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On some properties of nearly onservative dynamis ofIkeda map and its relation with the onservative aseA. P. Kuznetsov1,2, A. V. Savin1,2 and D. V. Savin1

1Departament of nonlinear proesses, Saratov State University,83 Astrakhanskaya str., Saratov, 410012, Russia
2Institute of Radio Engineering and Eletronisof Russian Aademy of Siene, Saratov branh,38 Zelenaya str., Saratov, 410019, RussiaE-mail: dmitry_new�rambler.ruAbstratThe behavior of the well-known Ikeda map with very weak dissipation (so allednearly onservative ase) is investigated. The hanges in the bifuration struture ofthe parameter plane while dereasing the dissipation are revealed. It is shown thatwhen the dissipation is very weak the system demonstrates an "intermediate" type ofdynamis ombining the peuliarities of onservative and dissipative dynamis. Theorrespondene between the trajetories in the phase spae in onservative ase andthe transformations of the set of initial onditions in the nearly onservative aseis revealed. The dramati inrease of number of oexisting low-period attratorsand the extraordinary growth of the transient time while the dissipation dereaseshave been revealed. The method of plotting a bifuration trees for the set of initialonditions has been used to lassify existing attrators by it's struture. Also itwas shown that most of oexisting attrators are destroyed by rather small externalnoise, and the transient time in noisy driven systems inreases still more. The newmethod of two-parameter analysis of onservative systems was proposed.1 IntrodutionIt is well known that the behavior of onservative and dissipative systems di�ers essen-tially. E.g., the majority of nonlinear onservative systems an demonstrate the haotidynamis pratially at all values of parameters, but usually it realizes in very small areaof phase spae. On the other hand dissipative system demonstrates haoti behavior onlyat ertain values of parameter, but the basin of that haoti attrator usually oupiesa onsiderable area in phase spae (see e.g. [1, 2℄). Furthermore, di�erenes in dynamislead to signi�ant di�erene in numerial methods for investigation. So, pratially allmethods appliable for dissipative systems are based on the analysis of the attrators,1



while onservative systems have no attrator at all. As a result two pratially indepen-dent branhes studying onservative and dissipative systems orrespondingly had beenformed in nonlinear dynamis.But physially dissipative and onservative systems are not isolated and for a bignumber of systems a transition from dissipative to onservative systems while ontinu-ous hange of the parameters an our. In this ase dynamis hanges smoothly fromdissipative to onservative and some "intermediate" behavior should our "near" theonservative ase. Investigation of this proess seems to be very interesting beause suhbehavior should demonstrate both onservative and dissipative features. Suh investi-gations were began in [3℄ for so-alled rotor map, or standard map, whih onservativemodi�ation is the lassial model of onservative system (see e.g. [2℄). It had been re-vealed, that the rotor map ould demonstrate very peuliar dynamis ombining somefeatures of onservative and dissipative dynamis while its Jaobian approahes 1. Inpartiular, a huge number of o-existing low-period periodi attrators an be observed,whih leads to signi�ant dependene of the dynamis on the initial onditions. We shouldnote that suh dependene is typial for onservative systems.In this paper we try to investigate the dynamis of another lassial model - the Ikedamap - while dissipation dereases and the system evolutes from dissipative to onservative.2 Ikeda mapThe Ikeda map
zn+1 = A+Bznexp(i(|zn|

2 + ψ)) (1)had been proposed by Ikeda et al. [4℄ to desribe the dynamis of light in the ring avity.Now it is one of the lassial models of nonlinear dynamis demonstrating a big number ofit's basi phenomena. We would like to emphasize that the Ikeda map is an approximatestrobosopi map for a driven nonlinear osillator [5℄ and so an roughly desribe a bigamount of systems of di�erent nature. Let's onsider the onnetion between map (1)and the pulse driven nonlinear osillator
ẍ+ γẋ+ ω0

2x+ βx3 =
∑

Cδ(t− nT ) (2)more detail. The Ikeda map an be obtained from the Eq. (2) if one solves the autonomiequation between external pulses by method of slow amplitudes. The onnetion betweenparameters of Eqs. (1) and (2) is given by following formulae:
A =
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γ
,B = e−γT/2, ψ = ω0T. (3)The Jaobian of this map is equal to B2 , hene B = 1 orresponds to the onservativesystem, B < 1 - to dissipative and B ≈ 1 - weakly dissipative (nearly onservative) system.Nowadays the dynamis of the Ikeda map in dissipative ase is well studied (see e.g. [5�7℄).In partiular, it is known that so alled "rossroad area" strutures [8,9℄ typial for drivennonlinear osillator exist in the parameter plane of this map (�g. 1 a).At the transition to weakly dissipative ase the general struture of the parameterplane remains pratially the same, but some hanges our (see �g. 1 b). For example,the "rossroad area" struture hanges, and the degenerate �ip [10℄ point appears onthe period-doubling line, indiating the appearane of the superritial period-doublingbifuration. Also it should be mentioned that a transition to haos ours now at smallervalues of parameter A. 2



Figure 1: The struture of the parameter plane of the Ikeda map (1) with essential (a,
B = 0.3) and weak (b, B = 0.99) dissipation. On the left side there are so alled harts ofdynamial regimes where the stability regions of the yles of di�erent periods are shadedwith di�erent gray shades. On the right side there are bifuration lines of Ikeda map (1)plotted by the Content program. CP means a usp point, DP � the degenerated �ippoint.3 Evolution of attrators with the derease of dissipa-tionNow let's turn to the analysis of the phase spae struture in the nearly onservativease. For this we have taken "loud" of points in the phase spae and have observedthe onseutive stages of its ondensing on the attrator (see �g. 2). We an see thatat the �rst stages of loud evolution (�g. 2 a) strutures similar to the phase portraitin onservative ase (�g. 2 d) arise. At further stages of the dynamis several fouseswhih attrat other points an be seen (see �g. 2 b, where these fouses are marked bystars). The loation of those fouses orresponds to the loation of the ellipti �xed pointsin onservative ase. It shows us that on small times of evolution a weakly dissipativesystem demonstrates nearly onservative dynamis with further transition to dissipativedynamis.When all transients have died away, several attrating points an be seen in the phasespae (see �g. 2 ) although this point on the parameter plane is inside the region of theperiod 1 at the �g. 1 b. This allows us to suppose that several periodi attrators oexistat this point of the parameter plane, i.e. multistability exists.3



Figure 2: The di�erent stages of the evolution of loud of initial onditions for the Ikedamap (1) in weakly dissipative ase (a�) and phase portrait in the onservative ase (d).The �gures a� di�ers by the number of missed iterations: a) 200; b) 660; ) 6000. Theloations of fouses are marked by stars at �g. b. Values of parameters: A = 0.5;ψ =
3π/4;B = 0.99 (a-), B = 1 (d).For investigation of this phenomenon in weakly dissipative ase a method of drawingbifuration trees for a set of initial onditions on one diagram had been proposed in [3℄.At eah value of the ontrol parameter one should take a set of the initial onditions, makea su�ient number of iterations to ut o� all transients and then plot several onsequentiterations at the "parameter - variable" plane. Suh diagrams allow us to obtain thenumber of oexisting attrators and to trae their transformations while hanging theparameter. It seems natural to hoose a set of initial onditions in the domain where anattrator exists to derease the amount of alulations. From (1) we an obtain |zk+1| ≤
A + B|zk|. It is obvious that an attrator an't exist in the domain, where |zk+1| ≤ |zk|beause there |zk| dereases. The boundary of this domain we an determine from theondition |zk+1| ≤ A + B|zk| ≤ |zk|. Hene, |zk| ≥ A/(1 − B) is the domain where anattrator an't exist. Therefore, the domain of attrator existene is bounded by theondition |z| ≤ A/(1 − B) , i.e. |z|max = A/(1 − B). We'll take initial onditions on themesh in the retangle [−xmax, xmax] × [−ymax, ymax], where xmax = ymax = A/(1 − B).Bifuration diagrams for di�erent values of dissipation parameter B plotted by thismethod are shown in �g. 3. On all of them we an see the "basi" attrator, whih arisesat A = 0 and demonstrates the �rst period-doubling bifuration at values A near 1. Thisattrator has the largest basin so usually it is represented on the harts (�g. 1). Besides itthere are some "seondary" attrators. They arise at non-zero values of parameter A anddemonstrate lassial transition to haos by period-doubling asade. Their bifurationtrees have rather simple "lassial" struture. Let's refer suh attrators as the attratorsof �rst type.At relatively strong dissipation (B = 0.5) a number of suh "seondary" attratorsis not very big but it inreases while dereasing of dissipation and they arise at smallervalues of A. Also the distane between them along the A axe dereases. Furthermore,fragments with essentially more omplex dynamis arise on bifuration diagrams.Attrators orresponding to these trees arise at rather large values of A and are har-aterized with a smaller interval of their existene on A axe than attrators of the �rsttype.We shall refer them as the attrators of the seond type. The number of suh at-4



Figure 3: Bifuration diagrams for the map (1) for di�erent values of dissipation param-eter: a) B = 0.5; b) B = 0.75; ) B = 0.9; d) B = 0.95; e) B = 0.99; f) B = 0.999.
ψ = 0.
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trator also inreases while dereasing the dissipation.Now let's investigate a weakly dissipative ase (�g. 3 f,e) in more detail. First weonsider the ase B = 0.99 (�g. 3 f). It should be marked that the transient time beomesextremely long (up to 500000 iterations) at this ase and more than ten times exeedsthe transient time for essentially dissipative system. In the �g. 4 the bifuration diagramsfor di�erent transient time are shown. It an be seen that besides it's extreme length,the transient time essentially depends on the parameter A. This dependene is extremelyirregular so the areas where transient time is less then 20000 iterations interhange withareas where it is more than 200000 iterations.

Figure 4: Bifuration diagram for the map (1) with a di�erent number of missed iterations(transient proess): a) 5000; b) 20000; ) 200000. Parameters B = 0.99;ψ = 0.Now let us disuss the diagram struture when all transients have died away (�g. 3 f).It demonstrates a big number of attrators both of the �rst and seond types. It shouldbe noted that in fat there exist a onsiderably greater number of attrators than it anbe seen on the bifuration diagram beause many attrators have the basin smaller thana period of the initial onditions mesh. It is on�rmed by the fat that the strutureof the bifuration diagram ompliates essentially when a number of points of the meshinreases from 400 to 10000 points (in partiular, a number of attrators of the seond typeinreases). At the same time there are no hanges onstrained with the attrators of the�rst type, whih shows that they have larger basins and, onsequently, their observationin realisti system is more probable. 6



There are no haoti attrators on the bifuration diagram for the mesh with 400initial onditions. We think that it is also beause their basins are too small. The period-doubling asade for the majority of attrators is observed only up to period 2 whih anbe aused by two reasons. First is that in onservative systems the distane between twoonseutive period-doubling points dereases muh faster than in dissipative (orrespond-ing onstant δ=8,7210972. . . is essentially greater than well-known Feigenbaum onstant4,6692016...), so the regions of high periods an't be represented on the bifuration dia-gram. The seond is that the attrators an undergo a risis reahing the boundary ofit's basin. This assumption seems to be more realisti; some arguments in its favor willbe disussed in setion 4.Besides of the bifuration diagrams for variable x = Re z diagrams for other variablessuh as y = Im z and |z|2 has been built (�g. 5). On |z|2 diagram (�g. 5 b,) it is learlyseen that the attrators of the seond type are attrators of period 2 and higher beauseorresponding bifuration trees always onsists of two and more branhes. Also it shouldbe noted that while the x value for the attrators of the �rst type inreases with thederease of the parameter A, the y value dereases, and |z|2 value remains pratiallyonstant. It means the point in the phase plane moves on a irle, approahing the realaxe while A tends to zero.

Figure 5: Bifuration diagrams for variables y = Im z and |z|2. The parameters B =
0.99;ψ = 0.For weaker dissipation (B = 0.999, �g. 3 f) transient time reahes 5000000 iterationsand a number of oexisting attrators extends extremely, but evidently there are no7



qualitative hanges in the struture of the diagram, e.g. all attrators an be dividedinto the same two types.In this ase the attrators of the �rst type form several "families" whih tends to thehorizontal lines with the inrease of the parameter A. We an say that in previous asethere are only one "family" whih inludes all attrators of the �rst type and in this asethere are several "families". The "enter" of eah "family" is the attrator (stable �xedpoint) with very weak dependene on the parameter represented by horizontal line onthe diagram. Empty lines between the "families" may be seen on the diagram so it isnaturally to suppose that also some unstable �xed points with very weak dependene onthe parameter exists being the boundaries between the "families" of the attrators.4 Noisy driven weakly dissipative Ikeda mapIn the previous setions we have shown that the Ikeda map demonstrates an exeptionalvariety of oexisting low-period periodi attrators in the ase of weak dissipation. Butit seems signi�ant to explore how the dynamis of the system will hange with addingan external noise, beause it always exists in real systems. Let's onsider noisy drivensystem as follows:
zn+1 = A+Bznexp(i(|zn|

2 + ψ)) + εξn (4)where ξn is a random real value (uniformly distributed on the segment [-1;1℄ in our nu-merial experiments) and ε an be interpreted as an amplitude of noise. It should benoted that in this form the system an desribe the nonlinear osillator driven by externalpulses with �xed intervals but random amplitude.In noisy driven system the transient time beomes even more longer and approahes700000 for B = 0.99. In the �g. 6 a,b bifuration diagrams for di�erent amplitudes of noise(a, b) are shown. In the �g. 6  they are laid one on another to ompare it's struture.It is well seen that a large amount of attrators (and the larger the amplitude of noise is,the larger is this amount), and between them the majority of the attrators of the seondtype, is destroyed by noise in�uene. The destrution of the attrators an be explainedby the fat that their basins are too small and a noise in�uene simply "throw" the pointout of the basin.Also it should be noted that some attrators undergo sharp expansion before thedisappearane so we an suppose that the destrution of suh attrators is a result ofa ollision of the attrator with the boundary of its basin. Just before the ollision theattrator is very lose to the basin boundary and it seems likely that the trajetory anbe thrown out of the basin by noise whih an lead to signi�ant growth of the variable.The realization of this dynamis on�rms our suggestions that some attrators undergorisis.5 Conservative ase of the Ikeda mapNow let's present a brief analysis of the onservative ase of the Ikeda map. The Ikedamap (1) beomes the onservative system at B = 1. Plotting of the phase portraits is oneof the basi methods for its investigation. Phase portraits of the map (1) are presented inthe �g. 7. Their form is typial for driven onservative nonlinear osillator � the familiesof invariant tori orresponding to the existene of ellipti �xed points, some "hollows" on8



Figure 6: Bifuration diagrams for the map (4) for various values of noise amplitude ε:a) ε = 0.005; b) ε = 0.01; ) three diagrams are plotted over eah other: dark gray -
ε = 0.005; light gray - ε = 0.01; blak - without noise. B = 0.99;ψ = 0.them orresponding to the hyperboli (saddle) �xed points on the outside [1℄ and periodiislands surrounded by the domains of irregular dynamis, or the "haoti sea", exist.It an be learly seen that at some parameter values the "haoti sea" exists not onlyoutside, but also inside the periodi islands. Furthermore, strutures that are typial forphase osillations at nonlinear resonane [1℄ an be seen on the portraits.For the investigation of the onservative system we propose a method of plotting ofso-alled "divergene hart" that in some sense is an analog to the hart of dynamialregimes for the onservative systems. The proedure of its plotting is as follows. For eahpoint of (A,ψ) plane we hoose a set of points in the phase spae and �x the number ofpoints that have stayed in the �nite region of phase spae after a big number of iterations(we use 15000 in numeri simulations). The di�erent numbers of non-diverged pointsorrespond to the di�erent shadows of gray olor. The omparison of "divergene hart"(�g. 8 b) and the hart of dynamial regimes for nearly onservative ase (�g. 8 a) showssome orrespondene between strutures at the parameter plane. For example, the borderof the domain where pratially all points have gone to in�nity in the onservative aseorresponds to the haos border in dissipative system.Now let's turn to the noisy driven onservative system (see (4) with B = 1). On the"divergene harts" (�g. 9) noise destroys some small-sale strutures, and the more noiseamplitude is, the more large-sale strutures are destroyed.On the phase portraits in noisy driven systems (�g. 10), as we an predit, large-sale9



strutures destroys a little but in general stay unhanged, and more small strutures

Figure 7: Phase portraits of the map (1) in the onservative ase (B = 1). Parameters:a) A = 0.3, ψ = 3π/2; b) A = 0.2, ψ = π.

Figure 8: Chart of dynamial regimes for dissipative map (1) (a, B = 0.99) and "diver-gene hart" for onservative map (1) (b, B = 1). Table of orrespondene of olors tothe numbers of points that haven't gone to in�nity is presented in �g. . In �g. b transienttime is equal to 15000 iterations.destroy. It should be noted as a remarkable fat that phase portraits of noisy drivensystem at �xed parameter values an be signi�antly di�erent (�g. 10 b, ). It an beexplained as follows. If a point in phase spae lies near the separatrix bounding twodomains with di�erent dynamis, it an be "thrown" by noise in�uene from one domainto another so it will demonstrate di�erent dynamis on further stages of evolution. Sothe more noise amplitude is the more wide is the band in whih a dynamis of the pointan be hanged. 10



Figure 9: "Divergene harts" for map (4) at di�erent values of noise amplitude: a)
ε = 0.005; b) ε = 0.01. Transient time is equal to 15000 iterations.

Figure 10: Phase portrait for map (1) (a) and its di�erent realization for map (4) (b, )with noise amplitude ε = 0.005. Parameters: A = 0.5;ψ = π/2;B = 1.11



6 ConlusionsThus we have shown that the Ikeda map demonstrates a big number of oexisting periodiattrators in the ase of weak dissipation and their number inrease with the dereasingof dissipation. These attrators an be divided into two types with di�erent struture anddi�erent length of the interval of the parameter A where they exist.The sharp inreasing of transient time has been revealed with the approahing ofonservative ase. At the beginning of the transient proess the system behavior is similarto onservative and in the end to dissipative one. Moreover, it should be noted thattransient time depends essentially on the value of the parameter A.Also the sensitivity of the weakly dissipative system to the external noise has beenrevealed: many of attrators are destroyed by the noise of rather small amplitude. It anbe explained as follows. It is known that the noise e�ets the �rst stage of the evolutionmuh more then the stable regime, and the more dissipative the system is, the faster it"forgets" initial onditions. The system with very weak dissipation "remembers" initialonditions for a very big time, hene, an external noise in�uenes on suh systems morestrongly.At last, the new method for investigation the onservative ase was proposed. It wasshown that strutures similar to typial for dissipative system arise at the parameterplane of onservative system. Also it was shown that the onservative Ikeda systemdemonstrates strong sensitivity to the noise in�uene.The work was supported by Russian Foundation for Basi Researhes (grant 04-02-04011 and 06-02-16773).Referenes1 G. M. Zaslavsky. Physis of Chaos in Hamiltonian Systems. (Imperial College Press,1998).2 L. E. Reihl. The Transition to Chaos in Conservative Classial Systems: QuantumManifes-tations. (Springer-Verlag, 1992).3 Feudel U., Grebogi C., Hunt B. R., Yorke J. A. Map with more than 100 oexistinglow-period periodi attrators. Physial Review E. 54, no. 1 71-81 (1996).4 Ikeda K., Daido H., Akimoto O. Optial turbulene: Chaoti Behavior of Trans-mitted Light from a Ring Cavity. Physial Review Letters. 45, 709-712 (1980).5 A. P. Kuznetsov, L. V. Turukina, E. Mosekilde. Dynamial systems of di�erentlasses as models of the kiked nonlinear osillator. International Journal of Bifur-ation and Chaos. 11, no. 4 1065-1078 (2001).6 A. P. Kuznetsov, S. P. Kuznetsov, E. Mosekilde, L. V. Turukina. Two-parameteranalysis of the saling behavior at the onset of haos: triritial and pseudo-triritial points. Physia A. 300, 367-385 (2001).7 E. Mosekilde. Topis in Nonlinear Dynamis. (World Sienti�, 1996).12
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