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1. INTRODUCTION

In the mathematical theory of chaotic dynamics
based on a rigorous axiomatic approach, hyperbolicity
means that all trajectories in the invariant set are of sad-
dle type, with well-defined stable and unstable mani-
folds [1–7]. Dissipative (phase-volume contracting)
hyperbolic systems exhibit strange attractors with
strong chaotic properties. The examples of hyperbolic
attractors discussed in textbooks and monographs on
nonlinear dynamics, such as Plykin’s attractor or
Smale–Williams’ solenoid, are constructed by using
artificial mathematical models [1–8].

The Smale–Williams solenoid is generated by a dis-
sipative dynamical system that maps a three-dimen-
sional phase space into itself iteratively as illustrated by
Fig. 1. Suppose that the 3D torus shown in Fig. 1a
behaves as a plastic doughnut. It is stretched to twice its
original length, folded in half, and squeezed into its
original volume as in Fig. 1b. This is possible only if the
area of its cross section transverse to the stretching
direction reduces by more than half. Since the dough-
nut’s volume contracts accordingly, the dynamical sys-
tem must be dissipative. The cross sections of the sets
obtained by repeating this procedure make up a
sequence of nested disks whose number doubles at each
iteration step as each disk is cropped into two smaller
ones that are contained in it. Figures 1c and 1d depict,
respectively, the result of two iteration steps and the
Smale–Williams solenoid, with a fractal cross section

similar to the Cantor set, generated as the process is
continued ad infinitum.

It has been proved that hyperbolic strange attractors,
such as the Smale–Williams solenoid, are structurally
stable [1–5]. Structural stability means robustness of
solutions to the governing dynamical equations under
changes in control-parameter values. In particular, the
Cantor-like structure of the hyperbolic strange attractor
is preserved if the changes are sufficiently small. The
high sensitivity of chaotic dynamics to initial condi-
tions is quantified by the Lyapunov exponent, which
smoothly depends on control parameters and never
drops to negative values as it typically does in the case
of a nonhyperbolic attractor.

The mathematical theory of hyperbolic chaos does
not seem to have been convincingly applied to any
physical system, even though its concepts are com-
monly invoked to explain chaotic behavior of realistic
nonlinear systems.

On the other hand, the complex dynamics of physi-
cally plausible nonlinear models (autonomous or peri-
odically forced nonlinear oscillators, the Rössler sys-
tem, and the like) are not completely hyperbolic [7–10].
“Chaotic” behavior of this kind is generally associated
with the so-called quasi-attractor, which contains not
only chaotic, but also stable periodic orbits with large
periods. (Usually, orbits of the latter type cannot be
captured numerically because their basins of attraction
are narrow [7–10].) While rigorous mathematical
description of quasi-attractors remains an open prob-
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lem, nonhyperbolic dynamics of physical systems are
obscured by noise. It has been proved that the chaotic
attractor in the Lorenz system corresponding to a cer-
tain set of parameter values exhibits the key properties
of hyperbolic attractors. However, the system does not
fully comply with the axioms underlying the theory of
hyperbolic chaos, and the attractor has been classified
as a quasi-hyperbolic one [11, 12].

Examples of hyperbolic chaos in dynamical systems
described by differential equations have been discussed
in just a few theoretical studies. It was found in [13] that
the frictionless motion of a mechanical system called

 

triple linkage

 

 can be described in terms of a geodesic
flow on a surface with everywhere negative Gaussian
curvature. In the presence of friction, the system, sup-
plemented with an appropriate feedback control, is
expected to have a hyperbolic chaotic attractor. In [14],
an artificial 3D flow was constructed that has Plykin’s
attractor as represented by the corresponding Poincaré
map. However, that example was too complicated to be
implemented in a physical system. In [15], it was
argued that the Poincaré map defined by a 3D flow con-
structed as a neuron model exhibits a Plykin-like
attractor.

In this paper, a simple and transparent example of a
nonautonomous physical system is constructed for
which the existence of a hyperbolic strange attractor
follows from the qualitative argumentation and numer-
ical analysis presented here. As represented by a stro-
boscopic Poincaré map, it is analogous to the Smale–

Williams solenoid embedded in a four-dimensional
phase space.

2. DESIGN AND OPERATING PRINCIPLE 
OF A SYSTEM 

BASED ON COUPLED VAN DER POL 
OSCILLATORS

The electronic device schematized by the circuit
diagram shown in Fig. 2 is a nonautonomous system
combining two van der Pol oscillators with free-run-
ning frequencies 

 

ω

 

0

 

 and 2

 

ω

 

0

 

. Each oscillator contains a
coil of inductance 

 

L

 

1, 2

 

 and a capacitor of capacitance

 

C

 

1, 2

 

 making up an oscillating circuit, so that

Negative-resistance components based on operational
amplifiers are introduced whose respective resistances,
–

 

R

 

1, 2

 

, can be treated as constant parameters in the
entire operating voltage ranges of the corresponding
oscillating circuits. A nonlinear conductance that
ensures increase in energy loss with oscillation ampli-
tude is implemented in a circuit component consisting
of two oppositely poled parallel arrays of series-con-
nected semiconductor diodes. A field-effect transistor is
used as an almost linearly conducting component, with
drain current controlled by the gate voltage slowly

ω0
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L1C1

----------------, 2ω0
1

L2C2

----------------.= =

 

(a) (b) (c) (d)

 

Fig. 1. 

 

Generation of an attractor by mapping a 3D phase space into itself: a solid torus (a) is stretched to twice its original length,
folded in half, contracted in the transverse direction, and squeezed into its original volume (b); (c) the image of the original torus
after two iteration steps; (d) the Smale–Williams solenoid generated by continuing the iterative process ad infinitum.

 

a

 

ω

 

0

 

N

 

------

 

t

 

cos

 

T

 

1

 

D

 

1

 

–D

 

6

 

–R

 

1

 

C

 

1

 

I

 

1

 

(

 

t

 

)

 

L

 

1

 

U

 

1

 

(

 

t

 

)

 

U

 

1

 

A

 

1

 

U

 

1
2

 

κ

 

2

 

U

 

2

 

 cos

 

ω

 

0

 

t

 

κ

 

1

 

U

 

1
2

 

cos

 

ω

 

0

 

t

A

 

2

 

U

 

2

 

 cos

 

ω

 

0

 

t
U

 

2

 

L

 

2

 

I

 

2

 

(

 

t

 

)

 

–R

 

2

 

C

 

2

 

D

 

7

 

–D

 

12

 

T

 

2

 

–

 

a

 

ω

 

0

 

N

 

------

 

t

 

cos

 

Fig. 2. 

 

Circuit diagram of a device consisting of two coupled van der Pol oscillators with periodically varying parameters: a physical
system having a Smale–Williams-type strange attractor.
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varying as a periodic function of time with period 

 

T

 

 =
2

 

π

 

N

 

/

 

ω

 

0

 

, where 

 

N

 

 is an integer. During successive half-
periods of its variation, one oscillator is active while the
other is idle and vice versa. Voltage squarer

 

 A

 

1

 

 in oscil-
lator 

 

1

 

 generates a second harmonic signal, which trig-
gers the active oscillator 

 

2

 

 into oscillation in a fre-
quency range around 2

 

ω

 

0

 

. Detector 

 

A

 

2

 

 heterodynes the
output of oscillator 

 

2

 

 with an auxiliary signal of fre-
quency 

 

ω

 

0

 

 to produce a difference-frequency signal res-
onant with the frequency of oscillator 

 

1

 

, which triggers
oscillator

 

 1

 

 when it becomes active. Thus, excitation is
alternately transferred between the oscillators.

The circuit functions as a chaos generator as fol-
lows. Suppose that the signal generated by the active
oscillator

 

 1

 

 has a phase 

 

ϕ

 

: 

 

U

 

1

 

 

 

∝

 

 cos(

 

ω

 

0

 

t

 

 + 

 

ϕ

 

). Then, the

output  of voltage squarer 

 

A

 

1

 

 contains the second
harmonic cos(2

 

ω

 

0

 

t

 

 + 2

 

ϕ

 

) with phase 2

 

ϕ

 

. When oscilla-
tor 

 

2

 

 becomes active, the generated signal 

 

U

 

2

 

 has the
phase 2

 

ϕ

 

. After this signal is heterodyned with the aux-
iliary signal by means of detector 

 

A

 

2

 

, the resulting sin-
gle-frequency signal has the same phase 2

 

ϕ

 

. Thus, the
signal generated by oscillator 

 

1

 

 during the next half-
period of its operation has the phase 2

 

ϕ

 

. It is obvious
that the phases of the signals generated by oscillator 

 

1

 

during subsequent half-periods can be represented, at
least approximately, by the sawtooth map

(1)

which exhibits chaotic dynamics [1, 4, 6, 7]. In particu-
lar, Eq. (1) obviously implies that a small deviation
from the initial state doubles at each iteration step. This
sensitivity to initial conditions is a key indicator of cha-
otic dynamics.

The dynamics of the coupled oscillators can be stud-
ied by analyzing the sequence of instantaneous states
generated by a stroboscopic map of the 4D phase space
into itself with the period 

 

T

 

. Indeed, the state of the sys-
tem at any instant can be described by four variables
(the voltages and currents in both oscillating circuits):

 

V

 

 = {

 

U

 

1

 

, I1, U2, I2}. Therefore, if the vector V = Vn is
given at t = nT, then the dynamical system uniquely
determines the state variables at the next point of stro-
boscopic section: Vn + 1 = F(Vn).

In the 4D state space, the eigendirection associated
with the phase ϕ is expanding and the remaining three
are contracting. As a geometrical illustration, consider
a 4D solid toroid (direct product of a 1D circle with a
3D ball). At each step of the stroboscopic map Vn + 1 =
F(Vn), it is stretched to twice its original length, con-
tracted in the transverse direction, folded in half, and
squeezed into its original volume. The complete anal-
ogy of this process to the construction of the Smale–
Williams solenoid suggests that the system under anal-
ysis has a hyperbolic chaotic attractor. The numerical
results presented below corroborate this conjecture.

U1
2

ϕn 1+ 2ϕn, mod 2π( ),=

3. GOVERNING SYSTEM 
OF DIFFERENTIAL EQUATIONS

To derive the system of equations describing the
dynamics of the circuit, we write Kirchhoff’s current-
balance law and the equation relating the current
through the coil to the voltage across it for each sub-
system:

(2)

Here, f(U) ≈ αU + βU3 is the current through the non-
linear circuit component consisting of semiconductor
diodes as a function of the voltage across it, the coeffi-
cients κ1, 2 characterize the coupling between the sub-
systems, and the factor g ± kacos(ω0t/N) represents the
conductance of the field-effect transistor controlled by
the ac gate voltage ±acos(ω0t/N).

Using the dimensionless variables

(3)

and parameters

(4)

,
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we rewrite the governing equations as

(5)

Each subsystem is described by two first-order differ-
ential equations equivalent to a van der Pol-type equa-
tion with time-varying coefficients. The dynamical
variables x, u and y, v correspond to oscillators 1 and 2,
respectively. According to the normalization used here,
their respective circular frequencies are 2π (which cor-
responds to the period ∆τ = 1) and 4π. The factor h1, 2 ±
A1, 2cos(2πτ/N) is a slowly varying parameter that con-
trols Hopf bifurcation in either subsystem.

4. CHAOTIC ATTRACTOR 
IN THE MATHEMATICAL MODEL

Figure 3 shows samples of time-dependent x and y
obtained by solving Eqs. (5) numerically by the
Runge–Kutta method for N = 8 and the parameter
values A1 = 1.5, A2 = 6, ε1 = ε2 = 0.1, and h1 = h2 = 0.
Figure 3a presents a single sample; Fig. 3b, approxi-
mately ten superimposed samples of the same signal on

ẋ 2πu h1 A1
2πτ
N

---------cos+⎝ ⎠
⎛ ⎞ x–

1
3
---x3+ + 0,=

u̇ 2π x ε2y 2πτcos+( ),=

ẏ 4πv h2 A2
2πτ
N

---------cos–⎝ ⎠
⎛ ⎞ y–

1
3
---y3+ + 0,=

v̇ 4π y ε1x2+( ).=

successive time intervals. Figure 3a demonstrates that
excitation is alternately transferred between oscillators 1
and 2. Visual inspection of Fig. 3b suggests that the pro-
cess is not periodic. A more careful analysis reveals
chaotic behavior, which manifests itself in irregular
shifts of the maxima and minima of the waveforms x(t)
and y(t) generated during successive periods relative to
the envelope.

Figure 4a shows the phase portrait of the attractor
projected onto the (x, ) plane. The points plotted in
Fig. 4b represent the stroboscopic section of the attrac-
tor at successive instants τn = nN. The abscissa and ordi-
nate of the plot in Figure 4c are the phases of the signal
generated by oscillator 1 at τn and τn + 1 , respectively,
calculated as

(6)

The first-return map in Fig. 4c appears to be topologi-
cally equivalent to (1). (A minor discrepancy arises
from the somewhat inaccurate qualitative derivation of
Eq. (1) and from the definition of the phase; better
agreement is achieved for larger values of the period
ratio N.)

ẋ
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Fig. 3. Time-domain x (solid curves) and y (dotted curves) obtained by computing Eq. (5) for N = 8, A1 = 1.5, A2 = 6, ε1 = ε2 = 0.1,
and h1 = h2 = 0: (a) single sample; (b) approximately ten superimposed samples of the same signal realization.
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To find the Lyapunov spectrum by Bennetin’s algo-
rithm [16, 17], we computed Eqs. (5) simultaneously
with the corresponding linearized equations for pertur-
bations,

(7)

Performing Gram–Schmidt orthonormalization at each
integration step, we averaged the growth rates of the
sum of logarithms of norms after orthogonalizing the
perturbation vectors, but before normalizing them. It is
obvious that the respective Lyapunov exponents for the
differential equations and the stroboscopic map, λk and
Λk , satisfy the relation λk = N–1Λk . For the control
parameter values specified above, we obtained Λ1 ≈
0.69 ≈ ln2, Λ2 ≈ –6.64, Λ3 ≈ –11.12, and Λ4 ≈ –22.24.
A positive Λ1 is an indicator of chaos. (Note also that
the absence of the zero Lyapunov exponent is natural
for maps and nonautonomous continuous-time flows.)

Figure 5 shows Λk plotted versus A1 for A2/A1 = 4.
While the largest Lyapunov exponent Λ1 has an approx-
imately constant value of about ln2 over a wide interval
of parameter variation, others are monotonically vary-
ing functions, in agreement with the conjectured hyper-
bolicity of the observed attractor. The noticeable
decrease in Λ1 toward the left endpoint of the interval
signifies a deviation from hyperbolicity.

A hyperbolic chaotic attractor must be structurally
stable under changes in the governing equations. Our
computations show that this requirement is met. In par-
ticular, analogous dynamics are obtained for other inte-
ger values of N, including smaller ones. For example,

x̃̇ 2πũ– x2 x̃– h1 A1
2πτ
N

---------cos+⎝ ⎠
⎛ ⎞ x̃,+=

ũ̇ 2π x̃ ε2 ỹ 2πτcos+( ),=

ỹ̇ 4πṽ– y2 ỹ– h2 A2
2πτ
N

---------cos–⎝ ⎠
⎛ ⎞ ỹ,+=

v̇̃ 4π ỹ 2ε1xx̃+( ).=

Fig. 6 shows the phase portrait of the attractor corre-
sponding to N = 4 projected onto the (x, ) plane and
its stroboscopic section. In this case, Λ1 ≈ 0.69, Λ2 ≈
−2.40, Λ3 ≈ –4.24, and Λ4 ≈ –6.85. Figure 6b demon-
strates the similarity in fine structure between the
attractor and the Smale–Williams solenoid depicted in
Fig. 1d. Note that fractal fine structure can also be
inferred from the first-return map for the phase plotted
in Fig. 6c.

The Kaplan–Yorke estimate [3, 7, 8] for the
Lyapunov dimension of the stroboscopic section of the
attractor is

.

The Grassberger–Procaccia correlation dimension
[3, 7, 8, 18] calculated for the stroboscopic section of

ẋ
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Λ1
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(a) (b) (c)

Fig. 4. Attractor corresponding to N = 8, A1 = 1.5, A2 = 6, ε1 = ε2 = 0.1, and h1 = h2 = 0: (a) portrait projected onto the (x, ) plane
of oscillator 1; (b) stroboscopic section at τn = nN; (c) first-return map for the phase of oscillator 1.
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Fig. 5. Computed Lyapunov exponents of the stroboscopic
map vs. A1 for N = 8, A2 = 4A1, ε1 = ε2 = 0.1, and h1 = h2 =
0. The largest exponent is consistent with the estimated
Λ1 ≈ ln2.
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the attractor is D ≈ 1.4, in reasonable agreement with
the Lyapunov dimension estimated above. The total
dimension of the attractor embedded in the 5D
extended phase space of the nonautonomous system is
obtained by adding unity: d = D + 1 ≈ 2.4.

Figure 7 shows the spectra of chaotic signals gener-
ated by both oscillators calculated by using a fast Fou-
rier transform algorithm. Note that the spectra of oscil-
lators 1 and 2 in Fig. 7 are continuous and localized
around ω0 = 2π and 2ω0 = 4π, respectively. They do not
exhibit pronounced multiple peaks characteristic of the
spectra of nonhyperbolic attractors. The narrow peaks
in the low-frequency tail of the spectrum of oscillator 2
should be attributed to the heterodyning effect of the
voltage squarer.

To verify the hyperbolicity of the attractor directly, we
applied the numerical procedure suggested in [19, 20] for
dynamical systems having a stable direction and an
unstable direction at each point of the invariant set. In
this procedure, the angle between the directions of
small perturbations is calculated at points of a trajec-
tory calculated forward and backward in time. If the
results do not contain zero values, then it is concluded
that the system is hyperbolic. If the angle distribution
demonstrates nonzero probability of zero angle, then

the corresponding tangencies between stable and unsta-
ble manifolds imply nonhyperbolicity. These tangen-
cies are interpreted as an indicator of a quasi-attractor
in a dissipative system.

Since we are dealing with a stroboscopic map in
order to compare the results directly with the Smale–
Williams solenoid and the only unstable manifold is
one-dimensional, while the stable one is three-dimen-
sional, we use the following modified procedure. First,
we generate a representative orbit {x(τ), u(τ), y(τ),
v(τ)) on the attractor by computing Eqs. (5) over a suf-
ficiently long time interval. Next, we compute Eqs. (7)
for perturbations of the orbit forward in time, normaliz-
ing the vector a(τ) = { (τ), (τ), (τ), (τ)} at each
step to preclude divergence. Then, we compute three
replicas of Eqs. (7) backwards in time to find three vec-
tors b(τ), c(τ), and d(τ), performing Gram–Schmidt
orthonormalization of the vectors at each integration
step to avoid divergence and predominance of one of
the vectors.

At each point τn = nN of the stroboscopic section,
the vector an = a(τn) and the span of {bn, cn, dn} =
{b(τn), c(τn), d(τn)} correspond to the unstable direc-
tion and the 3D stable manifold, respectively.

x̃ ũ ỹ ṽ
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Fig. 6. Attractor corresponding to N = 4, A1 = 1.5, A2 = 6, ε1 = ε2 = 0.1, and h1 = h2 = 0: (a) portrait projected onto the (x, ) plane
of oscillator 1; (b) stroboscopic section at τn = nN; (c) first-return map for the phase of oscillator 1.
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Fig. 7. Spectra of chaotic signals generated in oscillators 1 (x) and 2 (y): N = 4, A1 = 1.5, A2 = 6, ε1 = ε2 = 0.1, h1 = h2 = 0.
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To evaluate the angle α between the unstable and
stable manifolds, we determine a vector vn transversal
to the 3D stable manifold by solving the linear system
of equations

Then, we calculate the angle βn ∈ [0, π/2] between vn

and an from

and set αn = π/2 – βn .

Figure 8 shows the histograms of the computed αn .
The distributions represented by Figs. 8a and 8b corre-
spond to the two sets of control parameter values spec-
ified above. Since both distributions are well separated
from zero, the hyperbolicity of the attractor can be
inferred from the test. For comparison, Fig. 8c shows
the histogram plotted for parameter values correspond-
ing to nonhyperbolic dynamics. (In this case, the non-
hyperbolicity of the attractor can also be inferred from
the behavior of the Lyapunov exponent at the left end-
point of the parameter interval in Fig. 5.)

5. EXPERIMENTAL RESULTS

The circuit design schematized in Fig. 2 was imple-
mented in a laboratory device with C1 = 20 nF, C2 =
5 nF, and ferrite-core coils having equal inductances L1
and L2 of approximately 1 H. The free-running frequen-
cies of the oscillators were f1 = ω0/2π = 1090 Hz and
f2 = 2f1 = 2180 Hz. The negative-resistance amplifier
and nonlinear conductance are implemented by using a
140UD26 operational amplifier and KD102 diodes,
respectively. A time-varying conductance was intro-
duced by using KP303G field-effect transistors. The
nonlinear components responsible for the coupling

vn bn⋅ 0, vn cn⋅ 0, vn dn⋅ 0.= = =

βcos
vn an⋅
vn an

-----------------=

between the subsystems were based on 525PS2 analog
frequency multipliers.

The output voltages U1 and U2 were fed into a mea-
suring device (oscilloscope or spectrum analyzer) or
into a computer via an ADM12-3 analog-to-digital
(A/D) converter with 12-bit resolution and a maximum

sampling frequency of 3 MHz. The functions  and

 were generated by using a standard analog differen-
tial amplifier consisting of a 500 pF capacitor and a
62 kΩ resistor combined with a 140UD26 operational
amplifier.

Under an appropriate choice of parameters, the
experimental system exhibited chaotic oscillations as
excitation was alternately transferred between the oscil-
lators by the mechanism discussed above. Figures 9a and
9c show typical examples of the time series obtained by

processing chaotic  and  waveforms for N = 8
and N = 4 with the A/D converter operating at a sam-
pling rate of 200 kHz (approximately 200 data points
per period corresponding to the free-running fre-
quency ω0).

Figures 9b and 9d show the first-return maps calcu-
lated by substituting into (6) the near-maximum values

of (t) sampled with the period T = 2πN/ω0 and the

derivatives of (t) at the same instants produced by
the differential amplifier. The topological equivalence
of these maps to sawtooth map (1) is essential for infer-
ring the hyperbolicity of the attractor from experimen-
tal data.

Figure 10a shows an oscilloscopic trace image of
the chaotic attractor corresponding to N = 4 (with hori-

zontal and vertical deflections proportional to (t)
and U1(t), respectively) photographed with an exposure
time of a few seconds to capture a sufficiently large
number of the recurrent loops of a trajectory on the
attractor. The image obviously resembles that shown in
Fig. 6a. Figure 10b shows the stroboscopic section of

U̇1

U̇2

U̇1 U̇2

U̇1

U̇1

U̇1

Fig. 8. Histograms of angle α between stable and unstable subspaces for system (5): hyperbolic attractors corresponding to A1 =
1.5, A2 = 6, h1,2 = 0, ε1, 2 = 0.1, and N = 8 (a) and N = 4 (b); (c) nonhyperbolic attractor corresponding to A1 = 0.2, A2 = 0.8, h1, 2 =
0, ε1, 2 = 0.1, and N = 8.
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Fig. 9. Examples of time-domain voltage signals generated by oscillators 1 (solid curves) and 2 (dotted curves) operating in the
chaotic regime and first-return maps for the phase of oscillator 1: N = 8 (a, b) and 4 (c, d).

U1

.

U1

(a) (b)

U1

.

U1

Fig. 10. Portrait of the attractor projected onto the (U1, ) plane for N = 4: (a) photograph of an oscilloscopic trace image;
(b) stroboscopic section with period T = 2πN/ω0 at instants corresponding to near-maximum values of U1; (c) enlarged fragment
demonstrating the fractal fine structure of the attractor.
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the attractor projected onto the (U1, ) plane obtained
by processing the bivariate time series used to calculate
the first-return map in Fig. 9d. It is obviously similar to
the analogous portrait of the Smale–Williams solenoid.
Figure 10c shows an enlarged fragment demonstrating
the fine structure of the attractor.

The Grassberger–Procaccia correlation dimension
calculated by processing a time series generated at a
sampling rate of 200 kHz is d ≈ 2.3, in reasonable
agreement with that determined from numerical results.
The largest Lyapunov exponent of the stroboscopic
map [21] evaluated by processing a time series sampled
with the period T = 2πN/ω0 is Λ ≈ 0.73, in fair agree-
ment with the estimated value Λ ≈ ln2.

Figure 11 combines snapshots of the spectra of
waveforms generated by both oscillators operating in the
chaotic regime at N = 4 in a form suitable for comparison
with Fig. 7. Note that the spectra of oscillators 1 and 2 in
Fig. 7 are continuous and are localized around ω0 = 2π
and 2ω0 = 4π, respectively. They are obviously similar
to those obtained by numerical simulation, except for
some presumably unimportant features, such as pro-
nounced additional peaks, a secondary maximum in the
spectrum of oscillator 1 at the second-harmonic fre-
quency, and the absence of narrow low-frequency
peaks in the spectrum of oscillator 2.

Some numerical results discussed in the preceding
section cannot be verified by experiment. For example,
it is hardly possible to determine the Lyapunov spec-
trum or verify hyperbolicity. Nevertheless, in total, the
results obtained strongly suggests that the dynamics of
the experimental device are similar to those of the
Smale–Williams-type attractor in the nonautonomous
system analyzed in the theoretical study.

6. CONCLUSIONS

The available characteristics of the dynamics of the
physical system examined in this study suggest that it
has a strange attractor that can be classified as hyper-

U̇1 bolic. A mathematical proof of its hyperbolicity is
desirable, but its development is a separate task that lies
outside the scope of the present analysis relying on
complementary qualitative arguments supported by
numerical and experimental results.

We believe that the suggested example of a hyper-
bolic strange attractor in a physical system is of funda-
mental importance for further progress in nonlinear
dynamics and its applications. For specialists dealing
with physical and other systems, this should be a
“breakthrough into the realm of hyperbolicity.” Using
this example as a starting point and taking advantage of
the inherent robustness of hyperbolic attractors, one
can construct other hyperbolic systems. Indeed, the
right-hand sides of governing equations can be modi-
fied without losing hyperbolicity, at least if the change
is sufficiently small. The availability of physical sys-
tems with hyperbolic behavior opens new prospects for
applications of the well-developed theory of hyperbolic
dynamical systems and provides a basis for compara-
tive studies of hyperbolic and nonhyperbolic chaos in
theory and experiment.
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