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Scaling regularities associated with additive noise are examined  in a model of the pitch-fork bifurca-

tion map with multiplicative quasiperiodic driving (Grebogi et al., Physica D13, 261) with the 
golden-mean frequency ratio at the birth of a strange nonchaotic attractor (SNA). This case of the 

onset of SNA termed as the blowout bifurcation route was discussed in the context of realistic sys-

tems governed by non-autonomous differential equations (Yalçynkaya and Lai, Phys. Rev. Lett., 77, 
5039). Our method taking into the account of noise is based on renormalization group (RG) analysis 

of the birth of SNA (Kuznetsov et al., Phys. Rev. E51, 1629) with application of an appropriate gen-

eralization of the approach of Crutchfield et al. (Phys. Rev. Lett., 46, 933) and Shraiman et al. (Phys. 
Rev. Lett., 46, 935) originally developed for the period doubling transition to chaos. A constant 

γ=7.4246 is evaluated that determines the scaling law regarding the intensity of noise: A decrease of 

the noise amplitude by this factor allows resolving one more level of the fractal-like structure associ-

ated with the characteristic time scale which is increased by a factor of 3]2)15([ ! . Numeric re-

sults demonstrating evidence of the expected regularities are presented, e.g. portraits of the noisy at-

tractors in different scales. 

Keywords: Noise; strange non-chaotic attractor; renormalization group. 

The renormalization group (RG) approach in nonlinear dynamics was introduced by Fei-

genbaum [1] and then applied for different types of transitions to chaos, e.g. via period 

doubling [2,3], intermittency [4], quasiperiodicity [5]. This is an effective and powerful 

theoretical tool revealing deep and fundamental features of dynamics between order and 

chaos, like quantitative universality and scale invariance (scaling).  

In quasiperiodically forced dissipative systems, a natural attribute of dynamics             

between order and chaos is a strange nonchaotic attractor (SNA) [6,7]. The word �non-

chaotic� means absence of the exponential sensitivity of the orbits in respect to variance 

of initial conditions. The adjective �strange� reflects a subtle fractal-like structure intrin-

sic to the attractor. The RG analysis is relevant for understanding the birth of SNAs and 

associated quantitative regularities. This idea was applied to several types of critical   

behavior of quasiperiodically driven maps with the golden-mean frequency ratio [7�12].  
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In real physical systems, one must take into account the effect of noise, which obliter-

ates subtle details of the fractal-like structure of SNA. Thus, understanding the effect of 

noise is a problem of significance e.g. for analysis and interpretation of the experiments 

on observation of these attractors and bifurcation routes of their birth. 

A theoretical approach based on the RG analysis to explain the noise effects was      

suggested by Crutchfield et al. and Shraiman et al. [13, 14] in the context of the period-

doubling in dissipative systems. They obtained a universal factor γ = 6.619036� respon-

sible for the scaling properties at the onset of chaos regarding the noise. Namely, a         

decrease of the noise amplitude with that factor allows observing one more level of the 

period doubling. Analogous approaches were developed for some other types of behavior 

associated with the appearance of chaos [15�18]. 

This Letter is devoted to the effect of additive noise at the birth of SNA in the model 

originally introduced in Ref. [6] and modified in Ref. [8]. This is the pitch-fork bifurca-

tion map with multiplicative quasiperiodic driving. Without noise the equations read 

 )1(mod,2sin)(2 11 wuuuxFx nnnnn !"#$" !! , (1) 

where ,1/)( 2xxxF !"  λ is a parameter, and 2)15( %"w  is the inverse golden-

mean constant. At 1&$  the only attractor is a trivial invariant set 0'x . For 1($  the 

invariant set becomes unstable. This transition accompanied by the appearance of the 

SNA was interpreted later as the blow-out bifurcation route and discussed in the context 

of realistic systems governed by non-autonomous differential equations [18].  

Portraits of the SNA for the map (1) are shown in Fig.1 in the left column. As stated, 

in a neighborhood of the transition the attractors obey some scaling properties [8,7]. E.g. 

with decreasing the distance from the bifurcation point by a factor ...2360.4
3 "") %w  

the local structure of the attractor close to the point x=0, u=0 reproduces itself in smaller 

scales; the factors of scaling are 3239.1"a  and ...2360.4
3 %"%" wb  along the axes x 

and u, respectively. 

Let us introduce a sequence ξn that represents a discrete-time white noise (the terms 

of the sequence are statistically independent). The maximal magnitude of ξn is supposed 

to be bounded, the average is assumed to be zero: 0"*n , and the standard deviation is 

constant, (*&"+ 2

n . Now we consider the stochastic map 

 ),1(mod,2sin)(2 11 wuuuxFx nnnnnn !",*!#$" !!  (2) 

where κ characterizes the intensity of the additive noise source. If the amplitude of noise 

is small enough, the concrete form of the probability distribution for ξn will be not essen-

tial. The behavior of the noisy system will be of a universal nature (like in other critical 

situations allowing analysis in terms of the RG method, cf. [19]). In derivation of the RG 

equations we will assume the noise to be Gaussian, but in computations we define ξn as a 

random variable uniformly distributed over an interval [−0.5, 0.5]; hence, 12
12 "+ .  

The right column in Fig.1 shows noisy attractors at λ=1 (the threshold of the SNA 

birth in the noiseless model) in dependence of the noise amplitude κ. Observe qualitative 

similarity with the pictures without noise at supercritical values of λ. 

In Fig. 2 the Lyapunov exponent of the stochastic map (2)  

 - #./0 % |2sin)(|log1

nn uxfN , (3) 
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is plotted versus parameters λ and κ. Here N is a number of iterations in the course of the 

computation, and xn and un are values of the variables at each step of the iterations. As 

seen from the plot, the Lyapunov exponent is negative except the point λ = 1, ε = 0, at 

which it vanishes. The main result of the effect of noise is rather obvious: it smoothes 

over the sharp form of the Lyapunov exponent dependence on the control parameter λ. 

 

Fig. 1. Portraits of SNA for the model (1) on the plane of variables u and x at several values of λ (a) and por-

traits of noisy attractors of the stochastic map (2) at different amplitudes of noise at λ = 1 (the threshold value of 

the parameter corresponding to the birth of SNA in the noiseless model). 

 

Fig. 2. Lyapunov exponent versus the control parameter λ and amplitude of noise κ for the stochastic map (2). 

The main idea of the RG analysis, like in other situations of the golden-mean quasipe-

riodicity [5, 7, 8�11], consists in examination of evolution operators for time intervals 

given by Fibonacci�s numbers Fk: F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk.  
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Let the equations at the SNA birth for Fk and Fk+1 steps of discrete time be 

 )1(mod)(),,(),(
k

ikiFiiikiiikFi wuwFuuuxuxx
kk

%%"!"1,*!2" !!  (4) 

and 

 ).1(mod)(),,(),(
1

111 1

!
!!!!! %%"!"1,*!2"

!

k

ikiFiiikiiikFi wuwFuuuxuxx
kk

 (5) 

Here ξi is the random sequence, the noise amplitude parameter κ is supposed to be small, 

ψk+1(x, y) and ψk+1(x, y) are some auxiliary functions. Obviously, the model (2) corre-

sponds to a particular version of those relations; at F1 = F2 = 1 we have to set 

 .1),(),(,
1

2sin2
2sin)(2),(),( 21

2
21 '1"1

!

#
"#"2"2 yxyx

x

ux
uxFuxux  (6) 

By composition of (4) and (5), retaining terms up to the first order in κ, we obtain the 

following equation for evolution over Fk+2 steps of discrete time: 
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In respect to the stochastic terms, the following remark is relevant. Let us suppose 

that at some moment an orbit starts at (xi, ui). Consider an ensemble of random numbers 

{
1

,
!!**

kFii } of zero mean and the mean square σ2
, and compose them with coefficients 

given by functions of (xi, ui). As {
1

,
!!**

kFii }  are independent, the sum is again a random 

number of zero mean, and the mean square σ2
 is multiplied by a proper function: 

 ),(
~

)),,((),()),,(( 211111 1 iikiiiikkFiiikiiikki uxuuxuxuux
k !!!!!!! 1*"21*!122.*
!

 (8) 

Now, we set 

 ))(),,((),( 1

12

!
!! %%22"2 k

kkk wuuxux  (9) 

and rewrite Eq. (7) in the form analogous to (4) and (5), with redefined random variable 

and functions 2  and 1 : 

 ),(
~

),( 222 iikiiikFi uxuxx
k !!! 1*,!2"
!

. (10) 

To obtain closed functional equations, we square both parts of Eq. (10) and perform aver-

aging over ensemble of realizations of the noise. As  222~
+("*("&*& ii , and 

0
1
("**&

!! kFii , we come to the relation 
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where the apostrophe designates a derivative of the function over the first argument. In 

accordance with the basic content of the RG approach, we implement a scale change 

uwuxx kk )(, %3 !! , where α is some constant. Then, for the rescaled functions 
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the above equations imply that 

 ),),,((),(),,(),( 11 wwuwuxfguxfwuxfuxg kkkkk !%%33"%33" !!  (13) 

and 
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These relations define the RG transformation for a set of functions 6 7kkkk fg 45 ,,, . The 

procedure may be applied repeatedly to get the functions for larger and larger k, i.e. to 

determine the renormalized evolution operators for Fibonacci�s numbers of steps Fk.  

A reason for preference of the nonlinear function 21/)( xxxF !"  in the model (1) 

[7,8] is that a composition of such functions generates again a function of the same class. 

Indeed, if 
2

2,12,12,1 1)( xsxpxf !" , then 
2

33321 1)())(( xsxpxfxff !"" , 

where 213 ppp " , 
2

2123 psss !" . In particular, it relates to Fibonacci�s numbers of 

steps, and we set  

 
22 )(1)(),(,)(1)(),( xuSxuQuxfxuRxuPuxg kkkkkk !"!" , (15) 

Then, substitution in Eqs. (13) yields 

 )()()(),()( 11 wwuPwuQuQwuQuP kkkkk !%%"%" !! , (16) 

 8 9)()()()(),()( 22

1

2

1 wwuRwuQwuSuSwuSuR kkkkkk !%%!%3"%3" %
!

%
! . (17) 

As seen from computations [7,8], the iterative functional equations (16) with initial 

conditions (6) generate asymptoptically a periodic orbit of period 6, and one half of this 

period corresponds to inverse of signs of P and Q. The computed solution was expressed 

in terms of high-precision  polynomial approximation valid on an interval [-w,1]. Next, 

we notice that the equations (17) are linear in respect to the functions R and S and contain 

only one k-dependent coefficient Q2
 of period 3. So, the third iteration of these equations 

gives rise to an eigenvalue problem. A condition of periodic repetition of R and S after 

three iterations requires to assign  

 α = 1.098041568241� (18) 

Now we have to substitute the periodic solution of the RG equations (13) into equa-

tions (14) taking into account its concrete form (15). As the relations (14) arise from 

squared original equations, the change of sign is not essential, and we may operate as if 

we would have the period-3 orbit of the RG equation. The recursive linear functional 

equations for the functional pairs 6 7),(),,( yxyx kk 45  asymptotically is determined by 

the eigenvector associated with the largest eigenvalue Ω for the equation 
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where kR�  are linear operators  
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Using the universal functions gk(x,u) expressed through Pk(u), Qk(u), Rk(u), Sk(u) repre-

sented by finite power expansions in u, we have constructed the functional trans-

formation of the right-hand part of Eq. (19) as a computer program. The unknown          

functions Φ(x,y), Ψ(x,y) were represented by their values at nodes of a grid in a rectangu-

lar {�2 < x < 2,  1&&% uw }, and by an interpolation scheme between them. Taking            

random initial conditions for Φ(x,y), Ψ(x,y), the program performed the functional          

transformation many times and normalized the resulting functions at each step as 

)0,0(),(),(,)0,0(),(),( 00 54"455"5 yxyxyxyx , until the form of the functions 

stabilized. The value Φ(0,0) (before the normalization) converges to the eigenvalue  

 ...125332.55"@  (20) 

Now, in linear approximation with respect to the noise amplitude, the stochastic map 

for the evolution over F3k+q and F3k+q+1 steps at the critical point may be written in terms 

of the renormalized variables as 

 
wyyyxyxfx

yyyxyxgx
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where q=1, 2, 3, and 

 "7.4246436,),(),(,),(),(
00 "@"B4"A5"C yxyxyxyx qqqq  (22) 

Next, if we consider a small shift of parameters λ from the critical point, some addi-

tional perturbation term will appear in the equations, which corresponds to an eigenmode 

of the RG equation linearized at the periodic RG equation solution with eigenvalue 

...236068.4
3 "") W (see [7,8]). With account of it together with the noise we have  

 3,2,1),,(),(),(
3

"C*,B!)!"
!! qyxyxhCyxgx iiqi

k

iiq

k

iiqFi qk
,  (23) 

where )},(),,(),,({ 321 yxhyxhyxh  is the respective egenfunvector. A coefficient C de-

pends on parameter λ and vanishes at the critical point λc=1. In a close neighborhood of 

this point it is sufficient to account only the leading, linear term of the expansion in re-

spect to the original parameter, proportional to c$%$ .  

If we decrease a parameter shift from the critical point to have the coefficient C re-

duced by factor δ, and decrease the noise amplitude κ by factor γ, then the form of the 

stochastic map (23) remains unchanged. Thus, with the new parameters, the noisy system 

will demonstrate statistically similar behavior as with the old ones, but with characteristic 

time scale increased by factor 33

3 ]2)15([ !"/! WFF kk , scale along the axis u de-

creased by 33 ]2)15([ !%"%/ Wb  (the minus sign of the value b corresponds to in-

version of the direction of the coordinate axis u accompanying the scale change), and 

scale along the axis x decreased by ...3239035422.13 "3"a .  

The last is true locally, near the origin u=0. At other points on the axis u the scaling 

properties are, in general, different. Particularly, with one iteration of the original map, a 
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point (x, u) is mapped from a vicinity of u=0 to a neighborhood of u=w with multiplica-

tion of x by sin2πu∝u. Thus, the scaling factor for x near this new point will be a product 

of factors for x and u at the old point, namely, a′ = ab = α3
/w3 

= 5.60814540043... 

Figure 3 illustrates the local scaling properties for the noisy attractors with λ = λc  = 1 

at u = 0 (a-c) and u = w (d-f). Diagrams (a) and (d) correspond to the noise intensity 

κ = 0.0269. Then we decrease the noise amplitude and set κ = 0.0269/γ ≈ 0.0036 to plot 

the portraits shown in panels (b), (e). From those diagrams we select the rectangular frag-

ments and reproduce them separately with magnification by factor b along the u axis and 

by factors a and a�, respectively, along the x axis (c, f). Observe similarity of the pictures 

in the panels (a) and (c), (d) and (f). 

 

Fig. 3. Portraits of noisy attractors of the model (2) at the critical point λ = λc = 1. u=0 (a-c) and u = w (d-f). 

Diagrams (a), (d) correspond to the noise intensity κ = 0.0269, and diagrams (b), (c) to κ = 0.0269/γ ≈ 0.0036. 

The rectangular fragments are reproduced separately with magnification by factor b = −4.2360� along the u 

axis and by factors a and a�, respectively, along the x axis (c, f). Observe similarity of the pictures (a) and (c), 
(d) and (f).  

In accordance with the RG analysis, at λ=1 the model will demonstrate similar behav-

iors for the noise intensities κ and κ/γ, but with the characteristic time scale multiplied by 

W3 
= w−3 

= 4.2360� in the second case. Accounting that decrease of κ by γ is accompa-

nied with a decrease of the magnitude of the Lyapunov exponent by W3
, it must behave 

as  

 D,E0  (24) 

with .7201.0log3 ""D B W  Figure 4 shows the Lyapunov exponent Λ versus the noise 

amplitude κ in double logarithmic scale. The points obtained in the numerical computa-

tions are clearly placed along the straight line of slope η. It is worth noticing a kind of  
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Fig. 4. Plot of the Lyapunov exponent versus noise intensity at λ = 1 in double logarithmic scale. The straight 

line corresponds to the relation (24). 

noisy stabilization at the birth of SNA. Indeed, the effect of noise promotes a decrease of 

the Lyapunov exponent, i.e. a decrease of sensitivity in respect to the initial conditions. 

To conclude, in this Letter we established scaling regularities associated with the ef-

fect of additive noise in a model system near the birth of a strange nonchaotic attractor in 

the situation of the golden-mean quasiperiodic force. A renormalization group analysis of 

the effect of noise was developed, and the respective scaling constant was computed. We 

also presented computer graphical illustrations for the scaling regularities. We considered 

a particular representative of the universality class (forced 1D pitchfork map). Neverthe-

less, on a basis of the RG argumentation it may be conjectured that the same regularities 

will be intrinsic to a class of dissipative quasiperiodically forced systems demonstrating 

the blowout birth of SNA [7, 18]. 
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