )

In assumption that parameters €, 1, and amplitude F are small, between the kicks we can use a method of
slow amplitudes. In this assumption, one can derive an explicit stroboscopic Poincaré map. For simplicity,

let us set T = (4k +1)1/2 and select a concrete function F(x)=1— Ax’. Then, the map takes a form

|1 |1
%y = BU—Ax: =y e Ol + (1= ax? =y ]2y, = B e el w - a2 - 2L )
where B=explel, C=pTl(expel —1)/4eT , and n numerates steps of discrete time. Note that in a limit

e—0, n1—0 we have B=1, C=0, and the map (3) reduces to the area-preserving Hénon map.

Figure 1 shows a chart of dynamical regimes for the model (3) at certain fixed u7. The horizontal
axis corresponds to parameter, which controls the Andronov — Hopf bifurcation of a limit cycle birth in the
autonomous van der Pol oscillator, and the vertical to parameter of nonlinearity in the kick amplitude de-
pendence.

At large negative ¢, far from the Andronov-Hopf bifurcation, the oscillator behaves as a linear sys-
tem, and nonlinearity enters into play only due to the kick amplitude dependence on x. In this domain, the
map is equivalent (up to a variable change) to the Hénon map and manifests transition to chaos via the
Feigenbaum period doubling cascade. At positive €, the oscillator becomes active, and quasiperiodic be-
havior due to beating of its own oscillations and of periodic kicks arises.

If we increase € and follow the Feigenbaum critical line, it terminates at some point. Accurately, lo-
cation of this point may be estimated as a limit of the sequence of terminal points for the curves of subse-
quent period-doubling bifurcations. At those points the respective periodic orbits have two Floquet multi-
pliers equal to (—1). As a limit, we get the critical point

eT1=0.4036684037636..., A4.~4.083016502041... @)



The best way to check belonging of the critical point associated with period doubling to a supposed
universality class, consists in computation of multipliers for orbits of period 2* with large integer k. This is
convenient, in particular, because multipliers are invariant in respect to selection of a coordinate system in
the phase space. The multipliers must tend to the universal values obtained from the RG analysis.
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Figure 1. Chart of regimes for the map
(3) on the plane of parameters €7" and 4
at constant uT. Horizontal axis corre-
sponds to the parameter, which controls
the Andronov — Hopf bifurcation in the
autonomous van der Pol oscillator, and
the vertical axis to the parameter, which
controls degree of nonlinearity in the
kick amplitude dependence. Gray tones
designate periodic behaviors with periods
labeled by numbers, black corresponds to
chaos. Strips denote areas of multistabil-
ity, the alternating tones designate re-
gimes associated with the distinct
coexisting attractors. Critical point H is
marked with this letter. The value of puT
=3.246832310801 selected to have C=1
-1 4 oy T 1  at the critical point.

0

For the critical point under consideration the results are summarized in Table 1. Observe fast con-
vergence to the universal values expected for the H-type critical point from the RG analysis [5] (the last
row in the table). Also, as seen from the table, a product of two multipliers for higher periods of cycles
tends to 1 with high precision, which corresponds to the conservative nature of the dynamics in asymptotic
of large time scales.

Table 1. Multipliers of cycles of period p=2* and their products at the critical
point of H type in the Hénon — van der Pol map (3)

Period W Wo U515

4 -2.058910 -0.4864611 1.0015799
8 -2.057285 -0.4859759 0.9997908
16 -2.057504 -0.4860392 1.0000278
32 -2.057475 -0.4860309 0.9999963
64 -2.057477 -0.4860325 1.0000005
128 -2.057461 -0.4860359 1.0000000

RG -2.0574783 -0.4860318 1

2. Bicritical Point in a Model with Unidirectional Coupling

Let us turn now to a special class of two-dimensional non-invertible maps, which allow decomposition
onto subsystems with unidirectional coupling: x,,, = G(x,), v,,, = F(x,,»,) [8, 9]. In literature, such

systems were discussed, in particular, as models of turbulence in open flows [10]. Systems with unidirec-
tional coupling may be constructed artificially; for example, in electronics and optics such coupling may be
designed easily in experiments. Recently, systems of this kind are studied in the context of problem of
chaotic communication [11,12].

Already in the first work reported on the discovery of the bicritical behavior [8], beside theoretical
considerations and computations, some experimental results were presented for a system of two periodi-
cally driven nonlinear RL-diode circuits. In the scheme, the unidirectional coupling was arranged by a
special amplifier. By variation of two control parameters, which were amplitudes of external driving in
both subsystems, in the experiment it was sufficiently easy to bring simultaneously both subsystems to the
chaos threshold and get the bicritical situation.



Recently Kim and Lim [13] presented a detailed computational study for a system of driven nonlin-
ear oscillators with unidirectional coupling:

X =y,
¥, = 2m(BQy + Q° — Acos2mt)sin 27y, ,
X, =y, +c(x; —x,),

¥, = 2n(BQy + Q> — Bcos2nt)sin 2mx, +c(y, — ¥,).

)

In these equations, variables with subscripts 1 and 2 relate to the master and the slave subsystem, respec-
tively. As computed in Ref. [13], at fixed f=1, Q=0.5, and coupling constant ¢=0.2, the bicritical point of
the system (5) is located at 4=4,=0.798049182451, B=B.=0.80237721.
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Figure 2. Phase portraits of the bicritical attractor for the system of driven nonlinear oscillators with unidirectional
coupling of Kim and Lim (5) at f=1, Q=0.5, ¢=0.2, 4=0.798049182451, B=0.80237721. Diagrams (a) and (b)
show two projections of the attractor, one onto the plane of variables of the master subsystem, and another for the
slave system. Black dots on the portraits correspond to the cross-section with a hyper-plane /=0.35 (mod 1) (strobo-
scopic Poincaré section). Diagram (c) represents these points on the plane of x, versus x; to compare it with por-
traits of the attractors discussed above for the model maps.
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Figure 3. Parameter plane diagrams for driven nonlinear oscillators with unidirectional coupling of Kim and Lim (5),
B=1, Q=0.5, c=0.2. Areas of distinct periodic regimes are shown in gray scale, and periods are marked with numbers.
The second picture is obtained by magnification of the small box from the first one with factors §,=4.6692 and
5,=2.3927 along the horizontal and vertical axes, respectively.

Diagrams (a) and (b) in Fig.2 show phase portraits of the bicritical attractor in two projections from
the five-dimensional extended phase space. The first is a plane of variables for the master subsystem, and
another of those for the slave system. The trajectories constituting the attractor are drawn in gray, and
black dots correspond to moments of cross-section of an orbit with a hyper-plane #=const in the phase
space (stroboscopic Poincaré section). Diagram (c) represents those points on the plane (x,, x;). It looks
remarkable similar to portraits of the bicritical attractors for the model maps [9]. Figure 3 shows parameter
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plane charts locally near the bicritical point. The scaling property characteristic for a vicinity of the bicriti-
cal point is illustrated: Under magnification with factors 6,=4.6692... and 6,=2.3927... the structure of the
domains in the parameter plane obviously looks similar.

3. Criticality of FQ type (“Feigenbaum+Quasiperiodicity”)

In the first work reported about the FQ critical behavior [14], it was found in a system of two asymmetri-
cally coupled one-dimensional maps

xn+lzl_Mj_Cyrf’ynH:l_ij_Bxf (6)

by variation of A and 4 with fixed B and C. For particular B=0.375 and C=-0.25 the FQ-point is placed at
A=1.654524590, 4=A4.~1.030837593.

A more realistic model should be based on coupled two-dimensional dissipative invertible maps, say,
Hénon maps, which may be interpreted as Poincaré maps for a hypothetical flow system. Recently, in Ref.
[15] it was shown in computations that FQ criticality indeed presents in such a model.

More complex situation occurs if we try to build up a system of two coupled autonomous self-
oscillators. In the case of three-dimensional partial systems, the formally constructed Poincaré map is five-
dimensional, not reducible, in general, to two coupled two-dimensional maps. Apparently, presence of an
additional dimension in the Poincaré map facilitates appearance of the third eigenmode in the solution of
the RG equation, and it becomes necessary to have three control parameters to reach the critical situation
FQ. A concrete example we have considered supports this assertion. This is a system of two Chua’s cir-
cuits with dissipative coupling governed by equations

=0y —h(e))+e (= x), & =0,y —h(x))+e,(x - x,), (2x+3)/7,x<-1,
=X Ay e (n -0, =X+ v, —n+e,(y -y, hx)=1-x/7, —1<x<1, (7)
Z, = —by, +e,(z,-2), Z, = —by, +&,(z,—z,), (QX—3)/7,x21.

A search for the FQ point by variation of two parameters, with rest fixed, was unsuccessful. On the
other hand, by variation of three parameters, o, o, and b at fixed &,=—0.05, &,=0.2, the FQ point was de-
tected and located at

0,=6.330061623840..., 0,=6.585930638394..., b=10.19802309657... ®)

Table 2 gives evidence of the true FQ nature of this point. There we present pairs of senior multipli-
ers for unstable periodic orbits coexisting at the critical point; p=2* designates a number of steps of the
Poincaré map necessary to close the cycle. Observe evident convergence to the universal values obtained
from the RG analysis.

Table 2. Multipliers of cycles at the critical point of FQ type in the coupled Chua circuit

P 9 L2

16 —1.557415 —-1.086792

32 —1.586435 —-1.067858

64 —1.594082 —-1.025180
128 -1.562911 -1.078976
256 —1.579819 —1.057080
RG —1.579739 —1.057149

Figure 4 demonstrates another characteristic property of the FQ critical dynamics. It shows a portrait
of attractor of the system (7) in projection onto a plane of two variables relating to the first partial system.
A small part of the picture inside in a small rectangular is magnified, and a series of pictures demonstrates
in more details the fractal-like “strips” constituting the attractor. Under magnification by factor
o;=—1.9000... structure of the “strips” reproduces itself in accordance with our expectations based on the
results of the RG analysis. (It is rather difficult to extract another scaling factor a,=—4.0081... from such
computations because of fast shrinking of the respective details of the fractal attractor.)
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Figure 4. Portrait of attractor of the model (7) at the critical point FQ in projection onto the plane of two variables
relating to the first partial system. A small fragment of the picture inside in a small rectangular is shown separately.
Under subsequent magnification by factor |a;|=1.9000... the structure of “strips” constituting the attractor reproduces
itself on each second step of enlargement (account negative sign of |a.y|).

4. Criticality of C type

Let us consider a standard form of the fold mapping [16] (i, v) = (1>, v) and compose it with a general
affine transformation (u, v) —» (4 + Bu + Cv, D + Eu + Fv), where 4,B,...F are parameters. Then, by a
variable and parameter change it is reduced to a map

Xy ==, 40y, Yy ==X, +d -y, ©)
As shown in Ref. [17], this map manifests some special critical behavior associated with a period-two sad-
dle orbit of the Feigenbaum — Cvitanovic equation. At fixed h=—0.6663 it is located at a,=0.24990280,
d,=0.45290288.

The following example, as we believe, is of principal significance, although relates to an artificially
constructed model map.

One of the most widely discussed scenarios of the onset of turbulence comes back to Landau and Hopf
[18, 19] and consists, as they suggested, in subsequent birth of oscillatory components with incommensu-
rate frequencies, or, in language of more modern nonlinear dynamics, in subsequent birth of attractors rep-
resented by tori of higher and higher dimensions. In accordance with latter argumentation of Ruelle and
Takens [20], after few first bifurcations a strange chaotic attractor will be born instead of the higher-
dimensional torus. In any case, this picture contains an intermediate stage of bifurcation of Neimark —
Sacker, the onset of torus from the limit cycle [21, 22].

Let us construct a model map, which can demonstrate all bifurcation relevant for the problem of sta-
bility loss of a limit cycle, including the Neimark — Sacker bifurcation. In linear stability analysis of dy-
namics in terms of Poincaré section near the limit cycle one obtains a linear map, which may be written in
appropriately chosen variables as x,,, =Sx, —y,, »,,, =Jx,,where S and J are trace and determinant

of the Jacobian matrix defined over one period of the cycle. Next, we introduce nonlinearity in the map “by
hands”, in a hope that the most common features of the bifurcation transitions will be caught in the con-
structed map. Namely, we set [23]

X0 = 8%, =y, = (@) + 30, Yo =S, = (0 + x5, (10)
Domain of stability of the fixed point at the origin has a form of triangle on the parameter plane (S, J)
with sides [24, 25]: 1-5+J=0 (one multiplier equals 1, the saddle-node bifurcation), 1+S+J/=0 (one multi-
plier equals —1, the period-doubling bifurcation), and J=1 (two complex conjugate multipliers have unit
modulus, the Neimark - Sacker bifurcation), see Fig.5a.

In Fig.5b we present chart of dynamical regimes for the map (10) on the parameter plane (S,J) at
fixed €=0.535. One easily recognizes the stability triangle. On the topside, the Neimark — Sacker bifurca-
tion takes place of birth of motion spiraling around the former fixed point. Concrete nature of the regime
depends on the rotational number linked with argument of the complex multiplier at the bifurcation. In the
region upper the bifurcation border one can see tongues of periodic regimes and domains of quasiperiodic-
ity between them.



Let us consider one of the tongues, that of period 4, in more details. Diagram (c) shows this tongue
and its neighborhood with magnification. Observe that the period-doubling bifurcation curves inside the
tongue visibly stick into its edge. Computations confirm that there is a sequence of terminal points for the
period-doubling bifurcation curves at the edge of the synchronization tongue, which converges to a limit
point located at

§=85.~-0.548966..., J=J.=1.547188... (11)

This is a critical point of C-type. To give evidence of it on the quantitative level, we present in Table 3
numerical data on multipliers of cycles of period 2* computed at this point.

A remarkable feature of dynamics at the critical point C derived from the RG analysis is presence of
the critical quasiattractor, a countable infinite set of coexisting stable cycles of period proportional to 4%,
k=0,1,2,... (Notice that the multipliers for these cycles in the Table are less then 1 in modulus.) In compu-
tations, it is possible to get al least several first representatives of this family of attractors.
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Figure 5. Parameter plane for the model map (10): (a) triangle of stability for the fixed point at origin; (b) chart of
dynamical regimes and its magnified fragment (c). Gray scales are used to show areas of periodic dynamics. Black
designate chaos, quasiperiodicity or unrecognized high-period regimes. Stripped area indicates coexistence of dif-
ferent attractors. Critical point C located at the period-doubling accumulation point at the edge of synchronization
tongue is marked in diagrams (b) and (c).

Table 3. Multipliers of cycles of period p=2* at the critical point of C type in the model map (10)

: s i m e
64 1.179719 —-0.874220
128 0.859691 —-0.695732
256 1.175752 —0.855538
512 0.850658 -0.722936
1024 1.172441 —0.847454
2048 0.847450 —0.725255
RG 1.174459 —0.848865 0.847450 —0.725255

Observe nice correspondence of multipliers to the universal values known from the RG analysis (the
last row of the Table). As we found, critical points of the same nature occur as well inside some other
tongues above the Neimark — Sacker bifurcation.

As follows from this example, in the multiparameter analysis of transition to turbulence via quasiperi-
odicity (scenario of Landau — Hopf — Ruelle — Takens), already on a stage of birth of the second incom-
mensurate frequency, one can expect presence of critical points of C-type with intrinsic nontrivial features
of dynamical behavior, including coexistence of a countable set of attractive periodic orbits.
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