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Abstract—In this paper, nonstationary and chaotic dynamics of
a gyrotron with a nonfixed field structure have been studied. We
discuss the mechanism of transition to self-modulation and chaotic
oscillations and present the plane of parameters with different
kinds of regimes in a gyrotron. For chaotic attractors, the set of
Lyapunov exponents has been calculated. We have estimated the
dimensions of chaotic attractors from the Kaplan–Yorke formula
and found it to be anomalously high. The explanation of this fact is
based on the presence of a large number of high-Q eigenmodes in
the gyrotron resonator operating near a critical frequency of the
electrodynamic system.

Index Terms—Chaos, dimension, gyrotron, Lyapunov exponent,
reflections, self-modulation.

I. INTRODUCTION

R ECENTLY, ideas and methods of nonlinear dynamics
have been used extensively in application to distributed

systems of the electron-wave nature, such as backward-wave
oscillators (BWOs), gyrotrons, delayed feedback oscillators
based on traveling-wave tubes (TWTs), and klystrons [1]–[3].
Now, it is established that for certain domains in parameter
space, these systems can demonstrate single-mode or multi-
mode chaotic oscillations. Analysis of Lyapunov exponents
provides valuable complementary information concerning the
nature of regimes observed in such systems.

One of the principal features of dynamic chaos is the prop-
erty of exponential instability of phase trajectories [4]–[6].
This instability can be quantitatively characterized in terms of
Lyapunov exponents. In a system with N -dimensional phase
space, there is a spectrum of N such exponents. Their positive
or negative values correspond to an exponential growth or de-
crease of small perturbations near a typical trajectory belonging
to the given attractor. Chaotic attractors are characterized by the
presence of one or more positive Lyapunov exponents.

In distributed nonlinear systems, such as electron-wave
devices, the phase-space dimension is infinite, as is the total
number of Lyapunov exponents of their attractors. However, in
practice, only a limited subset of them is significant. Namely,
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we may restrict the number of Lyapunov exponents by tak-
ing into account only those that are enough to determine the
so-called Lyapunov dimension of the attractor from the
Kaplan–Yorke formula [4]–[6].

Only a few papers have been published containing applica-
tion of the Lyapunov exponents for characterization of nonlin-
ear dynamics in electron-wave devices. The first research of
this kind was reported in [7], concerning chaotic oscillations
in a BWO, and the largest Lyapunov exponent was estimated
there. Later, a set of several Lyapunov exponents was calculated
for a BWO model [8], and the dimensions of the attractors
corresponding to chaotic regimes in this system were estimated.
In [9], chaotic dynamics in a TWT model were examined, and
estimates for several Lyapunov exponents were obtained.

Nonlinear dynamics of a gyrotron with a nonstationary lon-
gitudinal field structure were studied originally in [10]. By
means of a numerical solution of the equations describing
these dynamics, a possibility of self-modulation regimes in
this system was established. Later, nonstationary processes in
a gyrotron were simulated numerically in a broad range of pa-
rameters [11]. Recently, the self-modulation regimes have been
observed experimentally in gyrotrons with delayed feedback
(see, e.g., [2], [12], and [13]). Results of our recent numerical
studies [14] show that transitions to chaos can proceed in ac-
cordance with various scenarios, either via a cascade of period-
doubling bifurcations or via a destruction of quasiperiodic
motions.

The aim of this paper is to present the main features of high-
dimensional chaos in a gyrotron with a nonfixed longitudinal
field structure. Section II contains a general statement of the
problem. In Section III, we present the results of numerical
simulation of nonstationary regimes and discuss the mecha-
nism of transition to self-modulation and chaotic oscillations.
Section IV contains numerical results for the spectrum of
Lyapunov exponents in chaotic regimes of a gyrotron. The
Lyapunov dimensions of the attractors for these regimes are
estimated with the Kaplan–Yorke formula. We stress that the
observed dimensions are much greater than those of chaotic
attractors in other electron-wave systems studied so far. For
the first time, this fact was reported in the letter [15]. Here, we
present a more detailed study of this phenomenon by means of
eigenmode analysis.

II. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Our consideration of dynamics of a gyrotron with a non-
fixed longitudinal field structure will be based on a numerical
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solution of the following system of equations written in terms
of dimensionless variables and parameters [10]:

∂2F

∂x2
− i∂F
∂t

=
I0
2π

2π∫
0

p(ϕ0) dϕ0

dp

dx
+ip

(
|p|2+∆−1

)
= iF, p|x=0 = eiϕ0 ; ϕ0 ∈ [0 , 2π].

(1)

Here, F (x, t) is the complex amplitude of the high-frequency
field, depending on the longitudinal coordinate x and time t, p
is the transverse momentum of an electron, ∆ is the mismatch
between the cyclotron frequency and the critical frequency of
the operating waveguide mode, and I0 is the input electron
beam current. The interaction equations are supplemented by
an initial condition for the field: F (x, 0) = F0(x).

The boundary condition at the entrance cross section of the
device corresponds to the total reflection and is formulated
easily as F (0, t) = 0.

At the collector end, we consider that the interaction space
turns into a horn with a small opening angle ψ used for energy
output. As shown in [16] and [17], for this case, the boundary
condition may be represented in the following form:

F (L, t) − iκ0
t∫

0

G
[
κ20(t− t′)

] ∂F (L, t′)
∂x

dt′ = 0

G(τ) =
1

2π

+∞∫
−∞

e−5πi/6Ai
′(eiπ/3Ω)

Ai(eiπ/3Ω)
eiΩτdΩ (2)

where κ0 = (2 tanψ/νmn)1/32β‖/β2
⊥ is determined by the

opening angle of the horn ψ and the type of operating mode
β‖,⊥ = v‖,⊥/c, L is the dimensionless system length, Ai(x) is
the Airy function, and νmn are the roots of the Bessel-function
derivative: J ′n(νmn) = 0. The effective method for computation
of the function G(τ) is given in [16].

Boundary condition (2) completes the formulation of the
boundary problem, which governs the dynamics of the gyrotron
model. Obviously, the presence of a nonlocal relation between
the field and its derivative impedes the derivation of a numerical
algorithm for solving the problem. However, estimates show
that the dimensionless combination of parameters κ0L for a
typical geometry of a gyrotron cavity in realistic cases is rather
large (�10). Then, the nonlocal boundary condition (2) can be
replaced by a simpler relation. Indeed, both the complex signal
amplitude F (x, t) and its spatial derivative are slow functions
of the dimensionless time t, and the function G(τ) under the
integral sign approaches zero rapidly as the argument increases.
Hence, for large κ0L, the derivative can be taken out of the
integral sign, and we obtain the following relation [14]:

∂F (x, t)
∂x

+ iκ̄0F (x, t)
∣∣∣∣
x=L

= 0 (3)

where κ̄0 = κ0(
∫ ∞
0 G(τ)dτ)−1 = (0.6313 − 0.3645i)κ0. Note

that boundary condition (3) coincides with the condition pro-

Fig. 1. Different regimes of oscillations on the plane (∆, I0): the white region
above the dashed bottom border corresponds to stationary oscillations (T ), and
the gray areas designate self-modulation (S) and chaos (C). (a) Boundary
condition (2). (b) Boundary condition (3).

posed in [18] to describe interactions in a coupled-cavity TWT.
(A feature of our present case is that the parameter κ0 is
complex.)

The complete set of the formulated equations and boundary
conditions contains four dimensionless parameters that deter-
mine the system behavior, namely 1) the frequency mismatch
parameter ∆, 2) the dimensionless beam current I0, 3) the
system length L, and 4) the boundary condition parameter κ0.
In order to illustrate the results obtained, we assume that
κ0L = 15 and L = 14. This dimensionless length is approxi-
mately equal to the length at which the highest possible effi-
ciency is attained in the stationary theory of the gyrotron [19].

III. COMPLEX DYNAMICS AND

SELF-MODULATION MECHANISMS

We represent the results of examination of the nonstationary
processes using a plane of two control parameters, namely
1) the mismatch parameter ∆ and 2) the beam current I0.
Depending on their values, the system can exhibit stationary
oscillations, self-modulation, or complex dynamics regimes.
Fig. 1 shows the regions of various regimes on the parameter
plane. The planes in Fig. 1(a) and (b) were obtained by using
boundary conditions (2) and (3), respectively.

The regions of self-modulation and of chaotic oscillations
are shown by shaded areas S and C. The area T corresponds
to stationary generation that appears as a final result of some
transient process. Dashed curves in Fig. 1 correspond to ex-
citation of eigenmodes of the linearized gyrotron equations.
Note that distinct modes have different thresholds. At one and
the same value of the mismatch parameter ∆, there is a set of
threshold currents I0. The bottom envelope of the dashed curves
determines the starting conditions for a single-mode generation.
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The approximate relation (3) was derived under certain
assumptions, and formally, at the chosen value of κ0L = 15,
it can be used only for the frequencies Ω ≤ 0.5, which are close
to cutoff (compare the frequency dependence of the reflection
coefficient corresponding to the different boundary conditions
shown in the inlay in Fig. 4). However, the numerical com-
putations indicate that results obtained with the more accurate
boundary condition (2) are qualitatively similar to those based
on (3). The correspondence reveals itself in the presence of
identical self-excitation mechanisms and routes to chaos and
also in the approximate coincidence of the parameter values
at which the self-modulation and chaotic regimes arise (see
Fig. 1). The comparison allows us to conclude that the reduced
boundary condition (3) is appropriate for description of the ba-
sic nonstationary phenomena in the gyrotron with satisfactory
accuracy.

In Section IV, we will demonstrate, however, that a distinc-
tion in the behavior of the systems with boundary conditions
(2) and (3) becomes notable from the point of view of some
special features, such as dimensions of the chaotic attractors.

It is worth mentioning that the set of equations (1), (3) may
be regarded as a model of some physical device in which the
interaction between an electromagnetic field and an electron
beam takes place in accordance with a gyrotron mechanism,
but the construction of the energy output provides a good match
only for frequencies in a narrow band near cutoff. In that case,
the electrodynamic system will display strongly pronounced
resonant properties for some frequencies distant from the
critical one.

Transitions from stationary oscillations to self-modulation
in distributed electron devices, including electronic microwave
oscillators, were studied and discussed in a number of pa-
pers (e.g., review [20] and cited publications). As shown in
[21]–[23], in TWT oscillators with delayed feedback and in dis-
tributed parametric oscillators, the transition to multifrequency
oscillations takes place via either the amplitude mechanism or
the phase one.

Results of the numerical solution of the nonstationary equa-
tions of the gyrotron model (1) indicate that the same two
mechanisms of transition to self-modulation can take place,
depending on the value of the mismatch parameter ∆ [14].
At negative ∆ � 0, the amplitude mechanism occurs. In that
case, the starting currents of the first several modes differ
substantially, and the dynamics of the system are determined
by the fundamental linear mode, which excites before others
as the beam current I0 is increased and ∆ is held constant. In
distributed electronic self-oscillators, the amplitude mechanism
appears due to rebunching of electrons in a strong electromag-
netic field, accompanied by reduction of the amplitude of the
harmonic of the beam current at the collector end [21]–[23].

At large positive values of the mismatch parameter
∆ � 0.6, the self-modulation develops due to the phase mech-
anism [21]–[23] intrinsic to resonant self-oscillators. It appears
as a simultaneous generation of several eigenmodes of the
system. At first, an initial distribution of the field in the system
is transformed into intensive oscillations with an amplitude, fre-
quency, and field distribution virtually time-constant and close
to those associated with one of the linear eigenmodes. Then, as

time evolves, these oscillations are destroyed by the nonlinear
interaction with another mode, and the self-modulation regime
of oscillation arises.

In correspondence with the two mechanisms of the birth of
self-modulation, for further increase of the beam current I0, one
observes different scenarios for the onset of chaos. At ∆ � 0,
the transition to chaos occurs via a cascade of period-doubling
bifurcations. Since the dynamic regimes are based on the fun-
damental mode, we observe the period doubling of the self-
modulation. At ∆ � 0.6, the transition to chaos occurs via the
destruction of quasiperiodic motion, involving the generation
of several eigenmodes of the distributed cavity [14].

It has been established that, in addition to a chaotic regime
characterized by a single positive Lyapunov exponent (weak
chaos), the gyrotron can also demonstrate regimes with more
than one positive Lyapunov exponent, which is referred to as
developed chaos or hyperchaos [24]. In contrast to the case of
weak chaos, the regime of hyperchaos has 1) essentially more
homogeneous continuous spectrum with respect to the power
distribution and 2) a phase portrait that is characterized by the
absence of any pronounced structure.

IV. LYAPUNOV DIMENSIONS OF CHAOTIC ATTRACTORS

To compute the spectrum of Lyapunov exponents, we use
a version of the Benettin algorithm [4]–[6] adapted to the
distributed electron-wave system as described in [8]. A finite
number of N exponents is obtained from a numerical solution
of N + 1 sets of (1) with boundary condition (2) or (3). The
initial conditions for the field are defined as close complex
functions Fn(x) = F (x) + εF̃n(x), where F̃n(x) has a unit
norm, and ε is small. After each time step ∆τ , the perturbations
are orthogonalized and normalized with the Gram–Schmidt
algorithm. Then, N values of the accumulating sums Sn are
calculated at each step, which indicate a growth or decrease of
a logarithm of a norm of the nth perturbation uponM steps of
the procedure. That is

Sn =
M∑
i=1

ln
∥∥∥F̃n(t = i · ∆τ)

∥∥∥ . (4)

From these sums, the Lyapunov exponents Λn are estimated
as follows:

Λn = Sn/M∆τ, n = 1, 2, . . . N.

Once a sufficiently large number N of the Lyapunov expo-
nents are calculated, an estimate of the dimension of the chaotic
attractor may be obtained from the following Kaplan–Yorke
formula [4]–[6]:

D = m+

m∑
i=1

Λi

|Λm+1|
(5)

where m is determined by the condition that σm =∑m
i=1 Λi > 0, whereas σm+1 =

∑m+1
i=1 Λi < 0. The value D

given by the formula (5) usually provides a good approximation
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Fig. 2. Waveforms of electron efficiency η(t), power spectra of the output signals, and plots of accumulating sums Sn versus time. (a) Self-modulation regime
at ∆ = 0, I0 = 0.028. (b) Chaotic oscillations at ∆ = 0, I0 = 0.038. (c) Quasiperiodic self-modulation at ∆ = 1, I0 = 0.05. (d) Chaotic oscillations at ∆ = 1,
I0 = 0.12. (e) Chaotic oscillations at ∆ = 1, I0 = 0.15.

for the fractal dimension of a chaotic attractor. To be precise,
D is called the Lyapunov dimension.

We calculated the Lyapunov exponents for different dy-
namical regimes in the gyrotron model described by (1) with
boundary condition (2) or (3). Fig. 2 illustrates the results
obtained via numerical solution of the equations with bound-
ary condition (3). The first column presents the waveforms
of electron efficiency η(t) calculated from the transverse
momentum of electrons at the collector end of the system
η = 1 − 1/(2π)

∫ 2π

0 |p|2dϕ0, the second column presents the
power spectra of the output signal in the gyrotron, and the
third column shows the accumulating sums Sn versus time.
The following kinds of oscillations are presented: (a) the self-
modulation regimes; (b) the regime of undeveloped (weak)
chaotic oscillations, arisen after a sequence of period doubling

bifurcations; (c) quasiperiodic self-modulation; and (d) and (e)
the regimes of weak chaos and hyperchaos. Those Sn(t) that
increase with time correspond to positive Lyapunov exponents.
It is worth noting that in our model, which was formulated in
terms of complex amplitudes, any complex dynamical regime
(self-modulation and chaos) has at least two zero exponents
associated with perturbations of an infinitesimal phase shift and
of a shift along the trajectory in the phase space of the system.
In Fig. 2, these sums are indicated with “0” marks.

Fig. 3 shows the dependence of a sum of the first n Lyapunov
exponents σn versus the number n. Curves 1 and 2 correspond
to regimes of weak chaos at ∆ = 0.0, I0 = 0.0365 [boundary
condition (2)] and ∆ = 0.0, I0 = 0.038 [boundary condition
(3)], respectively. Curves 3 and 4 relate to regimes of devel-
oped chaos at ∆ = 1.0, I0 = 0.11 [boundary condition (2)]
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Fig. 3. Plots of the sums σn versus the number of Lyapunov exponents.
Curves 1 and 2 correspond to “weak” chaos for ∆ = 0.0, I0 = 0.0365 [bound-
ary condition (2)] and ∆ = 0.0, I0 = 0.038 [boundary condition (3)], respec-
tively. Curves 3 and 4 correspond to developed chaos for ∆ = 1.0, I0 = 0.11
[boundary condition (2)] and ∆ = 1.0, I0 = 0.15 [boundary condition (3)],
respectively.

and ∆ = 1.0, I0 = 0.15 [boundary condition (3)], respectively.
The point of intersection of each curve with the abscissa axis
gives an estimate of the respective Lyapunov dimension by
means of the Kaplan–Yorke formula. In a system with boundary
condition (2), the attractor dimension in the regime of weak
chaos is approximately D ≈ 16.4, whereas that in the regime
of hyperchaos is about 30.6. With boundary condition (3), the
attractor dimensions are essentially larger: D ≈ 26.6 for weak
chaos and about 40.7 for the hyperchaos.

For comparison, we point out that estimates of attractor
dimensions for a BWO presented in [8] in the regimes of weak
and developed chaos were 3.5 and 6.4, respectively. For a TWT
with delayed feedback, the estimate of the chaotic attractor
dimension is 2 < D < 3 [9].

Thus, the dimensions of chaotic attractors in our system
are substantially higher than those obtained in other electron-
wave systems. We suppose that this is linked with the fact
that the gyrotron we consider operates near a boundary of the
transmission band of the electrodynamic system.

To explain this assertion, let us turn to properties of the
“cold” system (i.e., that in the absence of the electron beam). It
corresponds to setting I0 = 0 in (1). In this case, the equations
have a trivial solution F (x, t) ≡ 0 that is obviously stable.
Now, let us represent a field perturbation as a superposition
of linear eigenmodes of the distributed resonator formed by
the electrodynamic system, with the corresponding boundary
conditions. Each mode will decay with time as exp(−Ωim,nt),
where Ωim,n is the imaginary part of the nth mode. Hence,
the Lyapunov exponents calculated for the cold system are
expressed by Λn = −Ωim,n.

Fig. 4 shows the disposition of the complex eigenmode
frequencies for the cold system on the complex plane. The dots
marked A and B relate to boundary conditions (2) and (3),
respectively. As follows from analysis of the complex eigen-
frequencies, the electrodynamic system has a large number of
modes with relatively high Q (with a small positive imaginary
part Ωim). For boundary condition (3), the decay times of these
modes are sufficiently large (and are of the same order) [15].
At this rate, the system will have a large number of negative
Lyapunov exponents with small absolute values.

Depending on the type of the boundary conditions, these
“cold” eigenmodes may contain either relatively high Q

Fig. 4. Frequencies of the linear eigenmodes of a “cold” system on the
complex plane (Ωre, Ωim). Curves A and B correspond to boundary conditions
(2) and (3), respectively. The inset shows the absolute value of the reflection
factor versus frequency for the aforementioned boundary conditions at the value
κ0L = 15.

Fig. 5. Plots of imaginary parts of the linear eigenmodes of a system with
the electron beam versus the beam current I0 for boundary condition (3). The
numbers at the curves indicate the numbers of the eigenmodes in ascending
order of Ωre at I0 = 0.

[boundary condition (3)] or relatively low Q [boundary condi-
tion (2)], and the difference of imaginary parts of the frequen-
cies of higher eigenmodes can be rather significant (see Fig. 4).
For this reason, the attractor dimensions for the system with
boundary condition (2) are notably lower than those in the case
of boundary condition (3).

Let us examine the eigenmodes for a system with an elec-
tron beam using a linear approximation. The frequencies of
the eigenmodes now depend on the beam current I0. With a
fixed mismatch parameter (e.g., ∆ = 1.0), one can monitor
the imaginary parts Ωim of linear eigenmodes varying with
increasing beam current I0. In Fig. 5, the dependences Ωim

versus I0 are shown for boundary condition (3). As concluded,
even taking into account the interaction with an electron beam,
we have a large number of modes, which interact with the beam
weakly over a wide range of beam current. For the mentioned
modes, the imaginary parts of the eigenfrequencies are virtually
constant or vary slightly with an increase of the current. In
this case, the argumentation developed for the cold system
remains valid.

V. CONCLUSION

We have carried out numerical simulations of nonstation-
ary processes in a gyrotron with a nonfixed field structure.
Boundary conditions that take reflections from the output horn
into consideration have been formulated. On the parameter
plane, the regions of different regimes have been established:
1) stationary oscillations; 2) self-modulation; and 3) chaotic
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oscillations. Numerical computations show that the transitions
to self-modulation take place in accordance with amplitude
or phase mechanisms, and the chaotic oscillations appear, re-
spectively, via a sequence of period-doubling bifurcations or
via the destruction of quasiperiodic motions. In addition to
chaotic regimes characterized by a single positive Lyapunov
exponent (weak chaos), the gyrotron also demonstrates regimes
with several positive Lyapunov exponents. These regimes are
referred to as developed chaos or hyperchaos.

Our research shows that the presence of a large number of
high-Q eigenmodes in the situation of electron-wave interaction
near the edge of the transmission band causes anomalously high
Lyapunov dimensions of the chaotic attractors in a gyrotron.
We can assume that the same phenomena will occur in other
microwave self-oscillators operating near a cutoff frequency
(e.g., relativistic orotrons and coupled-cavity TWTs).
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