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Abstract—The object of investigation is a system consisting of two coupled nonautonomous van der Pol oscil-
lators the characteristics frequencies of which differ by a factor of 2. The system is subjected to an external
action in the form of slow periodic modulation of an oscillation-controlling parameter and also to an additional
action at a frequency that is in an irrational relation with the modulation frequency. It is shown that the variation
of the oscillation phase over a modulation period can be approximated by a 2D map on a torus that has a robust
(structurally stable) Hunt—Ott strange nonchaotic attractor. Calculations of the quantitative characteristics of the
attractor corresponding to the initial set of nonautonomous coupled oscillators (such as phase sensitivity expo-
nent, structures and scaling of rational approximations, as well as Lyapunov exponents and their parameter
dependence) confirm the presence of the Hunt—Ott strange nonchaotic attractor.
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INTRODUCTION

Nonlinear systems functioning in the presence of a
time-variable external action, which are frequently
encountered in nature and various fields of technology,
are attracting the considerable attention of researchers.
Such systems are categorized as nonautonomous.
When subjected to even a simple harmonic external
action, a nonlinear system may behave in a nontrivial
way; for example, periodic oscillations break into
chaos or, conversely, chaos is changed to regular
motions. If more complex (multifrequency, chaotic, or
stochastic) signals are applied to the system, the spec-
trum of phenomena related to nonlinear nonautono-
mous dynamics broadens significantly and such effects
as chaotic synchronization and stochastic resonance
may arise.

Next in ascending order of complexity after the peri-
odic action is the quasi-periodic action, which, in the
simplest case, is a superposition of two harmonic sig-
nals with an irrational ratio between their frequencies.
Quasi-periodically excited systems exhibit specific
dynamics associated with the presence of a strange
nonchaotic attractor (SNA) in the phase space [1]. Sys-
tems with SNAs are nonchaotic in the sense that posi-
tive Lyapunov exponents and the exponential instabil-
ity of phase trajectories in it are absent. However, they
show complicated and exotic properties (the fractal
geometry of the attractor, singular—continuous spec-
trum, etc.) [2]. Since 1984, when the SNA was intro-
duced into consideration as a fundamentally new type
of the attractor for the first time, this object has been
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carefully investigated analytically and numerically [3—
17] and also experimentally [18-28]. Practical interest
in SNAs is related, in particular, to the fact that syn-
chronous systems are viewed as promising for secure
data transmission [29, 30].

It should be noted that, in spite of the ample and reli-
able data concerning the SNA, which were gained in
numerical and full-scale experiments, two issues
remain open. First, even sophisticated numerical meth-
ods proposed to identify the SNA do not assure that the
attractor being observed retains a fractal structure on
whatever small scales and is really strange, i.e., does
not represent a regular, even if very complex, multifre-
quency regime. Second, SNAs, which are usually
observed in the parameter range between quasi-peri-
odic and chaotic dynamics, are highly sensitive to a
small variation of the system parameters. Because of
the complicated structures of these near-boundary
domains, a small change in the control parameters may
significantly change the quantitative characteristics of
the SNA (such as Lyapunov exponents and indices of
phase and parametric sensitivities) and even change the
regime qualitatively when the SNA changes to quasi-
periodic or chaotic.

In view of the aforesaid, the SNA that has recently
been brought into consideration by Hunt and Ott
[15, 16] deserves special attention. This attractor is
“robust” in the sense that its structure is stable; that is,
the fine features of the dynamics are insensitive to any
variation of relevant equations and choice of parameter
values. It turned out that the existence and the probabi-
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listic—metrical properties of such an SNA can be strictly
substantiated. It should be emphasized, however, that
we are dealing with systems that are described by spe-
cial iterative maps—artificial models that account for
the dynamics in discrete time, with the surface of a 2D
torus serving as the phase space. The natural question
arises as to whether this type of dynamics can be exem-
plified in the physical world.

In this work, we consider a system consisting of two
coupled nonautonomous van der Pol oscillators that
admits of the physical realization of the SNA. An exter-
nal action appears in the form of a slow periodic mod-
ulation of the oscillation-controlling signal in both sub-
systems in antiphase. This (basic) external action is
complemented by an additional one at a frequency that
is in irrational relation with the modulation frequency.
Based on speculations and numerical results, we show
that the dynamics of the variables responsible for the
oscillation phase and phase of the additional action
over a modulation period are approximated by a map on
a 2D torus that falls into the class of Hunt—Ott models
demonstrating a robust SNA [15]. Numerical simula-
tions confirm the stability of the attractor against
parameter variation: it is observed over a wide domain
in the parameter space. The basic dynamic characteris-
tic of any attractor, the Lyapunov maximal nontrivial
exponent, turns out to be a smoothly varying function
of the system parameters in the domain of existence of
the structurally stable SNA. The characteristics of the
SNA for the system under consideration that were
obtained by the methods reported in [2, 7] are in good
agreement with the same characteristics of the attractor
in the model map.

HUNT-OTT MODEL

The map suggested by Hunt and Ott has the form
[15]

(pn+1 = (pn + en + T]F((Pm 9,,)(m0d27't),
0,,, = 0,+2nmw(mod2rn),

(1)
where F(@, 0) is a continuous smooth function with a
period of 27 in both arguments, 1M is the nonlinearity
parameter, and @ is an irrational parameter characteriz-
ing the frequency of a quasi-periodic action.

Fig. 1. Schematic representation of the result of single map-
ping (1) onto a closed curve going round the torus in direc-
tion 6.
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According to Hunt and Ott’s results, when the non-
linearity parameter becomes below critical, 0 < |n| <
Ne» System (1) exhibits an attractor with the following
properties:

(1) the Lyapunov exponent associated with a distur-
bance of variable @ is negative,

n

o, = H(1/n)21n|1 +NF(9,0)[<0;  (2)

n— oo
i=1

(ii) the capacitarian and informative dimensions of
the attractor are D, =2 and D, = 1, respectively (the dif-
ference between these dimensions points to the fractal-
ity of the object); and

(iii) the dynamics is structurally stable against small
perturbations of system (1) that leave it in the class of
systems meeting the above conditions.

According to Hunt and Ott’s analysis, the underly-
ing reason for the presence of the robust SNA is the
topological character of the map on a 2D torus (Fig. 1):
Curve C going round the torus along a parallel is
mapped into curve C', which makes one turn along a
meridian and one turn along a parallel. After each iter-
ation of the map, the number of turns in the map
increases by unity and tends to infinity in the limit of a
large number of steps. This introduces fractality into
the distribution of the invariant measure over the attrac-
tor in the presence of an inhomogeneity due to the non-
linear term in the first of Egs. (1).

Let us consider an example mapping (1) with non-
linear function F(¢, 6) = sin2@ (it can be shown in this
case that 1, = 0.5) and irrational frequency parameter

0= (ﬁ — 1)/2 (the inverse golden mean). Figure 2 shows
the attractor on the parameter plane (0, @) at 1 = 0.3,
which was obtained after 10 iterations of the map. For
this example, the Hunt—Ott reasoning is totally applica-
ble, so that we can state with assurance that such behav-
ior is associated with the robust SNA. Owing to the
nonlinear term in the first equation, the Lyapunov expo-
nent related to variable ¢ is other than zero and nega-
tive, as it must in the presence of the SNA, G, =
—-0.0242.

CONSTRUCTION AND QUALITATIVE ANALY SIS
OF THE SYSTEM OF COUPLED
NONAUTONOMOUS VAN DER POL
OSCILLATORS

To construct a physical system where the dynamics
of phase variables meets mapping of type (1), let us
take two coupled nonautonomous van der Pol oscilla-
tors and make use of the idea of relay excitation transfer
between subsystems by analogy with [31, 32]. Con-
sider the set of equations

¥ — (Asin2mt/T — x°) % + (21) °x = eysin[ 27t + 0],
(3a)
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j— (= Asin2mt/T — y)y + (4n)’y = exsin2mt, (3b)

0 = 2nw/T, (3¢)

where x and y characterize the states of the first and sec-
ond oscillators, respectively, A is the control parameter
modulation amplitude, and T is the modulation period.

This set of equations describes a system of two cou-
pled van der Pol oscillators with frequencies ®, = 2n
and 2w, = 4n. Due to the modulation of the parameter
responsible for the Andronov—Hopf bifurcation, one
oscillator operates and the other is below the oscillation
threshold over one half-period and vice versa over the
next half-period. The first oscillator has an effect on the
other through the combinational term that equals the
signal of the first oscillator times the reference signal
with frequency ,. The signal component at double fre-
quency 2®, arising in this case serves as a “seed” for
the second oscillator when it overcomes the oscillation
threshold. The second oscillator, in turn, acts on the first
one through the combinational term that is equal to the
product of the self-signal and periodic reference signal
with a frequency that is in irrational relation with .
This product contains a component at the difference
frequency, which is in resonance with the first oscillator
and acts as a seed for this oscillator when it starts oscil-
lating. In the normalization adopted, modulation period
T is assumed to be an integer number (i.e., it covers an
integer number of the periods of the reference signal
appearing on the right of the second equation). As for
the reference signal on the right of the first equation, it
is easy to check that its frequency is Q = 21 + 2n0/T.

From here on, parameter = (ﬁ — 1)/2 will be fixed.

Figure 3 shows typical dependences x(#) and y(¢) for
the operating time of system (3) at 7=6, A = 13, and
€ = 0.6. It can be argued that the variation of the phase
variables characterizing system (3) over a modulation
period corresponds to a map on the torus of the same
topological type as in the Hunt—Ott model. Let us
explain this statement in simple terms.

Let the first device start oscillating with initial
phase o,

x ~ sin(2wt + @), 4

when the second oscillator is below the oscillation
threshold. When the second device starts oscillating,
the respective term on the right of Eq. (3b) acts as a seed
for self-sustained oscillations appearing in it. This term
can be represented as

xsin2wt = sin(27t + @)sin2mt
= (1/2)cos@ — (1/2)cos (4t + @),

where the second term corresponding to the combina-
tional component at the second harmonic, which is in
resonance with the second oscillator, seems to domi-
nate. As a result, the second oscillator upon excitation
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Fig. 2. Phase portrait of the SNA in map (1) for F(o, 6) =
sin2¢, ® = (/5 = 1)/2, and M = 0.3. The number of itera-
tions is 10°.

3. Time variations of variables x and y of system (3) at
6,A =13, and € = 0.6 for three modulation periods.

Fig.
T =

will have phase ¢ too,
=—cos(4Tt + @ + X).

Phase correction ¥, arising when the excitation is
transferred from the first oscillator to the second one
can be taken to be constant in the crude approximation
considered here.

At the next stage of the process, when the first
device starts oscillating, the term on the right of the first
equation that is represented as

ysin(2mt +0) = —cos(4nt+ @ + K,)sin(2ws + 0)
= —sin(6nt+ Q@+ 0 +K,) + sin(2nt + @ — 0 + K;)

serves as a seed. Of significance in this sum is the sec-
ond term, the combinational component at the differ-
ence frequency, which falls into the range of resonance
frequencies for the first oscillator. As a result, arising
oscillations will have the phase

O=0—-0+v,
which contains phase correction k; due excitation
transfer and v = ky + K.
Thus, we can conclude that the approximate map of
the phase over a modulation period has the form

Pr1=0,— en + V(mOdzn),
‘ 5)

0,,, = 0,+2nmw(mod2rn),
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Fig. 4. Numerical illustration of the basic topological prop-
erty of phase ¢ in system (3): the band of initial conditions,
having gone round the torus in direction 6, acquires an addi-
tional turn in direction @.

which coincides with map (1) at = 0 up to substitution
@=2n-0,3=0-V).

By numerically solving set of equations (3), one can
make sure that the map of the phase evolution of the
first oscillator from one excitation stage to another
really belongs to the same topological class as the
Hunt-Ott model. In the numerical solution, we will
determine the phase of the first oscillator at discrete
time instants, say, t, = n, using the standard relation-
ships

t,)>0
x(1,) ©)

1t/2 — arctan (x(t,)/2nx(t,)),
P = x(t,) <O0.

371/2 — arctan(X(t,)/2wx(t,)),

In Fig. 4, the results of analysis of the phase map
obtained by numerical calculation at 7=6,A = 13, and
€ = 0.6 are shown graphically. In the robust of compu-
tation, phase ¢ of the first oscillator and its correspond-
ing value of variable 6 are sequentially determined at
time instants #,. When ¢ falls into a certain interval
(7t/10 wide), the corresponding dot (0, @) is plotted grey
and the point meeting the time instant in interval 7 is
plotted black. The curve connecting black dots is
mapped into the curve connecting grey dots. As follows
from Fig. 4, the topology of these curves meets the
assumptions of the Hunt—Ott model: curve C going
round the torus along a parallel is mapped into curve C',
which makes one turn along a meridian and one turn
along a parallel.

Since oscillations produced by van der Pol oscilla-
tors are not strictly sinusoidal, the equation for phase ¢
should be refined by introducing nonlinear term P(0,
0), because of which dissipation appears in the map and
an attractor appears in the phase space. Postulating

mapping in the form
Opi1 = 0,+86,+P(9,,8,)(mod2m), o
0,,, = 0,+2nw(mod2n),

one can determine function P(¢, 0) empirically by
numerically solving set of equations (3) under the
assumption that this function is smooth and continuous
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and has a period 27 in either argument. To this end, we
proceed as follows. When numerically integrating
set (3), we use the data for two successive periods, i.e.,
for time instants t, =n t,, ; = n + 1 to find the quantity

Pn = ¢n+l - q)n - en(mOdzn)‘

Then, approximating this function by the 2D Fourier
series,

r

P(0,8) = > > lay,cos(kd +m)

k=-rm=-r

+ by, sin(kd + m0) ],

we determine the coefficients by the least-squares
method so as to minimize the residual,

N

Aty i) = Y, min[P(9,, 6,)

n=1 "~

_(¢n+l _¢n_9n+2nj)]2-

This is achieved by solving the corresponding set of
linear algebraic equations in coefficients a;,, and by,
Calculation was carried out for 7=6,A = 13, and € =
0.6. It turns out that the first- and third-order terms of
the Fourier series vanish up to a calculation accuracy.
With the zeroth- and second-order terms left, the
expression for function P(¢, 0) has the form

P(9,0)=-1.5578 4+ 0.1537cos(2¢ — 0.0351)
—0.1785c0s (26 + 1.4427)
+0.1300cos (2¢ + 20 + 0.4251)
—0.0625cos(2¢ — 26 + 0.2225).

Figure 5 shows the plots of functions P(¢, 0) con-
structed directly from the values P,, ¢,, and 0, calcu-
lated for successive modulation periods in the numeri-
cal solution of Egs. (3) (Fig. 5a) and the plot of function
(8) (Fig. 5b). The plots on both panels are in good
agreement. Since the dynamics of our system is of the
same topological type as the dynamics in the Hunt—Ott
model in terms of phase maps, we can infer that a robust
SNA is present in out system too.

QUANTITATIVE CHARACTERISTICS
OF THE STRUCTURALLY STABLE STRANGE
NONCHAOTIC ATTRACTOR

Let us discuss more carefully the approach used to
describe the dynamics of couple nonautonomous van
der Pol oscillators (see (3)) in terms of maps.

With regard to two phase variables meeting two
components of a quasi-periodic external action, the
extended phase space can be considered as six-dimen-
sional. Stroboscopically cutting the flow of trajectories
in this space at intervals of 7, we arrive at a five-dimen-
sional Poincaré map acting in the space of vectors
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Pn=¢n+l_¢n_en
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P(0, 6)

Fig. 5. (a) Set of points (6, ¢,,, P,,) obtained by direct integration of system (3) and (b) approximation of function P(¢, 6) by the

Fourier series.

(x, x/2m, y, y/4m, 0). The attractor of this map is char-
acterized by five Lyapunov exponents. One of them is
trivial, Ay = 0, and is related to the disturbances of the
phase of angular variable 6. The rest of the exponents,
Ay (k= 1-4), are negative, as follows from the calcula-
tions.

Figure 6a shows the phase portrait of the attractor of
the stroboscopic map of system (3) for T=6, A = 13,
and € = 0.6. The portrait is shown as the projection onto
the plane of variables (x, x). The portrait of the same
attractor on the plane (0, ¢) is presented in Fig. 6b. Its
obvious visual similarity to the phase portrait of the
attractor related to the Hunt—Ott map (Fig. 2) catches
the eye. This is because the values of the parameters
were consciously taken so as to set in similar regimes in
system (3) and map (1) that have, among other things,
close leading nontrivial Lyapunov exponents.

To determine nontrivial Lyapunov exponents, set of
equations (3) was numerically solved along with four
sets of linearized variational equations,

8i + 2xx8x — (Asin2mt/T — x°) 8% + (21) 8x
= edysin[2mi(1 + o/T)],
83+ 2yydy — (= Asin2nt/T — y°)8y + (41) 8y
= edxsin2mt,

subject to various initial conditions. Integration was
carried out along a trajectory on the attractor within
time interval 7 x N, N = 10*. In every period 7, the set
of four vectors (dx, 8x/2m, &y, dy/4m) is subjected to
the Gram—Schmidt orthogonalization procedure and is
normalized to reduce the norms of the vectors to unity.
The accumulated sums of the logarithms of the lengths
of vectors S, (k = 1-4) were calculated after orthogonal-
ization but before normalization. The Lyapunov expo-
nents for a map are estimated by the formula A, = S;/N,

! For the regime specified by the above values of the parameters,
leading nontrivial Lyapunov exponent A; = —0.0221 and —0.0242
for system (3) and the attractor of map (1) (Fig. 2), respectively.
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and exponents A, for system (3) are related with them
as A, = A/T. For the dynamics observed at T =6, A =
13, and € = 0.6, the values of the nontrivial Lyapunov
exponents are A, =—0.0037, A, = -2.74, h; = —2.94, and
Ay =-2.99.

The last three exponents are much smaller than A,
and are responsible for the fast compression of an ele-
mentary phase volume along the directions in the phase
space that are transverse to the ¢ axis. It is this fast com-
pression that provides a fairly accurate reduction of the
five-dimensional stroboscopic map of system (3) to
two-dimensional map (7).

Consider now another quantitative characteristic of
the SNA—the phase sensitivity exponent [7], which
shows to what extent a typical trajectory on the SNA is
sensitive to a change in the initial phase of quasi-peri-
odic force 0. In essence, this exponent is a major
attribute of the strange nonchaotic dynamics, since it
provides the fractality of the attractor.

For two-dimensional mapping of type (1), the recur-
rence relation

8¢,., = 8¢,[1+2ncos2¢,] +86,, )

X/2n
0.08

-0.08

Fig. 6. (a) Projection of the phase portrait of system (3) and
(b) phase portrait of empiric map (7) (for the parameter val-
ues, see text).
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Fig. 7. Phase sensitivity functions calculated for ensembles
of 50 trajectories with randomly selected initial conditions
for (a) map (1) and (b) system (3).
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. | | r

21

Fig. 8. Approximating sets for the attractor of map (1) at dif-
ferent levels k: (a, d) w; = 8/13, (b, e) m;y = 34/55, and (c,
f) ;3 = 144/233. The upper row shows the structure of the
approximating set within the basic interval 8, € [1, 1/F));
the lower row, complete approximation of the attractor at
respective level k.

which describes the trajectory disturbance dynamics on
the SNA in the presence of small phase deviation 86, is
valid. Applying the iteration procedure simultaneously
to formula (9) and initial mapping (1), we obtain the
values of disturbance 8¢, at successive instants of dis-
crete time n. Numerical analysis shows that the time
dependence of this quantity exhibits high spikes, which
grow indefinitely with number of iterations. Following
[7], we introduce the phase sensitivity function,

I'y = min max |39, (10)

(PQ,GOOSnSN

and, assuming that this function increases by a power
law at N — oo,

FN"’NB,

introduce phase sensitivity exponent f3.
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To find the same exponent for the system of coupled
nonautonomous van der Pol oscillators, we will solve
set (3) simultaneously with the set of variational equa-
tion

8i + 2xx8x — (Asin2mt/T — x°)8% + (271) 8x
= edysin[27t(1 + o/T)] + 2weyd0cos[2mt(1 + w/T)],
85 +2yydy — (- Asin2ns/T — y°)y (D)
+ (47t)28y = gdxsin2mr.

Here, in contrast to relationships (8), constant nonzero
variation 80 of the external force phase is specified. The
phase sensitivity function can be introduced through

the norm of disturbance vector (0x, dx /27, Oy, &y /4T),
or = «/(8x)2 +(8x/2m) + (2‘)y)2 + (8)5/475)2 ; namely,
Iy = (12)

min max Or(r).
{x,%,,7%,0}1=0 0<I<NT

The log—log plots of the phase sensitivity function
versus N for systems (1) and (3) are demonstrated in
Fig. 7. The phase sensitivity exponent estimated as the
slope of the straight lines approximating these depen-
dences is B = 1.02 for map (1) and =0.95 for system (3).
Within the limits of experimental error (10.05), wee
canput B =1.

The next general characteristic of the attractors of
systems (1) and (3) can be found by the method of ratio-
nal approximations [7]. Let us approximate irrational
number ®, the inverse golden mean, by the ratios of
Fibonacci numbers, ®, = F,_,/F,, where F,,, = F, +
F,_, with F, =0 and F, = 1. At each level k of approx-
imation, the initial quasi-periodically excited system is
replaced by an ensemble of systems excited by forces
of period F), that differ in initial phase 6,. Quantity 0,
now stands for an additional parameter depending on
which a periodically excited system may have a peri-
odic or quasi-periodic attractor. Because of phase peri-
odicity, complete approximation at a kth level is
attained by continuously varying initial phase 6, within
the primary part, [0, 1/F,], of the phase interval, since
the remaining part of the interval, [1/F,, 1], is covered
by (F,— 1) iterations. The properties of the starting sys-
tem are reached in the limit k — oo. For finite &, a set
of attractors corresponding to different values of phase
0, may be viewed as a rational approximation of the
attractor of the initial, quasi-periodically excited sys-
tem.

Figure 8 shows three levels of rational approxima-
tion (k=7, 10, and 13) for the attractor of map (1). Each
of the patterns is, in essence, a bifurcation diagram for
map (1) at ® = ®, where 0, serves as a parameter. The
ranges of 0, corresponding to periodic and aperiodic
(more precisely, quasi-periodic, of which one can make
certain) regimes can be seen. The latter regimes are rep-
resented by “bands” filled with dots. The periodic
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regimes are cycles of period mF,, where m is an integer,
which appear and disappear as a result of phase-depen-
dent (i.e., arising in response to 0, variation) saddle—
node bifurcations. As level k of approximation grows,
the part of the phase interval occupied by periodic
regimes increases, and the part occupied by quasi-peri-
odic ones narrows.

The attractor of system (3) can be approximated in a
similar way. With irrational number ® in Eq. (3c) for
phase 0 replaced by appropriate rational fractions @y,
the system can exhibit periodic or quasi-periodic oscil-
lations according to initial phase parameter 6. Corre-
spondingly, the form of the attractor of the Poincaré
map will also depend on 6,,. At each level of the rational
approximation of the attractor, we can construct a bifur-
cation diagram where initial phase 0, stands for a
parameter. Figure 9 shows such diagrams for the stro-
boscopic maps of periodically excited system (3) in the
projection onto the plane of variables (8, ¢). For conve-
nience of comparison with the diagrams for map (1),
the levels of approximation are the same (k =7, 10, and
13). It is seen that the approximating set consists of
quasi-periodic regimes and cycles of period mF) origi-
nating from phase-dependent saddle—node bifurca-
tions. As the approximation accuracy is improved, the
periodic component dominates and the quasi-periodic
one diminishes.

Comparing Figs. 8 and 9, one can see that the struc-
tures of the approximating sets for the attractors of map
(1) and system (3) qualitatively coincide. The attractors
are approximated by quasi-periodic components, main
periodic components in the form of cycles with periods
F} and 2F,, and narrow intervals of existence of larger
period periodic regimes. As level number & (accuracy of
approximation) grows, the relevance of the main peri-
odic components of approximation increases, while
that of the quasi-periodic components decreases. Let
the measures of the periodic and quasi-periodic compo-
nents of approximation be designated as [, and 1 — [,
respectively. The measures of the quasi-periodic com-
ponent plotted versus the approximation period are
shown in Fig. 10a for map (1) and in Fig. 10b for sys-
tem (3), respectively. It follows from these figures that
the quasi-periodic component decays in both cases by
the law (1 — ) ~ exp(—ouF), factors o in the exponents
being ov = 0.011 for map (1) and o = 0.012 for system
(3) (these values coincide within the limits of regres-
sion error).

Thus, it turns out that the quantitative characteristics
of the robust SNA of map (1) and SNA of flow system
(3) coincide for the parameter values considered.
Numerical analysis shows that, when the parameters of
system (3) vary insignificantly, the structure of the set
approximating the attractor qualitatively remains the
same. Phase sensitivity exponent [ and factor o enter-
ing into the exponent for the rational approximations
depend on the parameter values only slightly in the
domain of existence of this SNA, which demonstrates
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Fig. 9. Rational approximations of the attractor of the stro-
boscopic map for system (3) in the 6—¢ coordinates. (a, d)
w7 =8/13, (b, e) Wy = 34/55, and (c, f) w3 = 144/233.
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Fig. 10. Measure of the quasi-periodic component in the
rational approximation of the attractor vs. level of approxi-
mation k for (a) map (1) and (b) system (3).
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Fig. 11. Leading nontrivial Lyapunov exponent for system (3)
vs. the (a) amplitude of modulation of parameter A and
(b) modulation period 7. (/) Robust SNA.

the stability of its structure against (at least small) per-
turbations of the equations in system (3).

The structurally stable SNA can be observed in a
wide range of the parameters of data-flow system (3).
Figure 11a illustrates the dependence of leading non-
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trivial Lyapunov exponent A, on parameter A (for =6
and € = 0.6). The robust (structurally stable) SNA is
seen to exist at A < A_. This figure also shows that, after
the SNA has originated (A > A,,), the A dependence of
the Lyapunov exponent becomes smoother. (The
remaining Lyapunov exponents of the system vary
insignificantly with its parameters.) Figure 11b plots
the leading nontrivial Lyapunov exponent versus mod-
ulation period 7 (for A = 16 and € = 0.6). As the period
increases (or, in other words, parameter 1 of map (1)
decreases), the exponent tends toward a very small but
nonzero steady-state value. In this case, the attractor of
the system visually resembles a three-dimensional
torus; however, with regard to the Lyapunov exponent
spectrum, it should still be considered a strange non-
chaotic attractor.

CONCLUSIONS

We for the first time demonstrate the feasibility of
nonautonomous dynamics of a new type in a flow sys-
tem to which a structurally stable strange nonchaotic
attractor corresponds. Based on two van der Pol oscil-
lators excited by harmonic signals with irrationally
related frequencies, a model system is constructed with
the oscillation parameters modulated slowly and in
antiphase and with specific coupling providing the
relay transfer of the excitation phase. The dynamics of
the phase variables characterizing oscillations in the
system over the modulation period is approximated by
a 2D map on a torus, for which the existence of the
robust SNA was rigorously proved by Hunt and Ott.
The speculations are confirmed by numerical analysis
of the characteristics of the attractor for the constructed
system.

It should be emphasized that the system considered
in this work obviously admits of a physical implemen-
tation based on an electronic device similar to that
described in [32].
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