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We study noise influence on universal properties of period-doubling cascade in a well-defined model 

of periodically kicked nonlinear dissipative oscillator. Two approaches of noise adding are consid-

ered: (i) modulation of kick�s amplitude and (ii) modulation of the interval between kicks. We then 
derive corresponding stochastic discrete one- and two-dimensional maps and provide a detailed 

study of the noise scaling properties of the Feigenbaum scenario and of the non-Feigenbaum tri-

critical case. Illustrations of bifurcations trees and Lyapunov exponent charts are given.  
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1.   Introduction 

Several basic scenarios of transition from regular behavior to chaos for nonlinear systems 

are known. All of them allow description with the help of a renormalization group 

method and therefore demonstrate property of universality with regard to concrete type of 

system [1]. One of consequences of an opportunity of a renormalization approach is the 

property of scaling which means reproducibility of dynamic characteristics on small 

scales in the vicinity of the critical point of transition to chaos. The scaling property can 

be observed for the structure of bifurcation tree, Lyapunov exponent diagram, phase por-

trait of attractor, etc. However, in real systems the noise is presented, which can greatly 

influence the picture of transition. For example in a case of period-doublings the noise 

washes away thin structure of bifurcation tree. As the result, only the limited number of 

period-doubling bifurcations can be observable. Thus, the known illustrations of scaling 

become unrealizable, because they assume asymptotically closed approach to a critical 

point. However, the renormalization group method can be generalized on a stochastic 

case (for example, see [2�7]). Due to this, it is possible to extend the scaling property on 

systems with the presence of noise. To demonstrate the scaling property we should re-
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normalize noise amplitude by new universal constant at transition from one level of hier-

archy to another. For a number of universality classes such constants were determined 

earlier [2, 5�8]. At the same time, it is important to give scaling illustrations not only for 

formal �canonical� models, but also for maps obtained from �the first principles� for 

physical systems, when the connection between parameters of model and parameters of 

initial physical system is clearly determined. Besides, it would be interesting to present 

illustrations of self-similarity for systems with period-doublings under action of noise on 

a plane of essential parameters. In this context, we study a periodically kicked Duffing 

oscillator. The noise is brought into system as random modulation of kicks amplitudes or 

intervals of time between the neighboring kicks. Such approach allows to obtain two-

dimensional and one-dimensional maps analytically.  

We consider two classes of universality associated with period-doublings. First one is 

a classical Feigenbaum type of behavior and it is characterized, besides the Feigenbaum 

scaling constants !F = 4.669201609� and "F = �2.502907875� by noise factor µF = 

6.61903... found out in works of Crutchfield et al. and Shraiman et al. [2, 8]. The second 

type of behavior assumes generalization of the Feigenbaum scenario at a case of two-

parametrical maps. It is characterized by the universal self-similar structure of parameters 

plane in a vicinity of terminal points for Feigenbaum critical curves (so called tricritical 

points). Such organization of parameters plane for systems without noise was discussed 

in paper [9] with help of charts of dynamical regimes. We demonstrate the scaling regu-

larities at investigating of two-dimensional chart of Lyapunov exponent both in systems 

without noise, and with noise. We specify the appropriate universal factors !T = 

7.284686217� and "T = �1.69030297� and noise constant µT = 8.2439... 

In Section 2 we present a transition from initial differential equation of periodically 

kicked nonlinear dissipative oscillator to 2D Ikeda map and 1D cosine map. We obtain 

maps with presence of noise that is added both by amplitude modulation and by modula-

tion of the duration of time intervals between kicks. In Section 3 we investigate scaling 

property in one-parameter case and give illustrations of self-similarity on bifurcation 

trees. In Section 4 we perform transition from cosine map to cubic map and show 2D 

scaling on Lyapunov exponent charts. 

2.   Transition from Differential System to Map. Addition of Noise 

We shall consider dissipative oscillator with cubic nonlinearity (Duffing oscillator) under 

the action of periodic kicks. Let us assume that the action of kicks takes very short time, 

so during this time a coordinate of oscillator practically does not change, and the speed 

obtains addition determined by amplitude of kick. The behavior of such oscillator is de-

scribed by the following differential equation: 

! ",32

0 # $%&'()(*(
n

nTtCXXXX !!!     (1) 

where X is the coordinate of oscillator, γ is the damping factor, ω0 is eigen frequency of 

oscillator, β is the parameter of nonlinearity, T is the interval between kicks and ! is am-

plitude of kick. 

Since in a right part of the equation (1) there is a δ-function, then during an interval 

between kicks the right part of the equation vanishes: 
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In that case, it is possible to find an approximate analytical solution, using a method of 

slowly varying amplitudes. In other words, we can present coordinate X in the following 

form:  

,
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where ! "taa &  and ! "taa ** &  are complex and complex conjugate slowly varying ampli-

tudes correspondingly. We shall take into account a traditional additional condition 
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Substituting relation (3) to (2), using condition (4) and performing averaging over time, 

we get well-known abridged equation for complex amplitude   
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Let us further introduce the real amplitude ! "tR  and real phase ! "t+ by means of next 

expression: 

! " ! " ! "tietRta +& . 

We substitute this expression in the abridged equation (5) and separate the real and 

imaginary parts. Then for the real amplitude ! "tR  and the real phase ! "t+  we obtain the 

next differential equations: 
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Solutions of these equations give dependences of real amplitude ! "tR and phase ! "t+ on 

time in an interval between kicks: 
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Here Rn and ϕn are the initial amplitude and initial phase immediately after n-th kick. 
 From Eq. (3) it is possible to find expressions specifying dependences of coordinate 

! "tX  and speed ! "tV  of oscillator on time: 

! " ! " ! ", -tttRtX +()& 0cos , 

! " ! " ! ", -tttRtV +())$& 00 sin . 

Substituting (7) in last expressions, we shall find dependences of coordinate and speed of 

oscillator on time in an interval between kicks: 
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To the moment of the beginning of ! "1(n -th kick, the time equal to period of 

external influence T has passed. Hence the coordinate and speed of oscillator are equal to 

! "TX  and ! "TV  correspondingly. Owing to δ-shaped character of external force, imme-

diately after kick the coordinate does not change and speed gets the addition that is equal 

to amplitude of external influence C. Consequently for coordinate and speed immediately 

after ! "1(n -th kick we obtain next expressions [10]: 
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These expressions represent required two-dimensional map, which gives dependences of 

coordinate and speed of oscillator immediately after ! "1(n -th kick on its coordinate and 

speed immediately after n-th kick. It is more convenient to introduce a new complex vari-

able Z: 
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Using initial conditions 
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and also using expression for complex variable Zn, we have got from (9):  
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Here new parameters ", # and ψ are defined via parameters of initial differential system 

as follows  
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The map (11) is called Ikeda map [11]. It is necessary to give a well-known illustra-

tion of chart of dynamical regimes for Ikeda map (Fig. 1(a)). The chart of dynamical re-

gimes is a diagram on the parameter plane where domains of qualitatively distinct re-

gimes are indicated by colors. To depict such chart one needs to scan step by step an area 

on the parameter plane. At each point of area, the discrete map needs to be iterated. Then 

after transient process and arrival to attractor, the nature of regime is analyzed and the 

point is marked by an appropriate color.  

Another graphic representation of complex dynamics of nonlinear multi-parameter 

maps is the chart of Lyapunov exponent [12�15]. For construction of such chart at each 

point of parameters space the value of Lyapunov exponent # is calculated and is coded 

by gray shadings. The white color corresponds to values of # that are close to zero.  
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Fig. 1. A chart of dynamical regimes with some phase portraits of attractor in indicated points on parameters 

plane ($) and chart of Lyapunov exponent Λ (b) for Ikeda map (11). With help of figures on chart of dynamical 

regimes we mark the regions of existence of cycles with some basic periods. Separately markings of colors are 
presented. 

 

Negative values of # are associated with gray nuance the darker the more 5 . The black 

color corresponds to positive values of Lyapunov exponent. Also white color designates 

points at which the iterative process diverges. The Lyapunov exponent chart for Ikeda 

map is presented on Fig. 1(b). 

Let now assume that amplitudes of kicks are modulated in a random way and ∆!n is 

random addition to amplitude of n-th kick: 
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For Eq. (12) by analogy with (11) the following map may be obtained: 
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It is possible to consider another way of insertion of fluctuations in investigated sys-

tem. Let us suppose, that the duration of time intervals between kicks slightly changes 
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about the average period T so, that the duration of these intervals is nTT 6( , where nT6  

is small random value. Let us consider the case (that is usual for oscillators) when pa-

rameter of damping γ is much less than eigen frequency ω0.  Then it is easy to see from 

(8), that as time nTT 6(  passes the random addition to amplitude of oscillator can be 

neglected in comparison with the addition to its complete phase. It means, that we come 

to the following form of Ikeda map with random influence: 

( )( )2

1 0expn n n nZ A BZ i Z T4 ) 6+ = + + + .     (14) 

Maps (13) and (14) are the two-dimensional, because Z is complex variable, contain-

ing the real and imaginary parts. It is known, however, that in wide region of parameters 

values (the more precise the greater ") the Ikeda map admits a description with the help 

of one-dimensional map [9, 10]. Let us do the similar procedure for map (14). Following 

[10, 16] let us assign 

ZAZ
~

(& ,       (15) 

where Z
~

is small addition. Let us substitute this expression in the left and right parts of 

the equation (14) taking into account smallness of Z
~

: 
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Having put further 4((& 2~
Re2 AZAX nn , we come to the following one-dimensional 

cosine map with a noise influence: 

! " +(6)(7&( nnn TXX 01 cos .      (17) 

Here new parameters are used 

.,2 22 4(&+&7 ABA      (18) 

Further we shall suppose, that nnT 89&6)0 , where 8  is non-dimensional amplitude of 

modulation of the external influence period, and n9  is random variable. 

The charts of dynamical regimes and Lyapunov exponent for cosine map (17) at the 

absence of external noise influence are given in Fig. 2. The range of changing of parame-

ter +  is chosen as (�π/2, 3π/2) because of 2π-periodicity of cosine function.  

 

 
Fig. 2. A chart of dynamical regimes ($) and chart of Lyapunov exponent Λ (b), computed for cosine map (17) 
in the absence of noise. 
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3.   One-Parametrical Transition to Chaos and Scaling 

The cosine map (17) in the absence of fluctuations +(7&( nn XX cos1  has a set of quad-

ratic extrema. Therefore, such map demonstrates the scenario of transition to chaos via 

period-doublings. At crossing the border of chaos along a typical route on a parameters 

plane ! "+7,  the classic cascade of period-doublings that obeying Feigenbaum�s laws will 

be observed. For example, at 0&+  the Feigenbaum cascade accumulates to a critical 

point c7  = 1.974133� The illustration of scaling for the bifurcation tree in system with 

noise is shown in Fig. 3. The self-similarity is illustrated by a series of figures; each sub-

sequent figure represents magnified fragment of the previous one. In according with Fei-

genbaum laws the horizontal scale of enlarged right fragment of Fig. 3 is decreased by 

Feigenbaum factor "F relatively to a point X = 0 (one of extrema of cosine map), 

FXX :; , and the vertical scale is recalculated by other Feigenbaum factor !F rela-

tively to a critical point c7 = 1.974133.., ! " %7$7(7;7 cc . According to the approach, 

stated in Introduction, at transition to deeper level of a hierarchical picture the initial am-

plitude of noise must be decreased by noise factor µF = 6.61903.., ,F<8;8  that allows 

to observe one more level of period-doubling. 

 

 

Fig. 3. An illustration of Feigenbaum scaling property for bifurcation tree of cosine map. The initial noise inten-

sity is equal to 0.003. 

 

However, the map (17) is characterized by two parameters ! "+7, , therefore it is pos-

sible to observe tricritical points on its plane. As we have already noted in Introduction, 

for Feigenbaum critical lines tricritical points are "attributes" of maps having two and 

more quadratic extrema. At these points it is possible to observe period-doubling cas-

cades along curves, on which the maximum is mapped exactly onto a minimum [17]. The 

reason of non-Feigenbaum character of convergence in this case is that twice iterated 

map under such condition has no quadratic extremum, but has extremum of the fourth 

order. So for cosine map (17) under condition λ = % - ϕ  the quadratic maximum X = 0 is 

mapped exactly onto a quadratic minimum X = %. Thus along the line λ = % - ϕ on a pa-
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rameters plane ( )ϕλ,  a non-Feigenbaum cascade of period-doubling bifurcations, accu-

mulating to tricritical point λT = 2.18603861533.., ϕT = 0.9555540392…[9], should be 
observed. Fig.4 demo nstrates an illustration of scaling for the bifurcation tree of map (17) 
with typical for tricriticality universal constants  δT = 7.284686217… along ë-axis and αT 
= –1.6903029714… along X-axis. At transition from one level of period-doublings to 
another the noise magnitude ε  must be decreased by ìT = 8.2439… [18] in order to ob-
serve scaling. So scaling in system with noise is well executed. It is the evidence of uni-
versality of scaling property concerning a concrete form of map with renormalization of 
noise intensity both for Feigenbaum, and for tricritical dynamics. 

To study sensitivity of the obtained results to noise we used several types of random 
number operations. The cases of binary noise, a noise with uniform distribution and a 
noise with Gauss distribution are executed. It turned out that in all this cases the property 
of self-similarity is well realized. This fact indicates universality of scaling property also 
in relation to a type of noise. In the present computations for illustration of all results we 
choose a noise with uniform distribution. We define nξ as random variable uniformly dis-
tributed over an interval [–0.5; 0.5]. (Hence, the mean is zero and the standard deviation 

is equal to 121 .) Generally speaking, if the amplitude of noise is small, and the dynam-
ics of noisy system is considered on a large time scale, the concrete form of the probability 
distribution for random sequence nξ  appears not to be essential, and the behavior of the 
noisy system will be of a universal nature. We have already drawn similar conclusion in our 
previous papers dedicated to problems of determination of noise factor µ  (see [6], [18]). 
Earlier analogous conclusion was made by D. Fiel [19]. 

 

 
Fig. 4. “Tricritical” scaling on bifurcation tree of cosine map (17) at the presence of noise with initial amplitude 
0.01. 
 

4.    Two-Parametrical Transition to Chaos and Scaling  

Let us turn now to the two-parametrical analysis. For systems without noise it assumes 
bifurcation analysis (drawing of bifurcation curves on parameters plane) or analysis of 
charts of dynamical regimes. For systems with noise both these approaches are inapplica-
ble. Therefore, we use drawing of above-mentioned Lyapunov exponent charts. The fam-
ily of Lyapunov exponent charts for map (17) at various values of noise intensityε  is 
shown in Fig. 5.  
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Fig. 5. Family of Lyapunov charts for map (17) for various values of noise amplitude ' = 0.005 (a), 0.01 (b), 
0.05 (c) and 0.2 (d). 

 

In the case of small noise ' we see rather clear structure of Lyapunov space                 

(Fig. 5($)): the borders between certain values of Lyapunov exponent are well defined; 

the areas with zero # are sharply allocated; in chaos region the areas of periodic regimes 

are well visible. The more intensive noise leads to disappearance of some regular regimes 

in the chaos area, though keeps general structure of a chart (Figs. 5(b), (c)). At the further 

increasing of noise amplitude an almost complete disappearance of regular regimes is 

observed in the chaos region, the structure of a chart becomes more smeared, values of 

Lyapunov exponent have increased on all parameters plane (Fig. 5(d)). 

The presented charts of Lyapunov exponent are characterized by thin and complicated 

organization containing a set of small (in absence of noise indefinitely small) details. The 

most representative in this respect are tricritical points, in which vicinity the parameters 

plane is characterized by self-similar hierarchical organization. Illustration of scaling on a 

parameters plane requires a determination of special scaling coordinate system. To base 

on the earlier obtained results, we shall slightly simplify map (17). For this purpose let us 

assume, that 

nnn yX 89= $(& 2/ .      (19) 

As a result, we shall get the next expression 

nnn yy 89(=$+(7$&( 2/sin1 .      (20) 

Let us expand sine function up to the cubic term inclusively. Then we shall introduce 

new variable and parameters according to relations 

! " .,62,6 7&7=$+&7& bayX  
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Fig. 6. Scaling on Lyapunov exponent chart for map (21) in absence of noise. 

 

Amplitude of noise is normalized on the factor 67 . Then we come to cubic map 

nnnn XbXaX 89(($&(
3

1 .     (21) 

The Lyapunov exponent chart of the cubic map in case of noise amplitude ε = 0 is shown 

at the left part of Fig. 6. It may be shown, that above-mentioned approximations are not 

essential from the point of view of chart�s structure. (This statement concerns also char-

acteristics of tricritical dynamics, because such dynamics is a �rough� phenomenon in 

system with two quadratic extrema. The transition from cosine map (17) to cubic map 

(21) only slightly moves coordinates of two such essential extrema.)  

The illustration of scaling property for map (21) on a parameters plane for a 

Lyapunov exponent chart is given in Fig.6. On large left fragment the coordinates axes 

are parameters of initial map (a, b). Depicted parallelogram (at which center the tricritical 

point is placed) is formed by coordinate lines C1 = ± 0.15 and C2 = ± 0.25. Here (!1, !2) 

are special coordinates, which are necessary to use for observation of self-similarity. 

Scaling coordinates (!1, !2) in the parameter plane of initial map (a, b) are determined by 

expressions [17, 20]: 

.,2192807.05998610.0 2121 CCbbCCaa TT (&$$&$    (22) 

Tricritical point aT, bT has coordinates (0.2426987573.., 1.9513857778�). 

The part of a parameters plane that got inside of mentioned parallelogram is shown 

separately on the top right fragment in �scaling coordinates�. Then it is twice reproduced 

with recalculation of scale along axis C1 by factor δT and along axis C2 by factor αT
2
. For 

observation of scaling at transition from one level to another the value of Lyapunov ex-
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ponent needs to be rescaled by factor 2 in comparison with the previous fragment. 

According to this rule the color palette is changed. 

To observe the scaling properties for cubic map in the presence of noise (21) on a 

chart of Lyapunov exponent it is also necessary to rescale the noise amplitude by the fac-

tor µT = 8.2439� The appropriate illustration of scaling for Lyapunov exponent chart in 

the presence of noise for initial noise intensity 8  = 0.02 are given in Fig.7. It is easy to 

see, that each fragment with high accuracy repeats structure of previous fragment. That is 

an illustration of two-parametrical scaling in system with noise. 

 

 
Fig. 7. Scaling on Lyapunov exponent chart for cubic map (21) in the presence of noise with initial intensity ' = 
0.02. 

5.   Conclusion 

We have discussed scaling regularities associated with the effect of additive noise on the 

maps obtained as a result of application of slowly varied amplitude method to the Duffing 

oscillator forced by the periodic sequence of kicks. It seems, that periodically kicked 

Duffing oscillator with random modulated amplitude or period of kick sequence is con-

venient model for study of the critical phenomena at transition �order � chaos� in systems 

with noise. The maps obtained as approximation of this system demonstrate both one-

parametrical Feigenbaum scaling (but with an additional noise constant µF  = 6.61903�), 

and scaling on a plane of parameters with a noise constant µT  = 8.2439... 

It is necessary to note that similar investigations of scaling characteristics in the pres-

ence of noise can be realized in case of other types of external effect, for example, sinu-

soidal driving. However, in given considered case of influence in form of periodic kicks 

it was materially that such type of influence permits discretization and reduction of dif-

ferential equation to maps. We believe that described procedure of the noise supplement 
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and demonstration of scaling properties with help of noise factor µ can be generalized to 

other models and other types of noise addition owing to simplicity of procedure and uni-

versal nature of factor µ which arising from conclusions of renormalization group ap-

proach. 
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