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Abstract

A novel type of period-doubling scaling behavior in two-dimensional area-preserving maps is reported, a conservative analog of the critical
behavior in period-doubling one-dimensional maps with quartic extremum. We present data of numerical solution of the two-dimensional version
of the Feigenbaum—Cvitan@v/RG equation and accurate estimates for the universal constants. lllustrations are given for self-similarity in the
phase space and in the parameter space of the model map.
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Soon after discovery of quantitative universality in the cascade is governed by the convergence faigior 8.721, and
period-doubling onset of chaos and development of the renothere are two constants responsible for the phase space (orbital)
malization group (RG) analysis in this cont¢kt3], two gen-  scaling,ay ~ —4.018 and8y ~ —16.36. An example is deliv-
eralizations were suggested in the literature. ered by the map, 11 =1 — Ax2 — y,, Yn+1=X.

One concerns a family of unimodal 1D maps of arbitrary  In Ref.[18], discussing a family of Hénon-like maps
real degree of the extremum,+1 =1 — A|x,|", r > 1 [4-8]. -
It appears that the period-doubling bifurcation cascade in &1 = 1=l = Dy, Yn+1= n, (1)
course of increase of parameteiis characterized by scaling the authors argued in favor of dependence of the period-
constants, which depend on the exponeni(r) (the conver-  doubling scaling constants on the exponeinithe conservative
gence rate of the period doubling bifurcations) an@d) (the caseD = 1. It seems that these results are not correct. In par-
orbital scaling factor). The original Feigenbaum results relatdicular, as noted by Briggs et dl19] (with a reference to an
to a case of quadratic extremum, with = §(2) ~ 4.669 and  unpublished work of Roberts), in the area-preserving case for
ap = a(2) ~ —2.503. Other even integer degrees are of a certhis family the scaling constants are commonsfet 2 and for
tain interest too. Say, = 4 corresponds to the so-called tricrit- values distinct from 2. Our computations support this conclu-
ical behaviol[9,10]. As found, for this casé; = §(4) ~ 7.284  sion too.
andar = a(4) ~ —1.690. So, the question remains unsolved yet: either one can find

Another generalization relates to a class of two-dimensionah family of the scaling behaviors for the area-preserving maps
area-preserving maps associated with conservative (Hami&nalogous to those with different degrees of extremum for the
tonian) dynamicg11-17] In this case, the period-doubling 1D maps?

In this Letter, we report a particular result in this respect
and present a new class of period-doubling scaling behavior, an

* Corresponding author. area-preserving analog of the tricritical situation in 1D maps. It
E-mail address: spkuz@rambler.r(S.P. Kuznetsov). can occur generically in three-parameter analysis of the area-
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preserving maps at some special critical point HT in the pa-
rameter space. We suggest a model map manifesting this type B O N I N
of criticality and present data of numerical solution of the RG L SIS T Bt A S S
equation (the 2D version of the equation of Feigenbaum and ado e
Cvitanovic). Also, we obtain accurate estimates for the associ- R A B A - //'\T :
ated universal constants, and illustrate self-similar formations B N L N
in the phase space and in the parameter space of the modelmap ~ * | " ra
at the critical point. c®r / S
Let us consider the following Hénon-like 2D map: AQp S
Xp+1= f(xn) — Dy, Yn+1 = Xn, @2 S e o
where e
e
f(x) =1+ Ax + Bx2 + Cx*. (3) P
— P A
a -CL0g

This model contains four parametess B, C, D. At D =0

the dynamics is of one-dimensional nature; it is governed by

the mapx,+1 = f(x,). At A =0 andB = 0 the function pos- Fig. 1. The tricritical curve of the maf®) in the parameter spaget, B, C)

sesses a quartic extremum, and the limit of the period-doublin?btainecj in computations fab varied from 0 to 1. The limit point ab — 1

cascade observed with increaseXis a tricritical point:Cy = orresponds to the new type of criticality designated as HT.

1.594901356... Starting at this point, we can gradually in- )

creaseD and tune simultaneouslyi, B, and C to preserve 0rm (by analogy wit{11,12,14-16]

the tricriticality. In computations this procedure was realized 1

in an earlier work of one of the autho0]. As noted there, Xn+1= Y + 5 f(xn), Vi1 = —xn + 5 f (ns1), (5)

in the course of increase @ it is necessary to control exactly

three other parameters to compensate three relevant unstaMereY = 3 f(x) — y. Next, it is convenient to shift origin in

modes arising due to a perturbation of the fixed point of thexr and setX = x — x., wherex, is the “scaling center”, the

RG equation associated with the tricriticality. The condition tolimit point for a sequence of elements of the periddsgcles at

be fulfilled consists in selection of these three parameters tthe critical point. For our case, as computeds= 0.00032689.

keep constant the main multipliers (the larger of two Floqueflhe new variablegX, Y) represent a canonically conjugate pair

eigenvalues) for three cycles of sufficiently long periods 2 and in respect to the formulation of the RG equation have an

2k+1 2k+2 (Asymptotically, these multipliers should be equal advantage that the scaling transformation in these variables will

to a universal number associated with the tricriticality; =  be diagonal.

—2.0509404.Fig. 1shows a graphical representation of the re-  Let us assume that the evolution operator of dynamics at

sults of the computations, namely, the tricritical curve in thethe HT point over 2 units of discrete time is defined by a

parameter spacei, B, C). The limit of this curve ath — 1,  pair of functions{g, (X, Y), fi(X,¥)} and normalized in such

where the map becomes area preserving, yields a new criticalay thatg(0,0) = 1, f(0,0) = 1. By two-fold application of

point, which is the main matter of our interest here. We desigthis operator and after variable change- X /o, Y — Y/py,

nate it as HT-point (that stands for “HamiltoniasTricritical”’). ~ whereax = 1/gx(1,1) and B = 1/ (1, 1), we get the renor-
For D close to one, the accurate computations become difmalized evolution operator for2* units of time:

ficult. Indeed, the regularities intrinsic to the tricriticality are

valid only in the strong-dissipation limit. Fab approaching  8k+1(X. ¥) = augi(8i(X/ax. Y/Bi). fi(X /i, Y/ Br)).

unity, it becomes necessary to deal with orbits of larger andf 1(X, Y) = B fi (sk (X /ox, Y/ Br), fiu(X/ek, Y /BO)).  (6)

larger period 2 with k — oo to get notable dissipation over } ] )

the period. Nevertheless, performing the procedure with sug®n€ can apply this RG transformation repeatedly to obtain a

sequently increasing we could approach sufficiently close to S€duence of the evolution operators for larger and larger time

D = 1 and were able to estimate parameters corresponding £2/€S- _

the HT-point. Our best result (with improvements with a use of _Numerically, the functionggy (X, Y), fi(X, Y)} may be ob-

universal constant for Green’s residue, as explained later) is tH&/ned from 2-fold iteration of the mayg5) at the critical point

following: (4) by means of appropriate rescaling of the dynamical vari-
ables. These computations indicate that the sequence of the

Ant = —0.1956089759639 functional pairs{gi(X,Y), fir(X,Y)} tend to a definite limit,
which corresponds to a fixed point of the set of functional equa-

Byt = —0.064248541437467
Cyt = —17.953222255456 Dyt =1 (4)

tions:

X,Y)= X/a,Y/B), f(X/a,Y ,
To analyze behavior at the critical point HT on a basis of theg( ) ag(g( /@ Y[P). f (X/e /ﬁ))
RG analysis it is convenient to rewrite the map in the equivalent (X, ¥) = Bf (8(X/a.Y/B). f(X/a,Y/B)). )
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Herea =limo; =1/g(1, 1), B =1im B, = 1/f(1, 1), g(0,0) evolution operator at the HT point for an asymptotically large

= £(0,0) = 1. (The same relations were derived by several aunumber of iterations’2 we conclude that periodic orbits of ar-

thors in application to the usual conservative period-doublingitrarily large periods 2 coexist at this point. All of them are

criticality [11-16] and to some other situatiof$7], but here  unstable, and asymptotical values of the multipliers (Floquet

we deal with a distinct solution of the equations.) eigenvalues) may be estimated as eigenvalues of the Jacobian
The existence of the fixed point of the RG transformationmatrix d(g(X, Y))/d(X, Y) at the point(X,, Y,). From the nu-

means that the rescaled long-time evolution operators at thmerical data we get

criticality will be of a universal form, up to a characteristic 1

scale. The renormalized evolution opergto(X, Y), (X, Y)} w1 = —2.795180794 ur = — = —0.357758265 (9)

can be recovered (say, numerically) from the functional fixed- M1

point equationg7). In other words, without any referencetoa  Also, we obtain a universal number for Green’s residue

concrete system under examination, it is determined entirely bysee[11]), a characteristic value for the long-period orbits at
structure of the RG scheme. Therefore, like in other cases afie HT point

applicability of the RG method, a fixed-point solution of RG

equation gives rise to a universality class, which may incIudeRHT — 2—pa— p2 —1.288234851 (10)
systems of very different mathematical nature (e.g., iterative 4
maps, ordinary differential equations, etc.). We used the constarRyt to improve effectively the esti-

For the numerical solution of the functional equatid@  mates for coordinates of the HT critical point in the original
we represent the functiong (X, Y), f(X, Y)} by finite poly-  map (5) (or (2)). Starting with a crude estimate, we compute
nomial expansions inside a rectanglel.1 < X < 1.1, —2.4< three first period-2 cycles of the map, which have residues
Y < 2.4), and organize the procedure of RG transformation aglose toRnt. By tuning the control parameters, B, C) we
a computer program operating with coefficients of the polyno4ry to reach equality of the residues to the universal number
mials. In this way, the equatior(¥) reduce to a finite set of (10). Then, we increask and repeat the tuning for the triplet
nonlinear algebraic equations for the coefficients, which may bef longer-period cycles. Fdr about 10 we get a very accurate
solved by the multidimensional Newton method. (As the initial estimate, se@).
approximation, we use functions obtained from direct iterations From the results of the RG analysis, we can derive scaling
of the map(5) at the HT point.) The results of the computations properties of the dynamics at the critical point HT. Namely, let
are summarized iffable 1 (The accuracy of representation of us suppose that we consider an orbit started near the “scal-
the universal functions with the data of thable 1lis about six ing center" X = 0, Y = 0 at some point(Xo, Yp). (We re-
decimal digits, but we have obtained higher precision data amind the link of the redefined variables with the original ones:

well.) X=x—x,Y= %f(x) —.) Then, for the trajectory launched
In the course of the procedure, we get also accurate estimatas(Xq/«, Yo/8) we shall observe the similar behavior but with
for the rescaling constants doubled characteristic time scale. Formally speaking, this prop-

erty is asymptotic: smaller the vicinity of origin, larger the

o = —2.059370935 p=17.991734478 (8) characteristic time scale, and better the precision the scaling
From the polynomial representation of the functions, one camolds.
find out that the mapX, ¥Y) — (g(X,Y), (X, Y)) has a fixed Because of conservative nature of the dynamics, no attrac-

point, namely, X, = 0.680386.., Y, = 0.000100... As the tors exist at the critical point. However, other phase space ob-
functional pair{g(X, Y), f(X,Y)} corresponds to the rescaled jects do obey the scaling property. In particular, it relates to a

Table 1

Coefficients of polynomial expansions for the functions representing the fixed-point of the RG transfoi{mation

g 1 Y Y2 Y3 Y4
1 1.000000 —0.250023 0003653 0000017 —0.000001
X —0.096847 —0.025497 —0.000260 0000012 0
X2 —0.010754 0001956 —0.000055 —0.000004 0
x3 —0.001888 0000045 0000001 —0.000002 0
x4 —1.099936 0032221 0000246 —0.000016 0
x5 —0.112234 —0.002378 0000167 0 0
X6 0.008549 —0.000870 —0.000081 0 0
x7 0.000340 0000233 —0.000021 0 0
X8 0.071147 0001866 —0.000081 0 0
x° —0.005514 0000529 0 0 0
x10 —0.002189 —0.000999 0 0 0
x11 0.000666 0 0 0 0
x12 0.003078 0 0 0 0
x13 0.000703 0 0 0 0
x14 —0.001362 0 0 0 0
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Table 1 ¢ontinued)

f 1 Y Y2 Y3 Y4 Ys Y6
1 1.000000 —4.601519 1714849 —0.323223 0029363 —0.001105 0000015
X 2.217240 0924041 —0.003203 —0.049555 0007197 —0.000169 0
X2 —0.132037 0176217 —0.093645 0011220 —0.000185 0000025 0
x3 0.029112 —0.005566 —0.007935 0002499 —0.000122 0000021 0
x4 —20.237814 15082968 —4.265691 0516918 —0.023772 0000324 0
x5 4.065733 —0.028476 —0.652280 0127062 —0.003710 —0.000214 0
x6 0.777049 —0.821283 0152199 —0.003733 —0.000939 0000085 0
x7 —0.037778 —0.072452 0020591 —0.003307 0000374 0000169 0
X8 33139997 —18.779353 3399545 —0.207428 0005296 0 0
x° 0.031313 —2.848674 0893099 —0.030208 —0.002411 0 0
x10 —1.638544 0729382 —0.000334 —0.006680 0 0 0
x11 —0.544947 0027758 —0.159716 —0.000381 0001516 0 0
x12 —28172982 9830790 —0.938270 0030969 0 0 0
x13 —3.229990 2781572 0081899 —0.012033 0 0 0
x14 2.595528 0189221 —0.003871 0 0 0 0
x15 —1.303847 —0.624572 —0.197516 0007071 0 0 0
x16 8.370378 —2.231363 0096046 0 0 0 0
x17 4.081385 0354591 0058735 0 0 0 0
x18 2.725813 0081417 0 0 0 0 0
x19 —0.688120 —0.462671 0 0 0 0 0
x20 —3.647391 0149413 0 0 0 0 0
x21 —0.192762 0117978 0 0 0 0 0
x22 0.713379 0 0 0 0 0 0
}}

16 . . .
-1.6 -0.8 0.0 0.8 X

Fig. 2. lllustration of the scaling property for the stable and unstable manifolds of the trajectory starting at the “scalingrcentegry = %f(xg) at the HT
critical point. The unstable manifold is shown in black, and stable one in gray. A small curvilinear quadrangle formed by coordinake-eur@e$ andY = +0.2
is shown separately in coordinaté€X, Y). The second inset presents the interior of the depicted rectangular under magnification byofaete/20593.. .,
B =17.9917... along the horizontal and vertical axes, respectively.

family of unstable periodic orbits of period Znentioned above reveals the similar structure of the manifolds as seen from com-
and having asymptotically the universal multipli€®y. Fig. 2 parison of the first and the second inset.

illustrates the scaling property for the stable and unstable man- The next step in the RG analysis consists in consideration of
ifolds of the trajectory starting at the “scaling centéf’= 0, small perturbations of the fixed-point solution of the functional
Y=0,ie,x=x,y= %f(xc). The unstable manifold shown equations:

in black is generated from iterations of an ensemble of random

initial conditions very close to the origin (distances less than
a pixel of the graphical presentation). After sufficiently Iargeg(X’ V) g(X,Y)+eu(X,Y),

number of iterations, the depicted points take up positions along (x, y) — f(X,Y) +ev(X,Y), e<1. (11)

the unstable manifold. The stable manifold is generated in the

same way, but from iterations in backward time. In the main  On this stage it is convenient to use slightly reformulated RG
panel, the manifolds are plotted in coordinatesy). A se-  transformation: now we regard the scaling facterand 8 as
lected curvilinear quadrangle is shown separately in coordinatesonstants equal to the universal numb@)s not depending on
(X, Y). On a plane of these variables magnification by factorghe level of the construction. Then, by linearization of the RG
o and g along the horizontal and vertical axes, respectivelyiransformation at the fixed poitig (X, Y), f (X, Y)} we come
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to the eigenvalue problem sequence of the derivatives follows asymptotically the power
, law, Ry /de 8’{. Fixing two of the parameters, with accurate
Su(X,Y) =algi(s(X/a, Y/B), f(X/a, Y/B))u(X/at, Y /B) appropriate selection of the third one, we are able to force the
+ go(8(X/a, Y/B), f(X/a,Y/B))v(X /e, Y /B) sequence to behave & In particular, it takes place a =
+ u(g(X/ot, Y/ﬂ), f(X/Ol, Y/ﬂ))], (1, —090769280) and U2 = (O, —0195175811) Next, tak-

, ing a linear combination of the last two vectous,= «uz + U,
Su(X,Y) = B[ fi(g(X/e, Y/B), f(X/a, Y/ B))u(X [, Y | B) we select numerically the coefficient= —0.0042178 to get
+ fo(8(X/a, Y/B), f(X /o, Y/B))v(X/at, Y/B) the sequence growing ay /e o 85. Finally, we use the vec-
+ v(g(X/a, Y/B), f(X/a, Y/ﬁ))]. (12) tors(us, Uz, us) as the basis for the new local coordinate system

) ) o _ ~and set
Hereé is an eigenvalue, and the indices 1 and 2 designate deriv-

atives of the functions in respect to the first and the secondA — AT, B — But, C — CHT) = c1U1 +cou2 +c3uz,  (15)
argument. or

Among the eigenmodes we have to collect the relevant ones,
which have|v| > 1 and response for the asymptotic behaviorA = Ayt + ¢ — 0.00421783,
of the solution under subsequent repetition of the RG transfor;
mation. It is essential to exglude mgdes, which are associatelgj = Bur + c1 — 0.9076928, — 0.1913458s,
with infinitesimal variable changes (e.g., shifts aloxi@ndY C = Chr +cs. (16)
and rotation of the coordinate system, cf. Rgfs-3,9-17). Now, let us suppose that some certain dynamical behavior
Then, from the numerical solution based on representation Qfccurs at a point in the parameter space close to the critical
the functions by finite polynomial expansions, we extract fourpoint HT, with a small parameter shift characterized by certain

relevant eigenvalues values ofcy, ¢, c3, for an orbit started at a poilio, Yo) near

5, = 14.2808753 5, =—85311613 the origin. (We remind the link OI the redefined variables with
the original onesX = x —x., Y = 5 f(x) —y.) Then, at the pa-

83 =4.2018184 S4=2. (13)  rameters corresponding¢@/d1, c2/82, c3/83 we will observe a

As checked, the first three of them are associated with pertugimilar dynamics for the trajectory starting@o/«, Yo/ ), but
bations, which do not violate the area-preserving nature of th#ith doubled characteristic time scale. Henég,d2, 53 play
map. The last ong, corresponds to implementing infinitesimal @ role of scaling factors in the parameter space of the area-
dissipation. Note thats = 2 precisely (cf[21-26). (Indeed, if preserving map: under magnification with these factors along
we have a perturbation corresponding to a slight deflection dihree respective coordinate axes one will observe repetition of
the Jacobian determinant from 1, then, for the doubled numbédhe parameter space structure in smaller and smaller vicinities
of iterations it becomes twice larger, as follows from the trivial ©f the critical point. Moreover, in scaling coordinates, the lo-
relation for the productl — &)(1— &) ~ 1 — 2¢.) cal topography of the parameter space must be regarded as an

Let us consider a vicinity of the HT point in the parameterattribute of the given type of criticality, universal in this sense.
space and state the intrinsic scaling regularities assuming the N Fig. 3we show charts for two cross-sections of the pa-
conservative nature of the dynamics. In this case weDsetl ~ rameter space by coordinate surfaces of the scaling coordinate
and deal with three-dimensional parameter sgace, C). system, namely;3 = 0 (a) andcz = 0 (b). They depict in gray

To formulate the scaling properties, we have to define a spdones the regions of stability for cycles of periodarticipat-
cial local coordinate system in the parameter space (“scalind in the period doubling associated with appearance of the
coordinates”). It is natural to take the critical point HT as thecfitical point. In the first diagram in a row, we select a small
origin. The coordinate axes must be directed in such way thd€ctangular in a vicinity of the critical point and show it sep-
a shift from the critical point along each axis has to produce &rately in the second diagram with magnification. Then, again
perturbation associated with one certain relevant eigenéalue We select a small rectangular and show it in the third diagram.
82, or 83 of the linearized RG equation. Factors of enlargement are given by the pairs of eigenvalues,

The numerical method of determining the scaling coordi-(81, 62) for the panels (a) and{, &) for the panel (b). Observe
nates consists in the following. For the area-preserving cas@Pproximate similarity of the structures. (As expected, it will be

D = 1 we rewrite the maf2) as bettgr for further spbsequent levels of the magnifi'cation.)
) A Finally, let us discuss shortly a role of dissipation. If we al-
Xn+1 =1+ AuTxs + Burx,; + CHrx), low the parameteD to take values slightly less than 1, one
+e(pxn + gx?+ Sx;l) B more relevant eigenvalua = 2 comes into play. Now, the HT

criticality must be regarded as a phenomenon of codimension 4.
If we move a little bit in the parameter space from the HT point
Then, we compose a program that finds out numerically th@long the tricritical curve (seEig. 1), then the crossover from
unstable orbits of period*2and computes residues for these HT to tricritical behavior occurs. Namely, at the first levels of
orbits R, and derivatives ofR; with respect tos at e = 0.  period doubling we will see yet the scaling regularities intrinsic
Under arbitrary generic selection of the vector of additional pato HT universality class, but for high levels the tricritical reg-
rametersu = (p, g, s), say,u; = (0, 1, 0), we observe that the ularities will hold. (Analogous passage from period-doubling

Yn+1= Xn. (14)
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Fig. 3. Charts for two cross-sections of the parameter space by coordinate surfaces of the scaling coordinate syste(a) and(cy, c3) (b). The regions of

stability for periodic orbits participating in the period doubling associated with appearance of the critical point are shown by gray tonesf Begiagsles

are indicated by numbers. Magnification factors for each subsequent picture in a roy=afel.2808... ands, = —8.5311... for horizontal and vertical axes,
respectively, for the panel (a), adg= 14.2808... andsz = 4.2018... for the panel (b).
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Fig. 4. Plots illustrating crossover between HT and tricritical behavior and scaling properties near the HT point associated with dissipaigar Whetipliers
are shown for periodic orbits of periods 4, 8, 16, 32 versus paranietdong the tricritical curve (a) and the same data with rescaling along the abscissa axis (b).

criticality of usual type to the Feigenbaum regularities corre-hand part they tend te-2.050..., which is the universal value
sponding to 1D maps was widely discussed in the literaturefor the tricriticality.
see, e.g.[21-26]) This crossover phenomenon is illustrated To conclude, we have reported on a novel type of critical be-
in Fig. 4. havior associated with period-doubling bifurcation cascade in a
The left diagram shows the larger multipliers of periodic model area-preserving map. We have presented data of numeri-
orbits of periods 4, 8, 16, 32 versus paramddealong the tri-  cal solution of the RG equation and obtained accurate estimates
critical curve offFig. L The right diagram presents the same dat&or the associated universal constants. Note that all the scaling
with rescaling along the horizontal axis. The observation thatonstants are distinct from those known in literature for the pe-
points designated by different symbols and relating to the cyclesod doubling in conservative systerfisl—16] This new type
of all periods approximately fit a unique common curve illus- of critical behavior has to be regarded as a conservative analog
trates the scaling property near the HT point associated witbf the tricritical behavior observed in period-doubling for 1D
dissipation: indeed, to observe similar dynamics on a doublethaps with quartic extremum. It follows both from the proce-
time scale one has to make twice less the deflection of parameure used to find out the new critical point and from crossover
ter D from 1. Observe that on the left end of the diagram allproperties observed in presence of weak dissipation. In accor-
the multipliers become approximately eque.795. .., which  dance with usual argumentation associated with RG approach
is the universal value for the HT critical point, and in the right- and concepts of universality and scaling, our new type of crit-
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