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Abstract—A mode] system of two coupled nonautonomous oscillators is proposed, in which the phenomena
of complex analytic dvnamics (Mandelbrot and Julia sets, etc.) characteristic of complex logistic maps are real-
ized. The idea underlying the model is based on the mechanism of alternative excitation transfer from one sub-
system to another and on the method (well known in the theory of oscillations) of slowly varying complex

amplitudes.
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The section of nonlinear dynamics engaged in
investigation into the properties of iterative maps set by
analytical functions of complex variables employs a
profoundly developed mathematical apparatus [1]. A
classical object for such investigations is offered by the
quadratic complex map
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which exhibits a trivial behavior for ¢ = (1; the result of
sequential iterations tends to mfnity for || > 1 and
remains within a finite region for |75 < 1, so that the unit
circle |z5] = 1 1s a boundary between the two types of
behavior. For other values of the complex parameter ¢,
the boundary separating these types has, in the general
case, a rather complicated structure and exhibits a frac-

tal character, offering an example of so-called Julia sets
(see Fig. 1).

On the other hand, once the initial condition 7, =
1s set and the behavior of 7, as a function of a complex
parameter ¢ 1s studied, the iterations also run to infinity
for some values of ¢ and remains within a finite region
for the other. The set of points on the complex ¢ plane,
which correspond to the latter situation, is called the
Mandelbrot set (Fig. 1a). The dynamics of complex
variable 7 within a limited region may correspond to
both periedic and chaotic regimes. The shape of the
region of periodic dynamics on the complex plane
(painted gray in Fig. 1a) resembles a cactus, represent-
ing a set of rounded subdomains occurring at the
periphery of a large cardioid-shaped domain. Main
lobes of the cactus correspond to the dynamics with
periods 1, 2, 3, as indicated by the corresponding num-
bers in Fig. la. A fractal pattern (painted black in
Fig. la) bounding the “Mandelbrot cactus™ on the plane

of parameter ¢ corresponds to chaotic dynamics. Fig-
ures [b—If give examples of the Julie sets correspond-
ing to the values of ¢ indicated by points in Fig. la.

The principal question is whether the phenomena of
complex mapping dynamics have physical realizations
(see, e.g., [2]). One successful example of such a real-
1zation for the Mandelbrot set is offered by a system of
specially chosen symmetrically coupled maps or non-
linear oscillators with an external periodic drive [3]. In
this context, the Mandelbrot set was treated as a region
of generalized partial synchronization [4] and some
aspects of the realization of complex dynamics in
autonomous flow systems were studied [3]. An analog
electronic device modeling the dynamics of appropri-
ately coupled quadratic maps was proposed [6]. which
allowed the Mandelbrot set to be observed in physical
experiment for the first time.

This Letter describes an alternative approach, which
makes possible the realization of dynamics characteris-
tics of complex maps. A complex variable represents
the amplitude of oscillations in a system of two coupled
nonautonomaous oscillators, which exhibit alternative
excitation ant transmit it to each other it in a relay-race
manner. Previously, an analogous idea was used for the
physical realizations of some abstract models and phe-
nomena with complex dynamics such as Bernoulli
map, Smale—Willlams attractor, Arnold’s cat, and
robust strange nonchaoetic attractor [7-11].

Let us discuss the main principles of functioning of
the proposed system, using the method of slow ampli-
tudes that is well known in the theory of oscillations
and waves. Consider an oscillatory process with fre-
quency m, and slowly varying complex amplitude A(7):
x(1)=Re[A(Dexpliwyh)]. A transformation of this signal
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Fig. 1. Quadratic complex map (1): (a) the plane of complex parameter ¢ showing Mandelbrot set (painted gray) corresponding to

periodic dynamics (regions of periods 1, 2, and 3 indicated by the corresponding numbers). separated by a fractal pattern corre-
sponding to chaotic dynamics in the phase space (painted black) from the region (painted white) in which the trajectories run to
infinity; (b—f) the plane of complex varniable 7 showing Julia sets for various values of parameter ¢ indicated by points in (a): O (bj;

02030 (o =04 (dy. =008 (e =0 1-0.75{ ().

on an element with a quadratic nonlinearity vields
V() =x%(1) = (U2)AD] + (1/2)Re[A(1) exp(2imgh)]. As
can be seen the double-frequency component has com-
plex amplitude representing the square of the initial
amplitude. Such a transformation, taking place during
the evolution over a period of action in the proposed
nonautonomous oscillatory system, constitutes a basis
of the proposed approach to realization of the complex
analytical dynamics.

Consider a system of two coupled nonautonomous
oscillators described by the following set of equations:

" i DN : ;
X+ mﬁ.l: + FL‘;«' + sm?r].x = gysin®yt + Asin(@yt + @),

(2)
5 2 . 2T\, 2
¥+ (20y) }r+F[T—51n—T—r]y = EX",

where x and v denote the generalized coordinate in the
first and second subsystem, respectively, and F, 7, A,
and £ are the parameters. The natural frequency of the
first oscillator 1s ®, and that of the second oscillator 1s
twice as large. The coefficients at the first derivative,
which control the dissipation in both subsystems,
slowly vary with the time in counterphase with the
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period 7. Let this period be equal to an integer of the
periods of intrinsic oscillations: T = 2mn/oy, (N =1, 2,
3, ...). The parameter 7y 1s a positive quantity smaller
than unmity (e.g., ¥ = 0.5). In this case, the dissipation
(remaining positive on averaging over the period) peri-
odically becomes negative for one or another oscillator.
In this stage, the oscillator is active (oscillations
increase ), while the rest of the period it is dissipative
(oscillations decay).

Let us assume that. at the onset of the active stage in
the second oscillator, the first oscillator has complex
amplitude A and the corresponding variable is x{f) ~
Re[A(f)exp(itgf)]. This signal acts on the second oscil-
lator via a nonlinear quadratic element, in which a
“seed” for the arising fluctuations is the second-har-
monic component RE[A“]EE:KP{ 2itgt)]. For this reason,
the complex amplitude of oscillations for the second
oscillator in the active stage is proportional to A%, In the
stage of reverse action (see the right-hand part of the
first equation in (2), the mixing with a reference signal
leads to the appearance of component with a difference
frequency @y, and an amplitude proportional to A%, This
component, together with the additional oscillatory
term Asin(mgt + @) (determined by the parameters of
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Fig. 2. A system of two coupled nonautonomous oscillators (2) with @y = 2R, T= 10, F=7, Y= 0.5, and £ = 1: (a, b) Mandelbrot

set (painted gray) and its magnified fragment on the plane of parameters Acosq, Asing corresponding to the real and imaginary
parts of the parameter ¢ of complex map (1), where numbers [, 2, 3, etc. indicate the regions of periodic dynamics with periods T.

2T, 3T etc.. and regions painted white correspond to infinite growth; (c—j) the plane of variables (x. x /2m) showing the projections

of limit cycles and the corresponding sections of the basins of attraction for various values of parameters indicated by points in (a):
AcosQp =05, Asinp=—0.2 (c. g): Acosp =-0.7. Asinp =04 (d, h) Acosp=—1.7, Asinp=0.1 (e, i) Acosp=-0.2, Asinp= 1.5
(f. h); points in the basins of attraction indicate the projections of the Poincaré map.

amplitude A and phase ), provides a seed for the com-
plex amplitude of the first oscillator. Therefore, the
mapping of the complex amplitude of the first oscillator
corresponds, 1n a certain approximation, to a complex
quadratic map. Indeed, the real and imaginary parts of
7 correspond to the generalized coordinate x and veloc-

ity x /0y, while the complex parameter ¢ is represented

by a complex quantity with the modulus A and the argu-
ment .

Depending on the choice of this parameter, ¢ = e,
a solution to the equations describing the coupled non-
autonomous oscillators either remains finite (for the
initial conditions set I a certain region of the phase
space) or runs to infinity. Figures 2a and 2b show the
diagrams obtained by numerical calculations, where
regions painted gray correspond to the observation of
dynamics within a finite domain and white regions cor-
respond to infinite growth. The calculations were per-
formed forwy=2x, T=10, F=7,y=0.5,and € = 1.
The patterns in these diagrams are apparently similar to
the Mandelbrot set for a complex quadratic map. The
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regions with numbers /, 2, 3, etc. comrespond to the
lobes featuring the dynamics with periods T, 2T, 3T,
etc., respectively.

Figure 3 illustrates the character of dynamics for
system (2) in a regime realized in the lobe of period 3.
This pattern represents a time series of variables x and
¢ 1n the coupled nonautonomous oscillators.

Apparently, the type of a dynamical regime the sys-
tem under consideration is determined by the form of a
“seeding” signal in the region of minimum amplitude
of oscillations of the first oscillator. This signal repre-
sents a superposition of the external signal and a signal
from the second oscillator transformed in the nonlinear
element. Here, details of the relationship between
phases of the two signals are important and determine
the fine structure of the cactus lobes on the plane of
parameters.

Figure 2 also shows diagrams on the plane of vari-

ables of the first oscillator (x, X /@) for the points 1ndi-

cated on the cactus mn Fig. 2a, which are analogous to
the portraits of Julia sets for the quadratic map in Fig. 1.

Vol. 33  No. 9 2007



COMPLEX ANALYTIC DYNAMICS PHENOMENA 751

Fig. 3. Time series of the dynamics of coupled nonautono-

mous oscillators (2) with the parameters =21, T= 10, F =
7.¥=05.ande =1, icosp =-02. and Asin( = 1.5, which
correspond to a cycle of period 3 in the Poincaré section.

In the four-dimensional phase space (x, /g, v,
v /2g), the attractor in the Poincaré section 1s situated

rather close to the (x, X /wy) plane, but not exactly in this
plane. The basin of attraction represents a four-dimen-
sional fractal object. Figures 2g—2j show sections of the

basins of attraction by the plane vy =0, ¥ = 0 for the
attractors situated in finite regions of the phase space
and indicate the points corresponding to the attractor in
a stroboscopic cross section, while Figs. 2¢-2f show
the phase portraits of these attractors projected onto the

(x., A/wy) plane.

As can be seen from the data presented above, the
proposed model system demonstrates phenomena char-
acteristic of the complex analytic dynamics, reproduc-
ing (at least, in the general form) objects such as the
Mandelbrot and Julia sets. A more thorough analysis,
which will be reported in subsequent publications,
shows that this analogy can be broken on deeper levels
of resolution of the fine-scale fractal structure. This 1s
related to the fact that, in the description of dynamics
within the framework of the method of slowly varving
amplitudes, all terms in the equations are analytical (in
the sense of the theory of functions of complex vari-
ables) only to the first approximation. Subsequent
approximations involve nonanalytic additives, which
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lead to the breakage of small-scale details in the
mapped objects (analogs of the Mandelbrot and Julia
sets). Thus, the comrespondence with the complex ana-
lvtic dynamics is essentially asymptotic with respect to
the parameter 7, that is, it improves with increasing
ratio of the time scales of the period of slow modulation
of the dissipation parameter and the period of intrinsic
oscillations.
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