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Abstract—A chaos generator consisting of two subsystems is considered. Each subsystem is a pair of paramet-
rically coupled oscillators whose free-running frequencies differ by a factor of two. The subsystems are alter-
nately driven by the third harmonic of a basic frequency, and energy is transferred between them through signal
squarers. Based on a qualitative analysis and numerical results, a hypothesis is put forward that the system

implements a hyperbolic strange attractor.
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1. INTRODUCTION

In the mathematical theory of dynamical systems
[1-11], uniformly hyperbolic chaotic attractors are
defined as invariant sets where all orbits are of saddle
type. They are structurally stable; 1.e., the attractor
structure is robust under changes in control-parameter
values. These strange attractors have strong chaotic
properties amenable to far-reaching mathematical anal-
ysis. However, uniformly hyperbolic chaotic attractors
are not characteristic of a vast majority of real systems
exhibiting complex behavior. The examples of hyper-
bolic attractors discussed in textbooks and monographs
on nonlinear dynamics, such as Plykin’s attractor or
Smale—Williams solenoid, are constructed by using
artificial mathematical models [1-11].

Recently, a nonautonomous physical system was
proposed that combines two van der Pol oscillators
[12-14] and exhibits a Smale—Williams strange attrac-
tor in the Poincaré map. In [15, 16], a numerical verifi-
cation of sufficient conditions for the existence of a
hyperbolic attractor, known from the literature [1, 6],
was performed for this system.

Other systems of this kind using autonomous and
nonautonomous oscillators were discussed in [16-19].
The general principle that underlies the operation of
these systems is phase manipulation performed as sig-
nals are transferred between alternately excited oscilla-
tors, so that the evolution of the phase variable corre-
sponds to an iterative chaotic map.

This principle is conveniently implemented in para-
metncally driven systems, which are widely used in
theory and applications [20-23]. The physical pro-
cesses employed in such a system may belong to the
realm of electronics, mechanics, acoustics, or nonlinear
optics.

In a commonly used type of parametric generator,
two oscillators are coupled by a reactive coupling ele-
ment characterized by a time-varying parameter. The
free-running oscillator frequencies o, and @, are
related to the driving frequency @, by the parametric
resonance condition @, + ), = ;. Both oscillators are
excited simultaneously, and the oscillations can be
stabilized, in particular, by introducing a nonlinear
damping.

Consider a system consisting of parametric genera-
tors A and B of this type, as schematized in Fig. 1. In
each subsystem, the free-running frequencies of the
parametrically coupled oscillators are such that w, =
2w, and ;= 3y; 1.e., parametric resonance conditions

T

Fig. 1. Parametric chaos generator block diagram. Blocks
labeled as | and o, represent the respective oscillators
with these free-running frequencies; those labeled with a
waveform, reactive coupling elements characterized by a
parameter oscillating at the driving carrier frequency oy:

hatched squares. signal squarers.
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are obviously satisfied. The oscillator of frequency o
is coupled to the oscillator of frequency ®, in the other
subsystem by a signal squarer. By virtue of the assumed
relation between the frequencies, the second harmonic
of one oscillator resonantly drives the other oscillator.

The subsystems are driven in turn so that parametri-
cally excited oscillations grow and decay alternately in
both subsystems. Each excitation of a subsystem is trig-
gered by a second harmonic signal generated by the
other subsystem. The oscillation phase is doubled by
each signal transfer so that it is multiplied by a factor of
4 over a period of driving-signal modulation. As a
result, the system generates, with the modulation
period, a sequence of pulses whose carrier phase chaot-
ically varies from pulse to pulse.

Hypothetically, the chaotic attractor corresponding
to any particular set of parameter values for which the
phases evolve as described above can be classified as
uniformly hyperbolic. More precisely, the attractor
generated by the map that determines the change in the
system’s state over a modulation period 1s of Smale—
Williams solenoid type.

In the system proposed here, the phase manipulation
1s performed as energy is transferred between oscilla-
tors, whereas the key role in the systems discussed in
[12-19] 1s played by a non-oscillatory external source
of energy that compensates for oscillator losses, rather
than by energy transfer.

2. GENERATOR MODEL: GOVERNING
EQUATIONS AND PRINCIPLE OF OPERATION

Consider the system described by the Lagrangian

1.2 2 2 .2 2.2
L= 'i{xl A+ Y+ Y -0

T 9 ¥ 7 b b
— 3%y — @V} — 03y3) + KX, 0, f(1) +y,7,8(0] (1)

: 2 2
H SINWel + E(X) ¥y + ViXa),

where x| , and y, , are the generalized coordinates of
two coupled pars of oscillators, x, ; and v, » are the

corresponding generalized velocities, and 0, and ©; =
20y, are the respective free-running oscillator frequen-
cies in both pairs. The parameter K quantifies the driv-
ing-signal strength, and the functions f(¢) and g(f) deter-
mine the respective slowly varying amplitudes, of the
signals with the carrier frequency m; = 0, + 0, = 3,
that drive the two pairs of oscillators. The parameter £
is the coupling strength between oscillators belonging
to different pairs.

The nonlinear damping required for saturation of
parametric instability and existence of an attractor is
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introduced by using the Rayleigh dissipation function
[24] defined as follows:

1 .2 .2 2 2
R = 5{'11I1+'1212+ OV + O V3)
1 4 4 4 4 &
+ I(le'1+ Boxa+ Pryy+ Prya).

where o, ; and [}, ; are positive constant parameters.
The equations of motion for the system [24],

4(9L) _ oL 0K
dt\dx;) dx; ox;
(3)
i(ﬁ)—a_.'ﬂ_a_@ i=1,2
dt a};r' - &}3‘. a}ir_’ = l. &
are then written as
X+ mf:s:] = KX, f(f)sinwyt
+ 28Xy — 04X — Blfi
X+ {:J:,fxz = Kx f(f)sinmyt
2 . 3
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2 . .
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The amplitude functions f{t) and g(t) are defined so that
the driving signals are slowly modulated in antiphase:

£(f) = sin’ (Rt/T), g(t) = cos (xt/T).  (5)

The modulation period is a multiple of the driving-sig-

nal carrier period: T = 2nN/w,, where N is an intﬁ:gf:r.l

When N 2> 1, the slowly varying amplitude method
[21-23] can be used by setting

x, = Ajexp(im )+ Al exp(—im,1),
x, = Aexp(im,t) + AY exp(—im,t), ©
vi = Biexp(imt) + BY exp(—io;t),

v, = Byexp(im,t) + B exp(—iwm,1),

! This condition implies that (4) is a system of equations with
T-periodic coefficients. Therefore, the system’s dynamics can be
represented by the stroboscopic Poincaré map using sections of
the extended phase space with time step T. However, this condi-
tion can be ignored here since Eqs. (8) for slowly varying ampli-
tudes are used in the present analysis.
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where A 5(1) = A} ; +iA]; and B, ()= B} , +iB| ,
are slowly varying complex functions of time subject to
the conditions

Avexp(io, )+ Ay exp(—im, 1) = 0,

Azexp(im,t) + AT exp(—it,t) = 0, -
Biexp(iw,t) + Bl exp(—iw,t) = 0,

Baexp(io,t) + B3 exp(—im,f) = 0.

Substituting these relations into (4), multiplying the
equations for A, and B, by exp(—iw,f) and A, and B, by
exp(—it,f), averaging the resulting equations over the
carrier period, and using the assumed relation between
)y 2 3, We obtain

= — K A% _iE AR
Ar = - o F(DAT - i AT B,

1 3 2
—5"1131 _im] E’jA1|AJ

2
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B = -~ onB*_iEB*A,
1 4[:.115{} 2 Iml 1 413

1 3
—iﬂlBl—imiBleBl

2

L]

F

B = _ & ocinB*_ it Al
4{!_,'2.*_3{} 1 32[!_,'2 1

1 3 2 2
— 5'1232— E[ﬂgﬁgﬂglﬂﬂ .

If £ =0, the system splits into isolated subsystems A
and B, each comprising two parametrically coupled
oscillators. To be specific, consider subsystem A. (The
other subsystem i1s analyzed analogously.) For the
undamped subsystem with f(r) = 1, the complex ampli-
tudes are governed by the equations

Their general solution is

A = C‘+exp( i )+ C_exp(— M )
4, w0, 4./, m,
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1, X
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oyl " 4 /0,0,

+Cfexp(— ke ﬂ,
4,fm,m,

where C, = Rexp(i() and C_ = Kexp(—() are complex
constants determined by the initial conditions. Since
the second temms decay, we obtain the long-time
asymptotic expressions

Kf
A =C exp( )
] " 4,{my m,

W . ¥
Ay=— |[—=CTex ( )',
" P 4,/ m,

1.e.,

I]::ZRm;p( jcc-s{m]r+ Q).
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X,=—2R |Zex ( )cn&{m t—).
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Thus, the parametrically excited oscillations at the first
and second harmonics of , are phase-shifted by a con-
stant  depending on the initial conditions. When the
nonlinear damping is taken into account, the oscillation
amplitude saturates, yet the phase relation is preserved.

Now, consider the regime when the coupled sub-
systems A and B (with nonzero £) are driven in tum.

In each subsystem, the oscillator with free-minning
frequency w,; = 2, is excited by the second harmonic
of the oscillator with free-running frequency @y, pro-
duced by a signal squarer. The double phase shift in the

second harmonic® passes to the excited oscillator. Dur-
ing the next modulation half-period, the subsystems A
and B play reverse roles, and the phase shift of the
passed signal doubles once again. Thus, the phase shift
after a modulation period can be approximately repre-
sented by the map @, = 4( 4+ const (mod 2m). Itisa
Bernoulli-type map [25] with chaotic dynamics charac-
terized by the Lyapunov exponent A = Ind = 1.386.

The discrete-ime evolution of the system is
described by the stroboscopic Poincaré map obtained
by sampling the system’s 8D state vectors X, at times

? Indeed, by a well-known trigonometric identity, we have
1
CGSE[{!}11’+ @)=z cos(2ayt + 2¢) + off-resonant term.

F=]
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Fig. 2. Time-domain waveforms obtained by computing Eqs. (4) with parameter values (10) to illustrate irregular { virtually chaotic)
behavior: (a) driving signal; (b, ¢) single samples; (d) eight superimposed samples of the same signal realization. The envelopes in

panels (b) and (c) are obtained by numerical solution of Eqgs. (8) for complex amplitudes.

t, =nT. Solving Eqs. (4) or (8) on a time mterval T start-
ing from a particular 7, we obtain a new state vector
X, . |- The function

Xi‘l+l = T{XH)? (9)

which maps the 8D phase space into itself, is the stro-
boscopic Poincaré map assoclated with a system of dif-
ferential evolution equations whose right-hand sides
are smooth and bounded on a bounded region in the
phase space. By virtue of the existence, uniqueness,
continuity, and differentiability of the solution to the
system, T is a diffeomorphism (a smooth map with a
smooth inverse [26]). To define the phase ¢, consider
the oscillator with free-running frequency ) in the
subsystem active at 7,. In the 8D phase space, the eigen-
direction associated with the phase o, , | = 4, + const
(mod 2m) is expanding and the remaining seven direc-
tions are contracting (see below).
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3. CHAOTIC DYNAMICS: NUMERICAL RESULTS

The system’s dynamics are simulated for ®, = 2T,
, =41, and 3, = 6X; L.e., time is measured in units of
the shortest free-munning oscillator period.

Figure 2 shows modulation-period-long samples of
steady-state x and v waveforms, with modulated ampli-
tudes (5) of the driving signals illustrated by Fig. 2a,
computed by solving Eqs. (4) with the fourth-order
Runge—Kutta method for

=40, e =05, k=35,

10

Cilf.]:

It is clear that energy is alternately transferred between
the subsystems in phase lock with the driving-signal
modulation. The waveform generated by each sub-
system 1s a pulse train modulating a high-frequency
carrier with the driving-signal modulation period.
However, the waveform is not strictly periodic: the car-
rier phase varies irregularly from pulse to pulse. A good
qualitative illustration of this behavior 1s provided by
Fig. 2d, which shows eight superimposed signal sam-
Vol. 106

No.2 2008



384
2n
(a)
Po+1
0 P, 2
21
(b)
Pn+1
0 P 2T

Fig. 3. First-return maps for the phase of an active sub-
system obtained by computing Egs. (4) (a) and Eqgs. (8) for
complex amplitudes (b) with parameter values (10).

ples corresponding to successive modulation periods.
Figures 2b and 2c¢ illustrate the time dependence of the
oscillator amplitudes obtained by computing Eqs. (8)
for slowly varying amplitudes. To comrelate the wave-
forms, the initial conditions set at the starting point in
time are calculated for the corresponding state of sys-
tem (4) by using relations (6) and (7). The figure dem-
onstrates good agreement between the results obtained
by the slowly varying amplitude method and the exact
solution.

First-return maps for the phase of the signal gener-
ated by subsystem B are shown in Fig. 3. Here, the
abscissa and ordinate are the respective phases at 7, =
nT and 1, , ;. The plots in Figs. 3a and 3b are obtained
by computing Eqs. (4) and Eqgs. (8) and calculating the
phase as

@, = arg[y,(t,) +yi(£,)/ie,]

and
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q]n = ﬂrgB]{rn}!

respectively. Note that the phase is defined only within
an active time interval of the subsystem (when the out-

put amplitude does not approach zero).’ According to
Fig. 3. as ¢, varies from O to 2m, the phase ¢©,,,
traverses the unit circle four times: i.e., the first-return
map is topologically equivalent to the Bernoulli-type
map .., = 4¢,,4. The minor variability from period to
period appears to be unimportant and can be neglected.

Since good agreement 1s demonstrated between the
results obtained by computing the original and the
amplitude equations, the analysis below is restricted to
the amplitude equations.

Quantitative evidence of chaotic behavior is
obtained by calculating Lyapunov exponents. To find
the Lyapunov spectum by Bennetin's algorithm [27,
28], Eqgs. (8) are computed simultaneously with eight
sets of equations for perturbations,

. K . . E . .
OA] = ———F(1)10AF —i—(BAFB, + A¥BB,
1 4mlf{} 2 I[ﬂl{ 1 P2 1 h}

1 3 2 Do o 2 .
— ﬁm]aﬂj —im] B]A]az‘i?‘ —3UJ1 ﬁjA?A]aA],
§As = — " F(1)8AY —iZB 5B, — 2,54,
) 4, 05 2 °
3

~503B24;84F —303B,AF 4,34,

(11)
_ __K % _ ;€ s #
EB] - 4[!]1 f{r}aﬂz Iml{AEaB] + B] aAE}

_ %ulasl_ %mfﬁlﬂfaﬂr ~3@;B,B¥B,8B,,

o X cent_ifasa, )
BBE = —4m2f{f}531 —:mzﬂlﬁﬂl 2112582

_ %miﬁzﬂias* —3@3p,B¥B,3B,.

Each time after a certain number of integration steps
have been performed, the Gram—Schmidt orthonormal-
ization process is applied to the perturbation vectors

(8A|,8A!.8A,, 5A), 6B,.8B].8B,, 5B} ).

The Lyapunov exponents are calculated by averag-
ing the growth rates of the sum of logarithms of norms
of the perturbation vectors after orthogonalizing, but
before normalizing, them. The Lyapunov spectrum cal-

3 The phase cannot be defined globally on the entire time axis,
because the amplitude is nearly zero when the subsystem is idle.
If such a definition were possible, then the first—return map for the
phase might not belong to the appropriate topological class.
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Fig. 4. The largest two Lyapunov exponents of stroboscopic
Poincaré map vs. parameter € computed for o) = 2m @, =

An, oy =6m, T=40. k=350 =, = 0.6, and f; =B, =
0.01. The largest exponent is consistent with the estimated

Ay =1,

culated for the attractor corresponding to parameter set
(10) 1s as follows:

Ay = 0.03456 £ 0.00006,
A, = 0.1320 £ 0.0003,

ha = —0.2247 £ 0.0004,
Ay = —0.5220£0.0004,
(12)
hs = —0.6826 £ 0.0008,
he = —0.9012 £ 0.0018,
Ly = — 1.4189 £ 0.0004,
hg = —2.3248 £ 0.0007.

The corresponding Lyapunov exponents of the strobo-
scopic Poincaré map are determined from (12) as Ay=A,T.
In particular, A, = 1.3823 + 0.0023, which is in good

385

agreement with the value In4 = 1.3862... obtained by
using the Bernoulli-type map ¢, , , =4, +const (mod 21m)
for the phase variable.

A positive A, 1s an indicator of chaos. Since the
remaining exponents A,, ..., Ay are negative, only one
eigendirection in the phase space of the Poincaré map
1s expanding and the remaining ones are contracting.

Figure 4 shows the two highest Lyapunov exponents
of the Poincaré map calculated as functions of the cou-
pling strength £ while the remaining parameters are
held constant. The positive exponent smoothly depends
on the parameter and has no sharp dips characteristic of
nonhyperbolic attractors. It is clear from Fig. 4 that the
value of A 1s close to Ind over a wide interval of £,

The Kaplan—Yorke dimension [6, 8, 21, 28] of the
attractor of the stroboscopic Poincaré map with
Lyapunov spectrum (12) is

D = 1+ AJ|A,y| = 1.26 (13)

(since A; >0 and A; + A, <0). Accordingly, the total

dimension of the attractor embedded in the 9D
extended phase spaceis D'=D + 1= 2.26.

Figure 5a shows Poincaré section of the phase por-
trait of the attractor obtained by projection onto the
phase plane of oscillator / in subsystem B. Figure 5b
shows an enlarged fragment of Fig. Sato illustrate some
details of the transverse fractal structure of the attractor.
Figure 5c shows an analogous phase portrait cormre-
sponding to a coupling strength value near the thresh-
old for existence of the chaotic attractor, where the
transverse fractal structure is more visible.

4. DISCUSSION: THE HYPERBOLICITY
HYPOTHESIS

The principle of operation of the parametric hyper-
bolic chaos generator considered here and its numerical
realization suggest that the observed chaotic attractor is
uniformly hyperbolic.

ImB, ImB,
1 1 T I ﬂ.%‘g‘
0k .
—1t+ -
: : = 0.949
—1 0 1 -0.02
ReB,

0.02
ReB,

Fig. 5. Poincaré section of the attractor portrait projected onto the complex amplitude plane of oscillator I in subsystem B for & =
0.5(a) and 0.125 (c): (b) an enlarged fragment of (a).
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Following the analysis developed by Shil ' nikov and
Turaev in a somewhat different context [5, 29]. define
phase space coordinates X, = {x,. (,} as
B||. B;, By} €

x = {Al Al A} AL R’

q}ﬂ = HIEB]|p=ﬂTE Sz-

where R is the 7D Euclidean space and § 1s the one-
dimensional circle. Then, Poincaré map (9) can be rep-
resented as

Xpel 5 f{xn* q]n}’ (14)
Qe = Mm@+ g(P,)+ O+ h(x,, ¢,) (mod 27).

Here, m is an integer (m = 4 forthe system under study);
18 a constant number m [0, 21); and £, g, and h are
smooth functions 2m-periodic in ¢. If f and & are func-
tions with sufficiently small norms, then (14) can be
approximated by the map

1“|'1'.r.r!+l = ””‘p.ra +£’({|}n} + @ {]ﬂﬂd zn} (15)

Furthermore, according to [5, 29], if m = 2 and
|m + g'(¢)] = 1, then map (14) has an attractor topolog-
ically equivalent (homeomorphic) to the Smale—-Will-
iams solenoid. In the spirit of the standard mathemati-
cal terminology, the original flow is said to have an
attractor topologically equivalent to a suspension of the
Smale—Williams® solenoid.

X, 41 = D*

Most importantly, m = 41in (14) implies that the map

belongs to the appropriate topological class, as illus-
trated by Fig. 3.

The branch pattern in the figure, as well as the proxim-
ity of the largest Lyapunov exponent of the Poincaré map
to A, = Ind, suggests that the condition |m + g'(¢)] > 1 is
satisfied.

Since the Lyapunov exponents A,, ..., Ay are nega-
tive and large m absolute value as compared to A, the
functions f and h in (14) must have sufficiently small
NOImS.

As a geometrical interpretation of the stroboscopic
Poincaré map, consider a 8D solid toroid (the direct
product of a one-dimensional circle with a 7D ball). At
each step of the map, it is stretched to four times its
original length, contracted in the transverse direction,
folded in four, and squeezed into its original volume.
Thus, the winding number of the map is 4. As the pro-
cess is continued ad infinitum, an attractor of Smale—
Williams solenoid type is generated, with a cross sec-
tion similar to the Cantor set.

Evidence of the uniform hyperbolicity of the attrac-
tor could be obtained by using the numerical procedure
describedin [14, 15] to verify certain conditions for the
expanding and contracting cones in the tangent spaces
at points inside a bounded phase-space domain contain-
ing the attractor [1, 6]. However, the computational
complexity of this procedure applied to the system in
question would be too high, because the corresponding
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phase-space dimension of the Poincaré map is as high
as 8 (cf. an analogous dimension of 4 in [14, 15]).

Even though the hyperbolicity of the chaotic attrac-
tor is only hypothetical, the parametric chaos generator
considered here is of interest in its own right, because
its performance is robust under the choice of parame-
ters and components of its electronic, mechanical,
acoustical, or nonlinear optical implementations. In
particular, parametric generators can be used in chaos-
based secure communication systems, which are cur-
rently the subject of extensive discussion [30].
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