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A method is suggested for computation of the generalized dimensions for a fractal attractor associated with the quasiperi-
odic transition to chaos at the golden-mean rotation number. The approach is based on an eigenvalue problem formulated
in terms of functional equations with coefficients expressed via the universal fixed-point function of Feigenbaum-Kadanoff-
Shenker. The accuracy of the results is determined only by precision of representation of the universal function.

Multifractal or thermodynamic formalism is a commonly recognized tool for description of strange
sets arising in dynamical systems in different contexts [1]–[7]; its basic ideas have been clearly formu-
lated e.g. in the paper of Halsey et al. [2]. Some examples presented by these and other authors relate
to fractal attractors that occur at the onset of chaos via period doubling and quasiperiodicity [3]–[7].
The multifractal analysis reveals global scaling properties of these attractors, such as the generalized
dimensions and f(α) spectra. They are of principal interest because of their universality for systems
of different nature. Moreover, they allow a measurement in physical experiments [7].

One of the well-studied multifractal objects is the golden-mean quasiperiodic motion for the criti-
cal circle map with a cubic inflection point [8], [9], [10]. In fact, all essential quantitative characteristics
of this object relate to a universality class including many systems of different nature [7]. It should
be noted that global description of scaling properties in the multifractal formalism is in some contrast
to local description in terms of the renormalization group approach [9], [10]. The last is based on
solution of the functional fixed-point equation and associated with scaling relations for the evolution
operators in a narrow neighborhood of the inflection point of the considered map.

In this note I present a method for precise computation of the multifractal characteristics similar
to that developed earlier in cooperation with A. Osbaldestin in the context of Feigenbaum’s period-
doubling transition to chaos [11]. It will be shown that the problem allows formulation in terms of the
Feigenbaum–Kadanoff–Shenker renormalization transformation with an extension including an addi-
tional linear equation for some auxiliary function. The desirable quantities, such as generalized dimen-
sions and f(α) spectra, can be extracted from an eigenvalue problem for a set of linear functional equa-
tions, whose coefficients involve the universal fixed-point function of Feigenbaum–Kadanoff–Shenker.
A particular case of these equations associated with one special generalized dimension is linked with
the problem of the effect of noise on the golden-mean quasiperiodic motion at the onset of chaos [12].
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Using a polynomial representation of the Feigenbaum–Kadanoff–Shenker function valid up to
approximately 14 decimal digits, I performed a numerical solution of the functional equations and
obtained the generalized dimensions with high precision. In addition, I present an accurate estimate
for the scaling factor responsible for the effect of noise on the golden mean quasiperiodic critical orbit.

As known [8], [9], [10], [13], [14], in the critical circle map

xn+1 = φ(xn) = xn + r − (1/2π) sin 2πxn, (1)

the dynamics with the golden-mean rotation number takes place at

r = rGM = 0.606 661 063 470 112 017 . . .

In a standard approach developed by Halsey et al., to estimate numerically the multifractal
characteristics for the golden-mean quasiperiodic motion they introduce a partition function Γk(q, τ) =

=
Fk
∑

i=1
pq

i/l
τ
i . Here Fk is a Fibonacci number, q and τ are some real parameters. The values li =

=
∣

∣xi − xi+2k

∣

∣ are the minimal distances for pairs of points of the orbit of the critical circle map
starting from the inflection point, x0 = 0. They define natural scales for the partition with measures

pi = F−1
k attributed to each interval li. Obviously, Γk(q, τ) = F−q

k Sk(τ), where Sk(τ) =
Fk
∑

i=1
l−τ
i . For

each given τ an appropriate q = q(τ) exists that ensures an asymptotic equality Γk+1(q, τ) = Γk(q, τ)
as k → ∞, namely,

q = lim
k→∞

log(Sk+1(τ)/Sk(τ))

log(Fk+1/Fk)
= lim

k→∞

logW (Sk+1(τ)/Sk(τ)), (2)

where W = (
√

5 + 1)/2. Vise versa, for a given q we can select a respective value of τ = τ(q).
This relation of q and τ is used then to obtain the generalized dimensions Dq = τ/(1 − q) and the
singularity spectrum f(α) via relations f = qα− τ, α = dτ/dq.

Now let us turn to derivation of the basic equation. For a large k the lengths of the intervals li
are small and can be expressed via the derivatives as

li ∼= |∂xi/∂x1| l1. (3)

Then, we can compute them step by step together with the sums Sk via simultaneous iterations
of the equations

xi+1 = φ(xi), li+1 =
∣

∣φ′(xi)
∣

∣ li, Si+1 = Si + l−τ
i+1ψ(xi). (4)

For now, the auxiliary function ψ(x) is supposed to be identically equal to 1.
Now, let us write two sets of relations (similar to (4)) for Fk and Fk+1 iterations of the original

map:
xi+Fk

= φk(xi), li+Fk
=

∣

∣φ′k(xi)
∣

∣ li, Si+Fk
= Si + l−τ

i+Fk
ψk(xi) (5)

and
xi+Fk+1

= φk+1(xi), li+Fk+1
=

∣

∣φ′k+1(xi)
∣

∣ li, Si+Fk+1
= Si + l−τ

i+Fk+1
ψk+1(xi). (6)

From these formulas, we obtain the following relations for evolution over Fk+2 steps:

xi+Fk+2
= φk(φk+1(xi)), li+Fk+2

= |φ′k(φk+1(xi))φ
′

k(xi)| li,
Si+Fk+2

= Si + l−τ
i+Fk+2

[|φ′k(φk+1(xi))|τψk+1(xi) + ψk(φk+1(xi))] .
(7)

In accordance with the basic idea of the renormalization approach, let us perform the scale change
x 7→ x/αk, l 7→ l/|α|k, where α = −1.288 574 553 954 368 . . . is a universal constant, the rescaling
factor for the critical golden-mean dynamics [8], [9], [10], [13]. Then, in terms of the rescaled functions

gk(x) = αkφk(α
−kx), fk(x) = αkφk+1(α

−kx),
Φk(x) = ψk(α

−kx), Ψk(x) = ψk+1(α
−kx),

(8)
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the equations (6), (7) imply that

gk+1(x) = αfk(x/α),
fk+1(x) = αgk(fk(x/α)),
Φk+1(x) = |α|τ Ψk(x/α),
Ψk+1(x) = |α|τ [|g′k(fk(x/α))|τ Ψk(x/α) + Φ(fk(x/α))] .

(9)

These relations define an RG transformation for a set of functions {g, f, Φ, Ψ}. The procedure
may be repeated again and again to get the functions for larger and larger k.

Asymptotically, the functions gk(x), fk(x) converge to the fixed-point solution, which satisfies
g(x) = αf(x/α), f(x) = αg(f(x/α)), or g(x) = α2g(α−1g(x/α)). This result was obtained first by
Feigenbaum, Kadanoff, Shenker [9] and Rand, Ostlund, Sethna and Siggia [10], and reproduced latter
by many authors [13], [15], [16], [17], [18]. Numerical data for polynomial expansion of the universal
function g(x) may be found e.g. in Ref. [18].

Convergence of the functions g and f to the fixed point of the renormalization transformation
implies that the recursive linear functional equations for the functional pairs {Φk(x), Ψk(x)} have
coefficients asymptotically independent of k. Hence, as k → ∞, the solution will tend to the eigenvector
associated with the largest eigenvalue for the matrix functional equation

ν(τ)

(

Φ(x)
Ψ(x)

)

= |α|τ
(

0 1
|g′(f(x/α))|τ 1

)(

Φ(f(x/α))
Ψ(x/α)

)

. (10)

One special case of this equation (τ = 2) appears in the theory of noise effect on the golden-mean
quasiperiodic transition to chaos, see Ref. [12].

By the construction, the eigenvalue ν(τ) indicates a rate of growth or decrease of sums S:

Sk(τ) ∝ νk(τ). (11)

To have Γk → const as k → ∞ we must set

ν(τ) = F q
k ∝W q or q = logW ν(τ). (12)

Then, in accordance with the known equations of the multifractal formalism, we can obtain the
generalized dimensions as

Dq = τ
1 − q

, (13)

and f(α) spectrum as an implicitly defined relation between the variables

α = dτ
dq

and f = q dτ
dq

− τ. (14)

Although my argumentation starts from the approximate relation (3), apparently the final Eq.(10)
is exact. Indeed, in the asymptotic of k → ∞ the approximate nature of (3) becomes inessential. It
may be thought that the corresponding rigorous proof can be found. (See an analogous approach in
Ref. [11], where the data of numerical computations for period-doubling critical attractors manifest
precise agreement with the best known numerical results, up to all reliable digits.)

With the known polynomial representation of g(x) and f(x) and the scaling constant α, I con-
structed the functional transformation defined by the right-hand part of Eq.(10) as a computer pro-
gram. The unknown functions Φ(x) and Ψ(x) are represented by tables of their values at the nodes
of a one-dimension grid on the interval [−1.2, 1.2] and by an interpolation scheme of the fourth order
between the nodes. With the tables for Φ(x) and Ψ(x) as an input, the program yields analogous ta-
bles as output. In principle, the achievable precision of the results is determined only by the accuracy
of representation for the universal functions and the interpolation scheme.
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Suppose we fix τ and wish to find q. Let us define an initial condition arbitrarily, as Φ(x) =
= Ψ(x) ≡ 1, perform the functional transformation, and normalize the resulting functions as Φ0(x) =
= Φ(x)/Φ(x0), Ψ0(x) = Ψ(x)/Φ(x0). (Here x0 is an arbitrarily chosen coordinate inside the function
definition domain.) Then, the new pair of functions is taken as the initial condition and so on. This
operation is repeated many times, until the form of the functions Φ(x) and Ψ(x) stabilizes. Then, the
value of Φ(x0) before the normalization becomes equal to ν and we get q(τ) = logW ν.

To find τ for a given q the above procedure was supplemented with a simple iteration scheme for
numerical solution of the algebraic equation q(τ) = q. Then, it becomes possible to findDq = τ/(q − 1)
at q 6= 1. In particular, D0 is the Hausdorff dimension, and D2 is the correlation dimension.

To obtain the information dimension D1 it is necessary to determine the limit at q → 1, that is,

at τ → 0. Formally, from L’Hospital rule, D1 = lim
q→1

τ(q)

q − 1
=

(

dτ
dq

)

q=1

=

(

dq

dτ

)

−1

τ=0

. To compute it

without loss of accuracy let us write for τ � 1

Φk(x) = W k |α|kτ [1 + τϕk(x)], Ψk(x) = W k |α|kτ [1 + τψk(x)] (15)

and substitute this expression into Eq.(9). In the first order in ε we have

ψk+1(x) = ϕk(x/α),
ϕk+1(x) = W−1

[

ϕk(x/α) +W−1ψk(f(x/α)) + ln |g′(g(x/α))|
]

.
(16)

Numerically, representing ϕk(x) and ψk(x) by tables of their values at the grid nodes and perform-
ing a large number of steps of the transformation one can observe that ϕk+1(x)−ϕk(x) →

k→∞

θ = const,

and the same is true for the component ψ. It means that Φk and Ψk ∝ |α|kτ W kekγτ = W k(q+τdq/dτ).
As follows from this relation, the information dimension is

D1 =

(

dq

dτ

)

−1

τ=0

=
logW

log |α| + θ
. (17)

In computations I used polynomial representations of g(x) and f(x) = g(αx)/α containing 32
terms of expansion in powers of x3, which were valid, as checked, up to 14 decimal digits. Some
loss of precision occurs in computation of derivatives via analytical expressions from the finite power
expansion for g(x), so the resulting precision is about 12 digits. The data for Dq are presented in
the first two columns of Table 1. They are in good correspondence with results from the literature
(e.g. [2]), although I have managed to find only graphical (not numerical) data. The only exception
is the information dimension, which may be compared with Ref. [19] and coincides with it up to all
true digits of that estimate.

As an alternative to the traditional definition of the generalized dimensions Dq one might consider
a family of dimensions indexed by τ . Let us designate them as D(τ): D(τ) = Dq(τ) = τ/[q(τ) − 1].

Note that D(−1) = D0 and D(0) = D1. The numerical results are given in the last two columns of
Table 1.

As mentioned above, for τ=2 the equation (6) is of the form studied in the theory of noise effect
on the critical golden-mean quasiperiodic dynamics [12]. The scaling constant γ =

√

ν(2) determines
a factor by which the noise amplitude must be reduced to reveal one more level of the fractal structure.
Hence, the dimension D(2) is linked with the effect of noise. The scaling factor γ is expressed via D (2)

as γ = W 1/D(2)+1/2. As follows from the computations,

γ = 2.3061852653..., (18)

which improves significantly the previously known result [12].
The method of calculation of the generalized dimensions developed here is accurate and outlines

a link between global and local description of the scaling regularities. Moreover, it seems promising
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Table 1. Generalized dimensions for the golden-mean critical quasiperiodic orbit

q Dq τ D(τ)

0 1.000000000000 1 0.858785542316

1 0.921578263514 2 0.808774530475

2 0.866393010548 3 0.770186425804

3 0.824931598145 4 0.741619983463

4 0.792879513565 5 0.720982145614

5 0.767837633226 6 0.706068210093

for further generalizations dealing with a variety of critical behavior scenarios at the onset of chaos or
strange non-chaotic behavior.

The author acknowledges support from Max Planck Society and from RFBR (grant No 03-02-
16074).
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trum of the period-doubling operator in terms of
cycles. J. Phys. A: Math. Gen. 1990. V. 23.
P. L713–L717.

[6] A.H.Osbaldestim. Siegel disk singularity spec-
tra. J. Phys. A: Math. And Gen. 1992. V. 25.
P. 1169–1175. A.D.Burbanks, A.H.Osbaldestin,

A. Stirnemann. Fractal dimension of Siegel disc
boundaries. European Phys. J. 1998. V. B4.
P. 263–265.

[7] J.A.Glazier, M.H. Jensen, A. Libchaber, J. Stavans.
Structure of Arnold tongues and the f(α) spec-
trum for period doubling – Experimental results.
Phys. Rev. 1986. V. A34. P. 1621–1624. Z. Su,

R.W.Rollins, E.R.Hunt. Measurements of f(α) spec-
trum in driven diode resonator systems. Phys. Rev.
1987. V. A36. P. 3515–3517. J.A.Glazier, G.Gu-

naratne, A. Libchaber. F (α) curves – experimental
results. Phys. Rev. 1988. V. A37. P. 523–530.

R.E.Ecke, R.Mainieri, T. S. Sullivan. Universality
in quasi-periodic Rauleigh–Benard convection. Phys.
Rev. 1991. V. A44. P. 8103–8118.

[8] S. J. Shenker. Scaling behavior in a map of a circle
onto itself: Empirical results. Physica. 1982. V. D5.
P. 405–411.

[9] M.J. Feigenbaum, L.P.Kadanoff, S. J. Shenker.
Quasiperiodicity in dissipative systems: A renor-
malization group analysis. Physica. 1982. V. D5.
P. 370–386.

[10] S.Ostlund, D.Rand, J. Sethna, E.D. Siggia. Universal
properties of the transition from quasi-periodicity to
chaos in dissipative systems. Physica. 1983. V. D8.
� 3. P. 303–342.

[11] S.P.Kuznetsov, A.H.Osbaldestin. Generalized di-
mensions of Feigenbaum’s attractor from renormaliza-
tion-group functional equations. Reg. & Chaot. Dyn.
2002. V. 7. � 3. P. 325–330.

[12] A.Hamm, R.Graham. Scaling for small random per-
turbations of golden critical circle maps. Phys. Rev.
1992. V. A46. P. 6323–6333.

[13] T.W.Dixon, T.Gherghetta, and B.G.Kenny. Uni-
versality in the quasiperiodic route to chaos. Chaos.
1996. V. 6. P. 32–42.

[14] R. de la Llave, N. P.Petrov. Regularity of Conjuga-
cies between Critical Circle Maps: An Experimental
Study. Experimental Mathematics. 2002. V. 11. � 2.
P. 219–241.

[15] O.E. Lanford III. Renormalization group methods for
circle mappings. In: Statistical Mechanics and Field
Theory: Mathematical Aspects (Groningen, 1985).

REGULAR AND CHAOTIC DYNAMICS, V. 10,
�

1, 2005 37



S. P. KUZNETSOV

P. 176-189. Lecture Notes in Phys. V. 257. Springer,
Berlin. 1986.

[16] T.W.Dixon, B.G.Kenny. Transition to criticality in
circle maps at the golden mean. J. Math. Phys. 1998.
V. 39. � 11. P. 5952–5963.

[17] B.Fourcade, A.-M. S.Tremblay. Universal multifrac-
tal properties of circle maps from the point of view of
view of critical phenomena. I. Phenomenology. II. An-

alytical results. J. Stat. Phys. 1990. V. 61. � 3–4.
P. 607–665.

[18] N.Yu. Ivankov, S. P.Kuznetsov. Complex periodic or-
bits, renormalization and scaling for quasiperiodic
golden-mean transition to chaos. Phys. Rev. V. E63.
2001. � 4. P. 146–210.

[19] S.K. Sarkar. Information dimension for quasiperi-
odic trajectories with quadratically irrational winding
number. Phys. Lett. V. A106. 1984. � 3. P. 95–98.

38 REGULAR AND CHAOTIC DYNAMICS, V. 10,
�

1, 2005


