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We study the effect of noise for a physically realizable flow system with a hyperbolic chaotic attractor of the
Smale-Williams type in the Poincaré cross section �Kuznetsov, Phys. Rev. Lett. 95, 144101 �2005��. It is
shown numerically that, by slightly varying the initial conditions on the attractor, one can obtain a uniform
approximation of a noisy orbit by the trajectory of the system without noise, which is called the “shadowing”
trajectory. We propose an algorithm for locating the shadowing trajectories in the system under consideration.
Using this algorithm, we show that the mean distance between a noisy orbit and the approximating one does
not depend essentially on the length of the time interval of observation, but only on the noise intensity. This
dependence is nearly linear in a wide interval of the intensity of the noise. It is found that for weak noise the
Lyapunov exponents do not depend noticeably on the noise intensity. However, in the case of strong noise the
largest Lyapunov exponent decreases and even becomes negative, indicating the suppression of chaos by
external noise.
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I. INTRODUCTION

One of the intensively studied problems in nonlinear sci-
ence is the investigation of the effect of noise for systems
with complex dynamical behavior, in particular for those
possessing strange chaotic attractors. It is known that strange
attractors in finite-dimensional nonlinear systems can be sub-
divided into three main classes: uniformly hyperbolic, non-
uniformly hyperbolic �quasihyperbolic�, and nonhyperbolic
�1–5�. Effects of noise on attractors of these classes have
some specific features �2�.

The objects referred to as nonhyperbolic attractors, or
quasiattractors, are not well defined. They are composed of a
set of complex orbits including chaotic limit sets and stable
periodic orbits with extremely narrow basins of attraction. In
this case, the presence of external noise appears as a saving
remedy for using the tools of nonlinear dynamics based on
the existence of a definite unique probabilistic measure.
Thus, in principle, it is of crucial significance to take account
of noise for nonhyperbolic attractors. For hyperbolic attrac-
tors, the effect of noise is not so essential because their in-
trinsic chaotic properties are sufficient to ensure legitimacy
of the description in terms of a natural invariant measure.
This statement is validated rigorously on a solid axiomatic
basis for uniform hyperbolic attractors �the Sinai-Ruelle-
Bowen �SRB� measures �1–6��. It is known that the SRB
measures correspond to the zero-noise limit. This means that
they serve as a good approximation for systems under weak
noise as well �6,7�. Moreover, a strong result may be formu-
lated concerning individual orbits basing on the so-called
shadowing lemma �5,8–11�; namely, on a time interval of
duration as long as is wished, any motion of the system with
weak noise in the sustained regime may be represented ap-
proximately by an orbit on the attractor of the system with-
out noise. In this sense, the noise may be regarded as ines-
sential. As for the nonuniform hyperbolic attractors, for the
conditions of existence of invariant measures and for shad-
owing properties of orbits, we refer the reader to a vast re-

cent literature �see �4� and references therein�.
Formally, the understanding of the effect of noise seems

to be in the clearest state for uniformly hyperbolic attractors,
but, in fact, it is not yet a state that can satisfy a physicist.
Indeed, no physical examples of uniformly hyperbolic attrac-
tors were known until recently. For this reason, the formula-
tion of the problem in its physical aspects was not possible
till now.

An idea for the implementation of a kind of uniformly
hyperbolic attractor was advanced in Ref. �12� in application
to a system of two coupled nonautonomous van der Pol os-
cillators. In the Poincaré map of this system, a chaotic attrac-
tor was found, similar to the Smale-Williams solenoid. An
analogous system has been built as an electronic device and
studied in experiments �13�. A numerical verification of con-
ditions for a theorem guaranteeing the hyperbolicity was per-
formed in Ref. �14�. Some other examples of complex dy-
namics were discussed in Refs. �15–18� based on the same
idea.

In the present paper, we report some results concerning
the effect of white Gaussian noise on a system of alternately
excited nonautonomous oscillators �12�. We discuss a nu-
merical simulation of the dynamics in the presence of noise
and present an algorithm for locating the shadowing trajec-
tories that reproduce with a certain accuracy the orbits of the
noisy system. The algorithm is based on a step-by-step ap-
proach to the noisy orbits and it gives a uniform approxima-
tion with a mean deviation not depending upon the length of
the time interval. We demonstrate numerically that for weak
noise the magnitude of the deviation from the noisy orbit
remains small, and it tends to zero linearly with decrease of
the noise intensity. Additionally, we analyze the dependence
of the Lyapunov exponents on the noise level. At weak noise
they do not depend noticeably on the noise intensity. This
result agrees well with the assertion that the SRB measure
corresponds to the zero-noise limit of the probabilistic mea-
sure. For strong noise, the largest Lyapunov exponent de-
creases. It can even become negative, indicating the suppres-
sion of chaos by the external noise.
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II. MODEL SYSTEM AND RESULTS
OF NUMERICAL INTEGRATION

We study the model system determined by the following
equations:

ẍ − �A cos��0t/N� − x2�ẋ + �0
2x = �y cos �0t + D1��t� ,

ÿ − �− A cos��0t/N� − y2�ẏ + 4�0
2y = �x2 + D2��t� . �1�

It is a pair of coupled nonautonomous van der Pol oscillators
with basic frequencies �0 and 2�0. The control parameters in
both subsystems slowly vary periodically in time in counter-
phase ��A cos��0t /N��, and some special type of coupling
between the subsystems is introduced. The frequency ratio N
is assumed to be an integer. A turn-by-turn transfer of exci-
tation between the subsystems is accompanied by a transfor-
mation of the phase at successive periods of modulation gov-
erned by the expanding circle map, or Bernoulli map, �n+1
=2�n+const�mod 2��. Gaussian white noise ��t� with
���t��=0 and ���t���t−���=	��� is added to the right-hand
parts of the equations. The parameters D1,2 characterizing the
noise intensity can be varied in a wide range.

As argued in previous studies �12–14�, the Poincaré map
of a noiseless system defined for a period of external driving
T=2�N /�0 possesses a uniformly hyperbolic chaotic attrac-
tor, namely, a Smale-Williams solenoid embedded in the
four-dimensional phase space.

For numerical solution of the stochastic equations �1� we
exploit a second-order method described in Ref. �19�. The
plot in Fig. 1�a� shows the results of computation for a noisy
system with the parameters A=3.0, �=0.5, �0=2� , N
=10 and at the noise intensity D1=D2=0.02. We show in
gray 100 superimposed samples of the process under the ef-
fect of noise starting from identical initial conditions. Due to
the noise, in the final part of the interval of observation the
states appear to be essentially different because of instability
intrinsic to orbits on a chaotic attractor. As a result, the pic-

ture becomes fuzzy. For comparison, the curve shown in
black is related to the system without noise, starting from the
same initial conditions.

It is easy to demonstrate qualitatively that a very similar
picture is observed in a noiseless system if one considers an
ensemble of samples with a slight deviation of the initial
conditions. In Fig. 1�b� we show a set of 100 samples for a
system without noise launched from initial conditions with a
small random variation near the same initial state as in the
previous diagram. The range of the random variations is spe-
cially selected to obtain a close degree of mutual divergence
of the orbits on the considered time interval in comparison
with that produced by the effect of noise.

As shown for the noiseless system, the phases determined
at successive stages of activity for one of the subsystems
obey approximately the Bernoulli map. It is interesting to
investigate the influence of noise on the iteration diagrams
for phases. Such diagrams were used in Refs. �12–15� for
substantiation of the classification of the attractors as hyper-
bolic. Taking into account that during the active stage the
oscillations of x�t� are close to sinusoidal with modulated
amplitude and floating phase �x�t��cos��0t+��; see Ref.
�12��, let us determine the phase at the time moments tn= t0
+nT as follows:

�n = arg�ẋ�tn� + i�0x�tn�� .

Figure 2 shows the iteration diagrams for the phases in the
presence of noise �gray� and without noise �black�. Note that
the presence of noise of sufficiently low intensity does not
change the topological nature of the phase map, which re-
mains in the same class as the Bernoulli map �n+1=2�n
+const�mod 2��.

Another approach that allows us to compare the noisy and
noiseless dynamics is based on analysis of the Lyapunov
exponents. For our model they can be computed from the
linearized equations

ẍ̃ − �A cos��0t/N� − x2�ẋ̃ + �2xẋ + �0
2�x̃ = �ỹ cos �0t ,

FIG. 1. Temporal realizations of the variable x of the model �1�: �a� 100 superimposed samples obtained at the noise level D1=D2

=0.02 �gray� and the trajectory without noise �black�, all with the same initial conditions; �b� 100 superimposed samples for the system
without noise �D1=D2=0� for ensembles of slightly different initial conditions. Here and hereafter the parameters of the system �1� are
chosen to be A=3.0, �=0.5, �0=2�, and N=10.
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ÿ̃ + �A cos��0t/N� + y2�ẏ̃ + �2yẏ + 4�0
2�ỹ = 2�xx̃ , �2�

where the tilde designates small perturbations of the dynami-
cal variables. These equations have to be solved numerically
together with the stochastic equations �1�. To obtain the spec-
trum of all four Lyapunov exponents, we consider a set of

four perturbation vectors �x̃ , ẋ̃ /�0 , ỹ , ẏ̃ /2�0� and apply the
procedure of Gram-Schmidt orthogonalization after each pe-
riod of parameter modulation. In Fig. 3 the Lyapunov expo-
nents are plotted versus the noise intensity parameter D
=D1=D2. At small intensities of noise, the largest Lyapunov
exponent is close to the value of T−1 ln 2, which corresponds
to the approximate description of the dynamics by the Ber-
noulli map. A notable deflection appears only at a sufficiently
high level of noise, namely, at D
0.2. At D�0.5 the effect
of noise is already very relevant; the largest Lyapunov expo-
nent crosses zero and becomes negative, indicating the sup-
pression of the intrinsic dynamical chaos by the external
noise. Dependence of other Lyapunov exponents on the noise
intensity is not noticeable at all.

III. ALGORITHM FOR LOCALIZATION
OF THE SHADOWING ORBITS

Now we turn to the main part of the present paper. That is,
we are going to illustrate numerically that in our model with
a hyperbolic attractor the weak noise is indeed nonessential,
i.e., a typical noisy orbit can be reproduced for a long time
interval by a trajectory without noise due to a careful appro-
priate choice of the initial conditions. This statement follows
mathematically from the hyperbolic nature of the attractor
and is based on the applicability of the shadowing lemma.

Suppose two trajectories are launched from identical ini-
tial conditions, one in the “pure” system without noise and
the other one in the system with noise. Obviously, the noisy
orbit will diverge from the pure one. Now, let us try to vary
the initial conditions for the pure trajectory to get an approxi-
mation for the noisy orbit in the best way at a long time
interval. The whole construction is performed for a definite
sample of the noisy orbit obtained with the same sample of
noise.

To explain the method of selection of the initial condi-
tions, it seems appropriate to consider the Poincaré map pro-
duced by a period-T stroboscopic section of the flow system
�1� without noise. Let us suppose that we have an instanta-
neous state given by a vector Vn= �x , ẋ /�0 ,y , ẏ /2�0� at tn
= t0+nT. Then, after the time interval T, we have a new state

Vn+1 = F̂t0
�Vn� . �3�

In practice, such a map can be obtained from numerical in-
tegration of the system �1� with D1=D2=0. In Fig. 4�a� one
can see a portrait of the attractor of the map projected onto
the plane �x , ẋ /�0�. The attractor shows filaments of an infi-
nite number of wraps possessing a Cantor-like structure in
the cross section. The solid black dots in the picture denote
four successive points of the stroboscopic section of one spe-
cially chosen trajectory on the attractor. The black line pass-
ing through each dot designates the corresponding unstable
direction Du, which is tangent to the unstable manifold Wu at
the given point. These directions can be simply approxi-
mated numerically from long-time evolution of an arbitrarily

chosen unit perturbation vector Ṽn= �x̃ , ẋ̃ /�0 , ỹ , ẏ̃ /2�0� at tn
= t0+nT, since such a vector governed by the linearized sys-
tem �2� tends to the unstable direction associated with a
single positive Lyapunov exponent.

Now one should note how a cloud of representative points
evolves from the same initial conditions in the presence of
noise. An illustration is shown in Fig. 4�b�. The dots pictured
in gray are obtained in the Poincaré cross section, i.e., stro-
boscopically at each successive period T from 104 sample
orbits of the noisy system at D1=D2=0.02. The black dots
correspond to the trajectory of the system without noise
�D1=D2=0� launched from the same initial conditions. Note
that the cloud stretches along the unstable direction tangent
to the filaments forming the attractor, but it does not grow in
the radial direction.

The algorithm for localization of the “pure” trajectory,
which approximates a noisy orbit, consists in the following.
Let us denote the original noisy orbit as Vnoisy�t�, while the
pure trajectory in zero approximation is denoted as V�0��t�.
We start first from the initial conditions at t= t0 identical for

FIG. 3. Spectrum of the Lyapunov exponents versus intensity of
noise for the model �1� with D1=D2=D.

FIG. 2. Iteration diagrams for the phase of the first subsystem of
the model �1� with noise D1=D2=0.1.
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the noisy and the pure orbits: Vnoisy�t0�=V�0��t0�. The starting
point is supposed to belong to the attractor of the system
without noise. Then, computing the two trajectories Vnoisy�t�
and V�0��t�, we consider the norm of the difference vector
��V�0��t1��= �Vnoisy�t1�−V�0��t1�� at the time moment t1= t0
+T. Next, we slightly modify the initial condition for the
pure orbit from V�0��t0� to V�1��t0� with the purpose of mini-
mizing the norm of the difference �Vnoisy�t1�−V�1��t1��. It is
done by variation of the phase of the partial oscillator active
at the time moment t= t0. For our system it corresponds to
variation of the initial state along the unstable direction as-

sociated with the point on the attractor, or, which is the same,
along a filament of the attractor containing the initial point.

In detail the procedure of the search for new initial con-
ditions V�1��t0� is as follows. We define a set of 2m+1 initial
conditions stretched along the unstable direction V1,k�t0�
=V�0��t0�+�V�1��k /m�Du, where k=−m , . . . ,m, �Du�=1, and
the maximum variation is chosen from the relation �V�1�

= ��V�0��t1��exp�−�1T�. We trace then 2m+1 trajectories un-
til t= t1 and choose the one at some k=k1 that minimizes the
error �Vnoisy�t1�−V1,k1

�t1��. This trajectory is denoted as
V1

�1�=V1,k1
. Next, we redefine the set of 2m+1 initial condi-

FIG. 5. Successive steps in
constructing the shadowing trajec-
tory �black� to the given noisy or-
bits �gray�. At the initial step both
orbits start from the identical ini-
tial conditions. In the last pre-
sented diagram the shadowing
takes place over the time range of
six modulation periods.

FIG. 4. �a� Stroboscopic cross
section of the attractor of the sys-
tem �1� at t0=0.0. The attractor is
projected on the phase plane of
the first subsystem. �b� Evolution
of the cloud of representative
points launched from identical ini-
tial conditions in the presence of
noise �D1=D2=0.02�. The num-
bers 1–4 indicate the number of
steps of the Poincaré map. An en-
semble of 104 orbits is shown.
Black dots correspond to the sys-
tem without noise starting from
the same initial conditions.
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tions as V2,k�t0�=V1
�1��t0�+�V�1��k /m2�Du and select the

trajectory that minimizes the error �Vnoisy�t1�−V2,k2
�t1�� at

k=k2. It is the trajectory V2
�1�=Vk2

. We repeat this procedure
of successive adjustment of the initial conditions again
and again, obtaining a sequence of initial conditions
	Vl

�1��t0�
l=1,2,. . ., and estimate the limit V�1��t0�. In computa-
tions, the procedure is stopped after a sufficiently large num-
ber of steps, when further increase of accuracy does not re-
sult in a decrease of the final deviation of the pure trajectory
from the noisy one at t= t1.

Suppose we take a new initial condition for the pure orbit
V�1��t0�. Now with the same sample of noise we again trace
two trajectories, the noisy one starting from Vnoisy�t0� and the
pure one starting from V�1��t0� for a longer time interval up
to t2= t0+2T, and obtain the norm of the difference vector
��V�1��t2��= �Vnoisy�t2�−V�1��t2��. Then, modifying again the
initial condition for the pure orbit by variation of the initial
phase of the active oscillator, this time in a closer neighbor-
hood of V�1��t0�, we try to minimize �Vnoisy�t2�−V�2��t2�� and
obtain the new initial condition V�2��t0�. The procedure of
variation of the initial conditions is the same as described
above with the only difference that the maximum variation
�V�2� is chosen from the relation �V�2�= ��V�1��t2��

exp�−2�1T�. Step by step, we successively increase the
time interval nT and select the initial conditions for the pure
orbit V�n��t0� that deliver minimal values for the norms of the
differences �Vnoisy�tn�−V�n��tn��. Note that the maximum
variation of the initial condition at the nth step of the algo-
rithm decays as �V�n��exp�−n�1T�. Due to the recurrent
nature of the algorithm, it appears that the approximation of
the noisy orbit by the pure one holds uniformly throughout
the whole time interval �t0 , t0+nT�.

Figure 5 illustrates results of application of several steps
of the above algorithm. The parameters of the system are
taken the same as those in the previous examples of compu-
tations, and the noise intensity is D1=D2=0.1.

The first plot in Fig. 5 corresponds to the initial step of the
algorithm: the noisy �gray� and pure �black� trajectories start
from identical initial conditions. One can see their suffi-
ciently fast divergence: the phase synchronism disappears
already after one period of the parameter modulation T. After
the first modification of the initial conditions for the pure
orbit, the divergence is delayed and the phase synchronism
persists over 1–2 periods of T, but then the orbits diverge. At

the next steps of the algorithm the time intervals of existence
of the phase synchronism become longer and longer and oc-
cupy finally the whole range in the diagram. Figure 6 shows
in gray 20 dots of the projection of the noisy orbit at D1
=D2=0.04 on the �x , ẋ /�0� plane. In black, 20 dots are
shown in the same stroboscopic cross section of the approxi-
mating pure trajectory recovered by the above method.

To characterize the degree of closeness of a noisy orbit to
a shadowing pure orbit, we use the following value:

�k =
1

kT
�

t0

t0+kT

�Vnoisy�t� − V�k��t��dt ,

where k designates the duration of the considered time inter-
val in units of the modulation period T. Averaging this quan-
tity over an ensemble of initial conditions and noise samples,
we obtain a mean deviation ��k� characterizing the degree of
closeness of the noisy and shadowing trajectories on the at-
tractor. In Fig. 7�a� we present plots of the mean deviation
��k� versus the value of k for different noise levels. It can be
seen in the figure that the mean deviation depends on k very
weakly in the range k=8, . . . ,50. At k�50–60 the errors
become noticeable due to the finite-digital arithmetic, and for

FIG. 7. �a� Mean average mu-
tual deviation of noise and shad-
owing trajectories ��k� versus the
number of modulation periods
taken for the computations at
three noise levels D1=D2=0.002,
0.01, and 0.02. �b� The depen-
dence of ��k� on the noise inten-
sity D for k=9.

FIG. 6. Stroboscopic cross section of the noisy �light gray� and
the shadowing noiseless �black� trajectories on a background of the
attractor �dark gray�. The trajectories are projected onto the phase
plane of the first subsystem. The noise intensity D1=D2=0.04.
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the considered level of accuracy further observation of the
shadowing becomes impossible.

Figure 7�b� shows a plot of the mean deviation ��k� com-
puted for k=9 in dependence on the parameter of the noise
intensity D=D1=D2. For each D value, we consider a set of
100 orbits launched from different initial conditions and cal-
culated for different noise series. Each noisy orbit was ap-
proximated by the shadowing one with the method described
above, and the mean value ��9� was obtained over the set of
orbits. As seen from the figure, the dependence ��9� versus D
looks like a linear one in the range of D from zero to 0.1.

IV. CONCLUSION

In this paper, we have examined the effect of Gaussian
noise on a physically realizable system with a uniformly hy-
perbolic attractor. In the context of the shadowing lemma
known from the mathematical literature, one could expect
that in our model the effect of weak noise can be compen-
sated by a careful selection of initial conditions. We devel-
oped a numerical algorithm that allows one to locate the

shadowing trajectories of the noiseless system and provide a
uniform approximation of orbits of the noisy system. Using
this algorithm, we have demonstrated numerically that the
mean mutual deviation between the noisy orbit and the
noiseless shadowing trajectory does not depend noticeably
on the length of the considered time interval, but depends on
the intensity of noise. This dependence was shown to be
almost linear in a sufficiently wide range of the parameter D
variation. We have also demonstrated that the weak noise
does not change the nature of the chaotic phase dynamics.
Similarly, the weak noise does not noticeably change the
Lyapunov exponents characterizing quantitatively the degree
of instability of the motion. At larger intensities the noise can
suppress the intrinsic chaotic dynamics of the system, and
the largest Lyapunov exponent becomes negative.
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