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Abstract

A novel type of period-doubling scaling behavior in two-dimensional area-preserving maps is reported, a conservative analog of t
behavior in period-doubling one-dimensional maps with quartic extremum. We present data of numerical solution of the two-dimension
of the Feigenbaum–Cvitanović RG equation and accurate estimates for the universal constants. Illustrations are given for self-similarit
phase space and in the parameter space of the model map.
 2005 Elsevier B.V. All rights reserved.
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Soon after discovery of quantitative universality in t
period-doubling onset of chaos and development of the re
malization group (RG) analysis in this context[1–3], two gen-
eralizations were suggested in the literature.

One concerns a family of unimodal 1D maps of arbitr
real degree of the extremum,xn+1 = 1 − λ|xn|r , r > 1 [4–8].
It appears that the period-doubling bifurcation cascade
course of increase of parameterλ is characterized by scalin
constants, which depend on the exponentr : δ(r) (the conver-
gence rate of the period doubling bifurcations) andα(r) (the
orbital scaling factor). The original Feigenbaum results re
to a case of quadratic extremum, withδF = δ(2) ≈ 4.669 and
αF = α(2) ≈ −2.503. Other even integer degrees are of a
tain interest too. Say,r = 4 corresponds to the so-called tricr
ical behavior[9,10]. As found, for this caseδT = δ(4) ≈ 7.284
andαT = α(4) ≈ −1.690.

Another generalization relates to a class of two-dimensio
area-preserving maps associated with conservative (Ha
tonian) dynamics[11–17]. In this case, the period-doublin
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cascade is governed by the convergence factorδH ≈ 8.721, and
there are two constants responsible for the phase space (o
scaling,αH ≈ −4.018 andβH ≈ −16.36. An example is deliv-
ered by the mapxn+1 = 1− λx2

n − yn, yn+1 = xn.
In Ref. [18], discussing a family of Hénon-like maps

(1)xn+1 = 1− λ|xn|r − Dyn, yn+1 = xn,

the authors argued in favor of dependence of the per
doubling scaling constants on the exponentr in the conservative
caseD = 1. It seems that these results are not correct. In
ticular, as noted by Briggs et al.[19] (with a reference to an
unpublished work of Roberts), in the area-preserving case
this family the scaling constants are common forr = 2 and for
values distinct from 2. Our computations support this con
sion too.

So, the question remains unsolved yet: either one can
a family of the scaling behaviors for the area-preserving m
analogous to those with different degrees of extremum for
1D maps?

In this Letter, we report a particular result in this resp
and present a new class of period-doubling scaling behavio
area-preserving analog of the tricritical situation in 1D map
can occur generically in three-parameter analysis of the a
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preserving maps at some special critical point HT in the
rameter space. We suggest a model map manifesting this
of criticality and present data of numerical solution of the R
equation (the 2D version of the equation of Feigenbaum
Cvitanovíc). Also, we obtain accurate estimates for the ass
ated universal constants, and illustrate self-similar format
in the phase space and in the parameter space of the mode
at the critical point.

Let us consider the following Hénon-like 2D map:

(2)xn+1 = f (xn) − Dyn, yn+1 = xn,

where

(3)f (x) = 1+ Ax + Bx2 + Cx4.

This model contains four parametersA, B, C, D. At D = 0
the dynamics is of one-dimensional nature; it is governed
the mapxn+1 = f (xn). At A = 0 andB = 0 the function pos-
sesses a quartic extremum, and the limit of the period-doub
cascade observed with increase ofC is a tricritical point:CT =
1.594901356. . . . Starting at this point, we can gradually i
creaseD and tune simultaneouslyA, B, and C to preserve
the tricriticality. In computations this procedure was realiz
in an earlier work of one of the authors[20]. As noted there
in the course of increase ofD it is necessary to control exact
three other parameters to compensate three relevant un
modes arising due to a perturbation of the fixed point of
RG equation associated with the tricriticality. The condition
be fulfilled consists in selection of these three parameter
keep constant the main multipliers (the larger of two Floq
eigenvalues) for three cycles of sufficiently long periodsk ,
2k+1, 2k+2. (Asymptotically, these multipliers should be equ
to a universal number associated with the tricriticality,µT =
−2.0509404.)Fig. 1shows a graphical representation of the
sults of the computations, namely, the tricritical curve in
parameter space(A,B,C). The limit of this curve atD → 1,
where the map becomes area preserving, yields a new cr
point, which is the main matter of our interest here. We de
nate it as HT-point (that stands for “Hamiltonian+Tricritical”).

For D close to one, the accurate computations become
ficult. Indeed, the regularities intrinsic to the tricriticality a
valid only in the strong-dissipation limit. ForD approaching
unity, it becomes necessary to deal with orbits of larger
larger period 2k with k → ∞ to get notable dissipation ove
the period. Nevertheless, performing the procedure with
sequently increasingk we could approach sufficiently close
D = 1 and were able to estimate parameters correspondin
the HT-point. Our best result (with improvements with a use
universal constant for Green’s residue, as explained later) i
following:

AHT = −0.1956089759639,

BHT = −0.064248541437467,

(4)CHT = −17.953222255456, DHT = 1.

To analyze behavior at the critical point HT on a basis of
RG analysis it is convenient to rewrite the map in the equiva
-
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Fig. 1. The tricritical curve of the map(2) in the parameter space(A,B,C)

obtained in computations forD varied from 0 to 1. The limit point atD → 1
corresponds to the new type of criticality designated as HT.

form (by analogy with[11,12,14–16])

(5)xn+1 = Yn + 1

2
f (xn), Yn+1 = −xn + 1

2
f (xn+1),

whereY = 1
2f (x) − y. Next, it is convenient to shift origin in

x and setX = x − xc, wherexc is the “scaling center”, the
limit point for a sequence of elements of the period-2k cycles at
the critical point. For our case, as computed,xc = 0.00032689.
The new variables(X,Y ) represent a canonically conjugate p
and in respect to the formulation of the RG equation have
advantage that the scaling transformation in these variables
be diagonal.

Let us assume that the evolution operator of dynamic
the HT point over 2k units of discrete time is defined by
pair of functions{gk(X,Y ), fk(X,Y )} and normalized in suc
way thatg(0,0) = 1, f (0,0) = 1. By two-fold application of
this operator and after variable changeX → X/αk, Y → Y/βk ,
whereαk = 1/gk(1,1) andβk = 1/fk(1,1), we get the renor
malized evolution operator for 2k+1 units of time:

gk+1(X,Y ) = αkgk

(
gk(X/αk,Y/βk), fk(X/αk,Y/βk)

)
,

(6)fk+1(X,Y ) = βkfk

(
gk(X/αk,Y/βk), fk(X/αk,Y/βk)

)
.

One can apply this RG transformation repeatedly to obta
sequence of the evolution operators for larger and larger
scales.

Numerically, the functions{gk(X,Y ), fk(X,Y )} may be ob-
tained from 2k-fold iteration of the map(5) at the critical point
(4) by means of appropriate rescaling of the dynamical v
ables. These computations indicate that the sequence o
functional pairs{gk(X,Y ), fk(X,Y )} tend to a definite limit,
which corresponds to a fixed point of the set of functional eq
tions:

g(X,Y ) = αg
(
g(X/α,Y/β),f (X/α,Y/β)

)
,

(7)f (X,Y ) = βf
(
g(X/α,Y/β),f (X/α,Y/β)

)
.
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Hereα = lim αk = 1/g(1,1), β = lim βk = 1/f (1,1), g(0,0)

= f (0,0) = 1. (The same relations were derived by several
thors in application to the usual conservative period-doub
criticality [11–16] and to some other situations[17], but here
we deal with a distinct solution of the equations.)

The existence of the fixed point of the RG transformat
means that the rescaled long-time evolution operators a
criticality will be of a universal form, up to a characteris
scale. The renormalized evolution operator{g(X,Y ), f (X,Y )}
can be recovered (say, numerically) from the functional fix
point equations(7). In other words, without any reference to
concrete system under examination, it is determined entirel
structure of the RG scheme. Therefore, like in other case
applicability of the RG method, a fixed-point solution of R
equation gives rise to a universality class, which may incl
systems of very different mathematical nature (e.g., itera
maps, ordinary differential equations, etc.).

For the numerical solution of the functional equations(7),
we represent the functions{g(X,Y ), f (X,Y )} by finite poly-
nomial expansions inside a rectangle(−1.1 � X � 1.1,−2.4�
Y � 2.4), and organize the procedure of RG transformation
a computer program operating with coefficients of the poly
mials. In this way, the equations(7) reduce to a finite set o
nonlinear algebraic equations for the coefficients, which ma
solved by the multidimensional Newton method. (As the ini
approximation, we use functions obtained from direct iterati
of the map(5) at the HT point.) The results of the computatio
are summarized inTable 1. (The accuracy of representation
the universal functions with the data of theTable 1is about six
decimal digits, but we have obtained higher precision dat
well.)

In the course of the procedure, we get also accurate estim
for the rescaling constants

(8)α = −2.059370935, β = 17.991734478.

From the polynomial representation of the functions, one
find out that the map(X,Y ) �→ (g(X,Y ), f (X,Y )) has a fixed
point, namely,X∗ = 0.680386. . . , Y∗ = 0.000100. . . . As the
functional pair{g(X,Y ), f (X,Y )} corresponds to the rescale
-
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evolution operator at the HT point for an asymptotically la
number of iterations 2k , we conclude that periodic orbits of a
bitrarily large periods 2k coexist at this point. All of them ar
unstable, and asymptotical values of the multipliers (Floq
eigenvalues) may be estimated as eigenvalues of the Jac
matrix ∂(g(X,Y ))/∂(X,Y ) at the point(X∗, Y∗). From the nu-
merical data we get

(9)µ1 = −2.795180794, µ2 = 1

µ1
= −0.357758265.

Also, we obtain a universal number for Green’s resid
(see[11]), a characteristic value for the long-period orbits
the HT point

(10)RHT = 2− µ1 − µ2

4
= 1.288234851.

We used the constantRHT to improve effectively the esti
mates for coordinates of the HT critical point in the origin
map(5) (or (2)). Starting with a crude estimate, we compu
three first period-2k cycles of the map, which have residu
close toRHT. By tuning the control parameters(A,B,C) we
try to reach equality of the residues to the universal num
(10). Then, we increasek and repeat the tuning for the tripl
of longer-period cycles. Fork about 10 we get a very accura
estimate, see(4).

From the results of the RG analysis, we can derive sca
properties of the dynamics at the critical point HT. Namely,
us suppose that we consider an orbit started near the “
ing center” X = 0, Y = 0 at some point(X0, Y0). (We re-
mind the link of the redefined variables with the original on
X = x − xc,Y = 1

2f (x) − y.) Then, for the trajectory launche
at (X0/α,Y0/β) we shall observe the similar behavior but w
doubled characteristic time scale. Formally speaking, this p
erty is asymptotic: smaller the vicinity of origin, larger th
characteristic time scale, and better the precision the sc
holds.

Because of conservative nature of the dynamics, no at
tors exist at the critical point. However, other phase space
jects do obey the scaling property. In particular, it relates
Table 1
Coefficients of polynomial expansions for the functions representing the fixed-point of the RG transformation(7)

g 1 Y Y2 Y3 Y4

1 1.000000 −0.250023 0.003653 0.000017 −0.000001
X −0.096847 −0.025497 −0.000260 0.000012 0
X2 −0.010754 0.001956 −0.000055 −0.000004 0
X3 −0.001888 0.000045 0.000001 −0.000002 0
X4 −1.099936 0.032221 0.000246 −0.000016 0
X5 −0.112234 −0.002378 0.000167 0 0
X6 0.008549 −0.000870 −0.000081 0 0
X7 0.000340 0.000233 −0.000021 0 0
X8 0.071147 0.001866 −0.000081 0 0
X9 −0.005514 0.000529 0 0 0
X10 −0.002189 −0.000999 0 0 0
X11 0.000666 0 0 0 0
X12 0.003078 0 0 0 0
X13 0.000703 0 0 0 0
X14 −0.001362 0 0 0 0
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Table 1 (continued)

f 1 Y Y2 Y3 Y4 Y5 Y6

1 1.000000 −4.601519 1.714849 −0.323223 0.029363 −0.001105 0.000015
X 2.217240 0.924041 −0.003203 −0.049555 0.007197 −0.000169 0
X2 −0.132037 0.176217 −0.093645 0.011220 −0.000185 0.000025 0
X3 0.029112 −0.005566 −0.007935 0.002499 −0.000122 0.000021 0
X4 −20.237814 15.082968 −4.265691 0.516918 −0.023772 0.000324 0
X5 4.065733 −0.028476 −0.652280 0.127062 −0.003710 −0.000214 0
X6 0.777049 −0.821283 0.152199 −0.003733 −0.000939 0.000085 0
X7 −0.037778 −0.072452 0.020591 −0.003307 0.000374 0.000169 0
X8 33.139997 −18.779353 3.399545 −0.207428 0.005296 0 0
X9 0.031313 −2.848674 0.893099 −0.030208 −0.002411 0 0
X10 −1.638544 0.729382 −0.000334 −0.006680 0 0 0
X11 −0.544947 0.027758 −0.159716 −0.000381 0.001516 0 0
X12 −28.172982 9.830790 −0.938270 0.030969 0 0 0
X13 −3.229990 2.781572 0.081899 −0.012033 0 0 0
X14 2.595528 0.189221 −0.003871 0 0 0 0
X15 −1.303847 −0.624572 −0.197516 0.007071 0 0 0
X16 8.370378 −2.231363 0.096046 0 0 0 0
X17 4.081385 0.354591 0.058735 0 0 0 0
X18 2.725813 0.081417 0 0 0 0 0
X19 −0.688120 −0.462671 0 0 0 0 0
X20 −3.647391 0.149413 0 0 0 0 0
X21 −0.192762 0.117978 0 0 0 0 0
X22 0.713379 0 0 0 0 0 0

Fig. 2. Illustration of the scaling property for the stable and unstable manifolds of the trajectory starting at the “scaling center”x = xc, y = 1
2f (xc) at the HT

critical point. The unstable manifold is shown in black, and stable one in gray. A small curvilinear quadrangle formed by coordinate curvesX = ±0.4 andY = ±0.2
is shown separately in coordinates(X,Y ). The second inset presents the interior of the depicted rectangular under magnification by factorsα = −2.0593. . . ,
β = 17.9917. . . along the horizontal and vertical axes, respectively.
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family of unstable periodic orbits of period 2k mentioned above
and having asymptotically the universal multipliers(9). Fig. 2
illustrates the scaling property for the stable and unstable m
ifolds of the trajectory starting at the “scaling center”X = 0,
Y = 0, i.e.,x = xc, y = 1

2f (xc). The unstable manifold show
in black is generated from iterations of an ensemble of ran
initial conditions very close to the origin (distances less t
a pixel of the graphical presentation). After sufficiently lar
number of iterations, the depicted points take up positions a
the unstable manifold. The stable manifold is generated in
same way, but from iterations in backward time. In the m
panel, the manifolds are plotted in coordinates(x, y). A se-
lected curvilinear quadrangle is shown separately in coordin
(X,Y ). On a plane of these variables magnification by fac
α and β along the horizontal and vertical axes, respectiv
n-

g
e

s

,

reveals the similar structure of the manifolds as seen from c
parison of the first and the second inset.

The next step in the RG analysis consists in consideratio
small perturbations of the fixed-point solution of the functio
equations:

g(X,Y ) �→ g(X,Y ) + εu(X,Y ),

(11)f (X,Y ) �→ f (X,Y ) + εv(X,Y ), ε � 1.

On this stage it is convenient to use slightly reformulated
transformation: now we regard the scaling factorsα andβ as
constants equal to the universal numbers(8), not depending on
the level of the construction. Then, by linearization of the
transformation at the fixed point{g(X,Y ), f (X,Y )} we come
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to the eigenvalue problem

δu(X,Y ) = α
[
g′

1

(
g(X/α,Y/β),f (X/α,Y/β)

)
u(X/α,Y/β)

+ g′
2

(
g(X/α,Y/β),f (X/α,Y/β)

)
v(X/α,Y/β)

+ u
(
g(X/α,Y/β),f (X/α,Y/β)

)]
,

δv(X,Y ) = β
[
f ′

1

(
g(X/α,Y/β),f (X/α,Y/β)

)
u(X/α,Y/β)

+ f ′
2

(
g(X/α,Y/β),f (X/α,Y/β)

)
v(X/α,Y/β)

(12)+ v
(
g(X/α,Y/β),f (X/α,Y/β)

)]
.

Hereδ is an eigenvalue, and the indices 1 and 2 designate d
atives of the functions in respect to the first and the sec
argument.

Among the eigenmodes we have to collect the relevant o
which have|ν| > 1 and response for the asymptotic behav
of the solution under subsequent repetition of the RG trans
mation. It is essential to exclude modes, which are assoc
with infinitesimal variable changes (e.g., shifts alongX andY

and rotation of the coordinate system, cf. Refs.[1–3,9–17]).
Then, from the numerical solution based on representatio
the functions by finite polynomial expansions, we extract f
relevant eigenvalues

δ1 = 14.2808753, δ2 = −8.5311613,

(13)δ3 = 4.2018184, δ4 = 2.

As checked, the first three of them are associated with pe
bations, which do not violate the area-preserving nature o
map. The last one,δ4 corresponds to implementing infinitesim
dissipation. Note thatδ4 = 2 precisely (cf.[21–26]). (Indeed, if
we have a perturbation corresponding to a slight deflectio
the Jacobian determinant from 1, then, for the doubled num
of iterations it becomes twice larger, as follows from the triv
relation for the product(1− ε)(1− ε) ≈ 1− 2ε.)

Let us consider a vicinity of the HT point in the parame
space and state the intrinsic scaling regularities assumin
conservative nature of the dynamics. In this case we setD = 1
and deal with three-dimensional parameter space(A,B,C).

To formulate the scaling properties, we have to define a
cial local coordinate system in the parameter space (“sca
coordinates”). It is natural to take the critical point HT as
origin. The coordinate axes must be directed in such way
a shift from the critical point along each axis has to produc
perturbation associated with one certain relevant eigenvaluδ1,
δ2, or δ3 of the linearized RG equation.

The numerical method of determining the scaling coo
nates consists in the following. For the area-preserving
D = 1 we rewrite the map(2) as

xn+1 = 1+ AHTxn + BHTx2
n + CHTx4

n

+ ε
(
pxn + qx2

n + sx4
n

) − yn,

(14)yn+1 = xn.

Then, we compose a program that finds out numerically
unstable orbits of period 2k and computes residues for the
orbits Rk and derivatives ofRk with respect toε at ε = 0.
Under arbitrary generic selection of the vector of additional
rametersu = (p, q, s), say,u1 = (0,1,0), we observe that th
v-
d

s,

r-
d

f
r

r-
e

f
r

e

-
g

t
a

e

e

-

sequence of the derivatives follows asymptotically the po
law, ∂Rk/∂ε ∝ δk

1. Fixing two of the parameters, with accura
appropriate selection of the third one, we are able to force
sequence to behave asδk

2. In particular, it takes place atu2 =
(1,−0.9076928,0) and u′

2 = (0,−0.19517581,1). Next, tak-
ing a linear combination of the last two vectors,u3 = κu2 + u′

2
we select numerically the coefficientκ = −0.0042178 to ge
the sequence growing as∂Rk/∂ε ∝ δk

3. Finally, we use the vec
tors(u1,u2,u3) as the basis for the new local coordinate sys
and set

(15)(A − AHT,B − BHT,C − CHT) = c1u1 + c2u2 + c3u3,

or

A = AHT + c2 − 0.0042178c3,

B = BHT + c1 − 0.9076928c2 − 0.1913459c3,

(16)C = CHT + c3.

Now, let us suppose that some certain dynamical beha
occurs at a point in the parameter space close to the cr
point HT, with a small parameter shift characterized by cer
values ofc1, c2, c3, for an orbit started at a point(X0, Y0) near
the origin. (We remind the link of the redefined variables w
the original ones:X = x −xc,Y = 1

2f (x)−y.) Then, at the pa
rameters corresponding toc1/δ1, c2/δ2, c3/δ3 we will observe a
similar dynamics for the trajectory starting at(X0/α,Y0/β), but
with doubled characteristic time scale. Hence,δ1, δ2, δ3 play
a role of scaling factors in the parameter space of the a
preserving map: under magnification with these factors a
three respective coordinate axes one will observe repetitio
the parameter space structure in smaller and smaller vicin
of the critical point. Moreover, in scaling coordinates, the
cal topography of the parameter space must be regarded
attribute of the given type of criticality, universal in this sens

In Fig. 3 we show charts for two cross-sections of the
rameter space by coordinate surfaces of the scaling coord
system, namely,c3 = 0 (a) andc2 = 0 (b). They depict in gray
tones the regions of stability for cycles of period 2k participat-
ing in the period doubling associated with appearance of
critical point. In the first diagram in a row, we select a sm
rectangular in a vicinity of the critical point and show it se
arately in the second diagram with magnification. Then, ag
we select a small rectangular and show it in the third diagr
Factors of enlargement are given by the pairs of eigenva
(δ1, δ2) for the panels (a) and (δ1, δ2) for the panel (b). Observ
approximate similarity of the structures. (As expected, it will
better for further subsequent levels of the magnification.)

Finally, let us discuss shortly a role of dissipation. If we
low the parameterD to take values slightly less than 1, o
more relevant eigenvalueδ4 = 2 comes into play. Now, the HT
criticality must be regarded as a phenomenon of codimensi
If we move a little bit in the parameter space from the HT po
along the tricritical curve (seeFig. 1), then the crossover from
HT to tricritical behavior occurs. Namely, at the first levels
period doubling we will see yet the scaling regularities intrin
to HT universality class, but for high levels the tricritical re
ularities will hold. (Analogous passage from period-doubl
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,

s (b).
Fig. 3. Charts for two cross-sections of the parameter space by coordinate surfaces of the scaling coordinate system,(c1, c2) (a) and(c1, c3) (b). The regions of
stability for periodic orbits participating in the period doubling associated with appearance of the critical point are shown by gray tones. Periodsof the cycles
are indicated by numbers. Magnification factors for each subsequent picture in a row areδ1 = 14.2808. . . andδ2 = −8.5311. . . for horizontal and vertical axes
respectively, for the panel (a), andδ1 = 14.2808. . . andδ3 = 4.2018. . . for the panel (b).

Fig. 4. Plots illustrating crossover between HT and tricritical behavior and scaling properties near the HT point associated with dissipation. The larger multipliers
are shown for periodic orbits of periods 4, 8, 16, 32 versus parameterD along the tricritical curve (a) and the same data with rescaling along the abscissa axi
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criticality of usual type to the Feigenbaum regularities co
sponding to 1D maps was widely discussed in the literat
see, e.g.,[21–26].) This crossover phenomenon is illustrat
in Fig. 4.

The left diagram shows the larger multipliers of perio
orbits of periods 4, 8, 16, 32 versus parameterD along the tri-
critical curve ofFig. 1. The right diagram presents the same d
with rescaling along the horizontal axis. The observation
points designated by different symbols and relating to the cy
of all periods approximately fit a unique common curve illu
trates the scaling property near the HT point associated
dissipation: indeed, to observe similar dynamics on a dou
time scale one has to make twice less the deflection of par
ter D from 1. Observe that on the left end of the diagram
the multipliers become approximately equal−2.795. . . , which
is the universal value for the HT critical point, and in the rig
-
,

t
s

h
d
e-
l

hand part they tend to−2.050. . . , which is the universal valu
for the tricriticality.

To conclude, we have reported on a novel type of critical
havior associated with period-doubling bifurcation cascade
model area-preserving map. We have presented data of nu
cal solution of the RG equation and obtained accurate estim
for the associated universal constants. Note that all the sc
constants are distinct from those known in literature for the
riod doubling in conservative systems[11–16]. This new type
of critical behavior has to be regarded as a conservative an
of the tricritical behavior observed in period-doubling for 1
maps with quartic extremum. It follows both from the proc
dure used to find out the new critical point and from crosso
properties observed in presence of weak dissipation. In ac
dance with usual argumentation associated with RG appr
and concepts of universality and scaling, our new type of c
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ical behavior may appear generically in the three param
analysis of period-doubling dynamics in various conserva
systems reducible (with the Poincare section technique) to
dimensional area-preserving maps.

From theoretical point of view, our results fill up a gap in t
existing picture of the period-doubling phenomena: Up to n
only one type of the universal period-doubling behavior in
conservative area-preserving maps was known in contras
family of the universality classes for 1D map depending on
degree of the extremum.
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