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Abstract

A feasible model is introduced that manifests phenomena intrinsic to iterative complex

analytic maps (like Mandelbrot set, Julia sets etc.). The system is composed of two coupled

alternately excited oscillators. The idea is based on a turn-by-turn transfer of the excita-

tion from one subsystem to another (S.P. Kuznetsov, Phys. Rev. Lett. 95 , 2005, 144101)

accompanied with appropriate nonlinear transformation of the complex amplitude of the os-

cillations in the course of the process. Analytic and numerical studies are performed. Special

attention is paid to analysis of violation of the applicability of the slow amplitude method

with decrease of the ratio of a period of the excitation transfer to a basic period of the

oscillations. The main effect consists in rotation of the Mandelbrot-like set in the complex

parameter plane; one more effect is destruction of subtle small-scale fractal structure of the

set due to presence of non-analytic terms in the complex amplitude equations.

PACS:05.45.-a

Keywords:Mandelbrot and Julia sets; complex analytic maps; coupled oscillators.

1 Introduction

One special chapter of nonlinear dynamics elaborated extensively by mathematicians consists in

a study of iterative maps defined by analytic functions of complex variable. A classic object is a

complex quadratic map [1]

zn+1 = c+ z2n. (1)

At c = 0 the behavior of the iterations is rather evident: for |z0| > 1 the result diverges to infinity,

and for |z0| < 1 one observes residence of the variable z in a bounded part of the complex plane.
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The border between these two kinds of behavior is a unit circle |z0| = 1. At other values of the

complex parameter c a set on the complex plane z, separating the analogous two types of behavior

appears to be rather complicated and nontrivial (fractal). It is called a Julia set (see examples in

Fig. 1).

Alternatively, we can fix the initial condition z0 = 0 and consider behavior of the iterations in

dependence on the complex parameter c. Then, at some values of c the iterations escape to infinity,

and at others they stay in a bounded domain. A set on the complex plane c associated with this

last situation is called the Mandelbrot set (see Fig. 1a). Note that the bounded dynamics may be

periodic or chaotic. The domain of periodic behavior resembles a cactus and consists of a set of

roundish formations touching each other and placed around one big area in a form of a cardioid.

Figures 1, 2, 3 on the plot designate periods of dynamics observed in several basic leaves of the

”cactus”. Chaotic dynamics takes place at points corresponding to the fractal pattern setting off

the ”cactus”. The dots in Fig. 1a indicate parameter values, for which the Julia sets are shown

in panels (b-f).

A challenging problem is realization of the phenomena intrinsic to the complex analytic maps

in physical systems (see, e.g. [2]). One successful attempt to implement this dynamics relates

to a symmetric system of coupled maps for two real variables or to a system of two periodically

driven coupled nonlinear oscillators [3]. In this context an interpretation of the Mandelbrot set was

suggested, as a domain of generalized partial synchronization [4], and some aspects of feasibility of

the phenomena of complex dynamics in autonomous flow systems were studied [5]. An electronic

analog device was designed simulating the dynamics of two coupled quadratic maps, in which the

Mandelbrot-like set was observed for the first time in a physical experiment [6].

In the present paper, we suggest an alternative approach that gives an opportunity to organize

dynamics similar to that in the complex analytic maps. The main idea is based on interpretation

of a complex amplitude of an oscillatory process as a complex variable. Two alternately excited

oscillators are used to pass the excitation each other with transformation of the complex amplitude

corresponding approximately to the complex quadratic map. Earlier a similar idea was applied

to construct physical systems delivering realistic examples for some well-known abstract concepts

and phenomena of the nonlinear science, like Bernoulli map, Smale - Williams attractor, Arnold’s

cat map, robust strange nonchaotic attractor [7, 8, 9, 10, 11].

In Sec. 2 we introduce a system of coupled oscillators alternately activated by means of mod-

ulation of the dissipation parameter accompanied with a turn-by-turn transfer of the excitation

between the subsystems. In Sec. 3 we derive the shortened equations for the system using the com-

plex amplitude approach. Then, we undertake an approximate analytic solution of the equations.

The result is the complex quadratic mapping, which represents the Poincaré map for the system

and governs the state evolution on one period of the parameter modulation. We present and com-

pare pictures on the parameter plane and the phase space portraits for the amplitude equations

and those for the approximate analytic map (the Mandelbrot set and the Julia sets). In Sec. 4 we

turn again to the original coupled oscillator equations and consider results of numerical studies

to observe and discuss deviations from the slow-amplitude approach, which become relevant with

decrease of a parameter N representing a ratio of the modulation period to the basic period of

oscillations. We find that the most notable effect consists in rotation of the Mandelbrot-like set in

the complex parameter plane while its visible fractal-like structure persists. In addition, we reveal

gradual destruction of subtle details of this fractal structure (starting from smaller scales) as the
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parameter N departs from the range of applicability of the method of slow amplitudes. We relate

this phenomenon to non-resonance complex conjugate terms in the equations of the oscillators

(rewritten in terms of the complex variables), which are negligible in the large N asymptotics.

2 The basic model system and its operation

In the oscillation and wave theory, a method of slow amplitudes is known. An oscillatory pro-

cess possessing a basic frequency ω0 is attributed with slow complex amplitude A(t) as fol-

lows: x(t) = A(t)eiω0t + A∗(t)e−iω0t = 2Re[A(t)eiω0t], where asterisk designates a complex conju-

gate. Transformation of this signal by means of a quadratic nonlinearity yields y(t) = [x(t)]2 =

2|A(t)|2 + 2Re{[A(t)]2e2iω0t}. As seen, the doubled frequency component has the complex ampli-

tude equal to the squared complex amplitude of the original signal. Such a transformation will

be a main element of the approach we develop to realization of phenomena of complex analytic

dynamics.

Let us consider a system of two coupled non-autonomous oscillators

ẍ+ ω20x+ F · (γ + sinΩt)ẋ = εy sinω0t+ λ sin(ω0t+ ϕ),

ÿ + (2ω0)
2y + F · (γ − sinΩt)ẏ = εx2,

(2)

where x and y represent generalized coordinates for the first and the second oscillator, respectively,

and F , γ, λ, ϕ, ε are parameters. The first oscillator has a characteristic frequency ω0, and the

second one has a frequency twice as large. Parameters controlling dissipation in the both oscillators

vary in counter-phase slowly. The period of modulation T = 2π/Ω is assumed equal to an integer

number N of periods of basic oscillations 2π/ω0.

One can describe the dynamics in terms of discrete time by means of the Poincaré map.

Been given a vector xn = {x(tn), u(tn), y(tn), v(tn)} = {x(tn), ẋ(tn)/ω0, y(tn), ẏ(tn)/2ω0} as a

state of the system at tn = nT + t0, from solution of the differential equations (2) with the

initial condition xn, we get a new vector xn+1 at tn+1 = (n + 1)T + t0. As it is determined

uniquely by xn, we may introduce a function that maps the four-dimensional space {x, u, y, v} into
itself: xn+1 = T(xn). This Poincaré map appears due to evolution determined by the differential

equations with smooth and bounded right-hand parts in a finite domain of variables {x, u, y, v}. In
accordance with theorems of existence, uniqueness, continuity, and differentiability of solutions of

differential equations, the map T is a diffeomorphism, a one-to-one differentiable map of class C∞.

Let us consider qualitatively how does the system (2) operate. The constant γ is supposed

to be positive, less than 1. Been in average positive, on a certain part of the modulation period

the dissipation parameter F (γ + sinΩt) for each oscillator becomes negative. On that interval,

the oscillator is active (the oscillations grow). On the rest part of the modulation period, it is

passive (the oscillations decay). Let us assume that at the beginning of the active stage of the

second oscillator, the first one oscillates with complex amplitude A: x(t) ∝ Re(Aeiω0t). Then, the

”germ” for excitation of the second oscillator (see the right-hand part of the second equation)

is the second harmonic component produced by the nonlinear quadratic transformation of the

signal from the first oscillator, Re(A2e2iω0t). As follows, the complex amplitude of the second

oscillator on its active stage will be proportional to A2. Mixing with the auxiliary signal (see

the right-hand part of the first equation) gives rise to a difference frequency component ω0 with

amplitude proportional to A2. Then, a sum of this component with an additional oscillatory
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term of frequency ω0, amplitude λ and phase ϕ, produces a ”germ” for the excitation of the

first oscillator. Its complex amplitude is proportional to A2 plus a complex constant. Hence,

the stroboscopic Poincaré map reduced in a certain approximation to two-dimensional map and

expressed in terms of complex amplitudes corresponds to the complex quadratic map. The role of

complex parameter belongs to the number of modulus λ and argument ϕ. In dependence on this

parameter and initial conditions, it may happen that the solution for the equations of coupled

non-autonomous oscillators either is bounded or escapes to infinity. A domain on the complex

parameter plane λeiϕ, where bounded attractors persist, will be analog of the Mandelbrot set.

Sets in the phase space separating initial conditions of bounded and unbounded motions will be

analogs of the Julia sets.

3 Amplitude equations, slow-amplitude asymptotics and

derivation of an approximate Poincaré map

To derive equations for complex amplitudes in the system of two coupled oscillators we set

x = Aeiω0t + A∗e−iω0t, y = Be2iω0t +B∗e−2iω0t (3)

with additional conditions

Ȧeiω0t + Ȧ∗e−iω0t = 0, Ḃe2iω0t + Ḃ∗e−2iω0t = 0. (4)

Substitution into the equations (2) yields

2iω0Ȧe
iω0t + iω0(Ae

iω0t − A∗e−iω0t)F (γ + sinΩt) =

ε(Be2iω0t +B∗e−2iω0t) sinω0t+ λ sin(ω0t+ ϕ),

4iω0Ḃe
2iω0t + 2iω0(Be

2iω0t −B∗e−2iω0t)F (γ − sinΩt) = ε(Aeiω0t + A∗e−iω0t)2,

(5)

or, after multiplication of the first and the second equations by (2iω0e
iω0t)−1 and (4iω0e

2iω0t)−1,

respectively,

Ȧ+ (F/2)(γ + sinΩt)(A− A∗e−2iω0t) =

−(ε/2ω0)(Be2iω0t +B∗e−2iω0t)(1− e−2iω0t)− (λ/2ω0)(e
iϕ − e−2iω0t−iϕ),

Ḃ + (F/2)(γ − sinΩt)(B −B∗e−4iω0t) = (ε/4iω0)(A+ A∗e−2iω0t)2.

(6)

The relations (6) are equivalent to the original equations (2) completely, although written in terms

of the complex amplitudes A and B.

An approximation used widely in the oscillation and wave theory consists in assumption that

variation of the amplitudes A and B in time is slow, and one can neglect the fast oscillating terms

in (6). Formally, they are excluded by means of averaging the equations over a period 2πω−1
0 .

This approximation is justified in the case of a large frequency ratio N = ω0/Ω >> 1. In this way,

we arrive at the shortened slow-amplitude equations

Ȧ+ (F/2)(γ + sinΩt)A = εB/(4ω0)− λeiϕ/(4ω0),

Ḃ + (F/2)(γ − sinΩt)B = εA2/(4iω0).
(7)

With some additional assumptions, it is possible to construct analytically an approximate Poincaré

map for these equations.
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Let us start with consideration of a subsidiary differential equation

ẇ + g′(t)w = K(t)ef(t), (8)

where g and f are some smooth real-value functions. We represent a solution as

w(t) = C(t)e−g(t), (9)

assuming the time-dependent coefficient C(t) to satisfy

Ċ = K(t)ef(t)+g(t). (10)

Consider a time interval containing a single maximum of the function f(t) + g(t) at t = t0:

f ′(t0) + g′(t0) = 0, f ′′(t0) + g′′(t0) = −β < 0. (11)

Integral of the equation (10) over the time interval can be evaluated with a help of the Laplace

method. It yields

∫
K(t)ef(t)+g(t) dt ≈ K(t0)e

f(t0)+g(t0)

∫
e−βt

2/2 dt = K(t0)e
f(t0)+g(t0)

√
2π/β. (12)

Let the solution (9) be zero to the left side from the maximum, then

C(t) =

{
0, t < t0 − h,

K(t0)
√

2π/βef(t0)+g(t0), t > t0 + h,
(13)

and

w(t) =

{
0, t < t0 − h,

K(t0)
√

2π/βef(t0)+g(t0)e−g(t), t > t0 + h.
(14)

Here h may be thought as a characteristic width of the ”hump” of the function f + g.

Now we return to the amplitude equations (7). Let us consider separately two parts of one

period of modulation.

The first is a part containing a time interval of activity of the first oscillator; its amplitude is

there relatively large, while the second oscillator is passive and possesses very small amplitude.

Here we may account only effect of the first oscillator on the second one and neglect the backward

coupling, i.e. regard the coupling as unidirectional.

Excluding the right-hand part of the first equation, we write down for the slow amplitude of

the first oscillator

A(t) = CA exp

[
−F

2
(γt− Ω−1 cosΩt)

]
. (15)

Let us define the value tn as associated with a maximum of |A|. It satisfies the relations

sinΩtn = −γ, cosΩtn =
√

1− γ2 > 0. (16)

Resolving (16) in respect to tn, substitute it into (15) and designate An = A(tn). Then,

CA = An exp

[
− F

2Ω

(
γ arctan

γ√
1− γ2

+
√

1− γ2

)]
. (17)
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For the second oscillator we write down

Ḃ +
F

2
(γ − sinΩt)B =

ε

4iω0
C2A exp

[
−F (γt− Ω−1 cosΩt)

]
. (18)

To solve this equation we use the result (14) obtained for the subsidiary problem (8). To do this,

we have to set

g′A→B(t) = (F/2)(γ − sinΩt), fA→B(t) = −F (γt− Ω−1 cosΩt),

KA→B = [ε/(4iω0)]C
2
A

(19)

and
gA→B(t) + fA→B(t) = −(1/2)Fγt+ (3/2)FΩ−1 cosΩt,

g′A→B(t) + f ′
A→B(t) = −(1/2)Fγ − (3/2)F sinΩt,

g′′A→B(t) + f ′′
A→B(t) = −(3/2)FΩcosΩt.

(20)

From a condition of vanishing the first derivative and a requirement for the second derivative

to be negative, we determine the time instant tA→B, neighborhood of which corresponds to the

excitation of the second oscillator by the first one. It satisfies

sinΩtA→B = −γ/3, cosΩtA→B =
√

1− γ2/9. (21)

Here

g′′A→B(tA→B) + f ′′
A→B(tA→B) = −βA→B = −(3/2)FΩcosΩtA→B = −(3/2)FΩ

√
1− γ2/9. (22)

Applying the formula (14), we obtain the asymptotic solution for the amplitude B

B(t) =

{
0, t < tA→B − h,

CB exp
[
−F
2
(γt+ Ω−1 cosΩt)

]
, t > tA→B + h,

(23)

where

CB =
εC2A
4iω0

√
2π

(3/2)FΩ
√

1− γ2/9
egA→B(tA→B)+fA→B(tA→B). (24)

On the second part of the modulation period, which we start to consider now, the amplitude

of the second oscillator is relatively large, and that of the first oscillator is small. Here we may

again regard the coupling as unidirectional and account only effect of the second oscillator on the

first one. For the first oscillator we write down

Ȧ+
F

2
(γ + sinΩt)A =

ε

4ω0
CB exp

[
−F

2
(γt+ Ω−1 cosΩt)

]
− 1

4ω0
λeiϕ. (25)

The right-hand part contains two terms. Accounting linearity of the equation, we will obtain

solution as a superposition of two components corresponding to separate contribution of these

terms: A(t) = AB→A(t) + Aλ(t).

Let us consider first the solution AB→A(t) accounting driving by the second oscillator. Again,

we may exploit the result for the subsidiary equation setting

g′B→A(t) = (F/2)(γ + sinΩt), fB→A(t) = −(F/2)(γt+ Ω−1 cosΩt),

KB→A = [ε/(4ω0)]CB
(26)
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and
gB→A(t) + fB→A(t) = −FΩ−1 cosΩt,

g′B→A(t) + f ′
B→A(t) = F sinΩt,

g′′B→A(t) + f ′′
B→A(t) = FΩcosΩt.

(27)

From the condition of maximum for the function gB→A + fB→A

sinΩtB→A = 0, cosΩtB→A = −1 (28)

we determine a time instant tB→A, neighborhood of which is responsible for excitation of the first

oscillator. With application of the formula (14) and accounting the relation

g′′B→A(tB→A) + f ′′
B→A(tB→A) = −βB→A = −FΩ (29)

we obtain

AB→A(t) =

{
0, t < tB→A − h,

ε
4ω0

CB

√
2π
FΩ

eF/Ω exp
[
−F
2
(γt− Ω−1 cosΩt)

]
, t > tB→A + h.

(30)

Let us turn now to a solution Aλ associated with the second term in the right-hand part of

the equation (25). Now we set

g′λ(t) = (F/2)(γ + sinΩt), fλ(t) = 0, Kλ = −[1/(4ω0)]λeiϕ (31)

and
gλ(t) + fλ(t) = (1/2)Fγt− (1/2)FΩ−1 cosΩt,

g′λ(t) + f ′
λ(t) = (1/2)Fγ + (1/2)F sinΩt,

g′′λ(t) + f ′′
λ (t) = (1/2)FΩcosΩt.

(32)

Then, we determine tλ corresponding to maximum of the function gλ + fλ

sinΩtλ = −γ, cosΩtλ = −
√

1− γ2. (33)

Then

g′′λ(tλ) + f ′′
λ (tλ) = −βλ = −(1/2)FΩ

√
1− γ2 (34)

and, in accordance with the formula (14),

Aλ(t) =

{
0, t < tλ − h,

λeiϕ

4ω0

√
4π

FΩ
√
1−γ2

egλ(tλ) exp
[
−F
2
(γt− Ω−1 cosΩt)

]
, t > tλ + h. (35)

Composing a sum of two solutions (30) and (35), for t > max(tB→A, tλ) we obtain

A(t) =
1

4ω0

√
2π

FΩ

{
εCBe

F/Ω − λeiϕ
√
2

4

√
1− γ2

egλ(tλ)

}
exp

[
−F

2
(γt− Ω−1 cosΩt)

]
. (36)

Finally, we evaluate the amplitude of the first oscillator at the end of the considered period

An+1 = A(tn+1) = A(tn + T ) = A(tn + 2π/Ω). With the relations (17), (20-21) and (32-33) it is

expressed via the initial amplitude An = A(tn) as

An+1 =
√
π

2ω0
√
FΩ 4
√
1−γ2

e
F
Ω

(
γ arctan γ√

1−γ2
+
√
1−γ2−πγ

2

)

×
{
A2n

ε2
√
2π 4
√
1−γ2

4iω0
√
FΩ
√
9−γ2

e
F
2Ω

(
γ arctan γ√

9−γ2
−3γ arctan γ√

1−γ2
+
√
9−γ2−3

√
1−γ2+2−πγ

)

− λeiϕ

}
.

(37)

7



By variable and parameter changes

zn = −An
i
√
2πε2

8ω20FΩ 4

√
9− γ2

e
F
2Ω

(
γ arctan γ√

9−γ2
−γ arctan γ√

1−γ2
+
√
9−γ2−

√
1−γ2+2−2πγ

)

. (38)

and

c = λeiϕ
i
√
2ε2[π/(FΩ)]3/2

16ω30
4

√
9− γ2 4

√
1− γ2

e
F
2Ω

(
γ arctan γ√

9−γ2
+γ arctan γ√

1−γ2
+
√
9−γ2+

√
1−γ2+2−3πγ

)

(39)

the map (37) is reduced to the canonical form of the complex quadratic map (1).

In Fig. 2 we present diagrams obtained from computations for the map (37) and for the

shortened amplitude equations (7) (see panels (a) and (b), respectively). Depicted is a plane of

the complex parameter λeiϕ; other parameters are N = 10, F = 7, γ = 0.5, ε = 1. Gray color

corresponds to observation of dynamics with bounded amplitudes, and white to observed escape to

infinity. The object on the diagram (b) for the set of differential equations (7) is evidently similar

to the Mandelbrot cactus for the complex quadratic map (37). Marks 1, 2, 3,... on the diagrams

indicate leaves, where the bounded dynamics of periods T , 2T , 3T , ... take place. Obviously, a

type of regime is determined by the ”germ” signal, which acts in the initial part of the active

stage of the first oscillator been formed as a composition of the signal from the partner oscillator

and of the external force. Essential are the phase relations of these two signals, which determine

subtle structure of leaves of the ”cactus” in the parameter plane.

At a certain point of the parameter plane λ = 1.5i we present comparison of the time de-

pendences for amplitudes of two oscillators obtained from numerical solution of the equation (7)

(gray profiles) and those corresponding to the approximate analytic relations (15), (23), and (36)

(dotted lines). Observe that the numerical and approximate analytic solutions manifest good

agreement.

4 Numerical studies of the basic model system of coupled

non-autonomous oscillators

Reduction of the dynamics to the complex quadratic map in the previous section was based on a use

of the slow amplitude method (the large-N asymptotics) and of some additional approximations

in the course of derivation of the analytic form of the Poincaré map.

Now we intend to return to the original system of coupled non-autonomous oscillators governed

by the real-value equations (2). One may expect that at least in a ”coarse” structure of the objects

in the parameter plane and in the phase space will be similar to that of the Mandelbrot and Julia

sets of the complex quadratic map. How well do subtler details of the structures correspond in

the original system and in the reduced model, is an interesting and important question. In this

section, we turn to results of numerical studies of the original system of coupled oscillators. As

well, these results may be related to the equivalent set of equations rewritten in terms of the

complex amplitudes without neglecting the oscillating terms (see (6).

In Fig. 3 we depict the Mandelbrot-like sets obtained from computations for the basic model (2).

The grays are areas on the parameter plane corresponding to observation of periodic dynamics in a

bounded domain of the dynamical variables. The most notable effect in comparison with the slow-

amplitude approximation consists in a counter-clock-wise rotation of the pictures with a decrease
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of N . Nevertheless, the visible structure of mutual disposition of ”leaves” of the ”cactuses” persists

and corresponds to that intrinsic to the complex quadratic map (cf. Figs. 3 and 1). Hereafter, to

avoid redundancy, we will speak of these objects as Mandelbrot cactuses for the coupled oscillator

system (2).1

For detailed analysis, let us turn to a case of a relatively small N to observe notable deflections

from the slow-amplitude asymptotic with a possibility of resolution of dissimilarity in the case of

the basic model and that of the complex analytic map.

In Fig. 4 (panels a and b) we present pictures of the Mandelbrot cactus obtained in compu-

tations for the system of coupled non-autonomous oscillators at N = 10 and other parameters

ω0 = 2π, F = 7, γ = 0.5, ε = 1. Except the approximately right angle turn, the object looks

similar to those for the complex map and for the shortened amplitude equations (see Figs. 2a, b).

For parameter values marked with dots on the picture of the cactus, we depict diagrams on the

plane of variables of the first oscillator (x, ẋ/ω0), which are analogous to portraits of Julia sets

for the complex quadratic map in Fig. 1. To be accurate, we have to note that in the system of

coupled oscillators we deal with a four-dimensional phase space (x, ẋ/ω0, y, ẏ/2ω0). In the stro-

boscopic Poincaré map (as it defined in Section 2), attractor is placed close to the coordinate

plane (x, ẋ/ω0), but not precisely in it. The basin of attraction is naturally a four-dimensional

object. Diagrams in panels (g-j) of Fig. 4 correspond to cross-sections of those four-dimensional

basins by the plane y = 0, ẏ = 0 for the attractors belonging to a bounded region of the phase

space. Portraits of respective attractors in projection onto the plane are shown on panels (c-f).

Dots inside the basins correspond to stroboscopic cross-sections for the attractive periodic orbits.

Figure 5 illustrates dynamics of the system on an attractive orbit of period 3T for the parameter

value λeiϕ = −0.2 + 1.5i (it is located inside the ”leave” of the cactus shown with magnification

in Fig. 4 b).

As seen from the presented material, our model system indeed manifests phenomena known

for the complex analytic maps, like Mandelbrot and Julia sets, at least on the visible coarse scale

level. Moreover, it takes place in a wider parameter range than one could expect from the point

of view of applicability of the shortened amplitude equations. Does this similarity spread out onto

small-scale fractal structure of the sets? It appears that this is not the case. Responsible for this

is violation of the complex analyticity.

Given an iterative complex analytic map zn+1 = f(zn), z = X + iY , one can separate real and

imaginary parts in the equation and arrive at equivalent description of the dynamics by a real

two-dimensional map

Xn+1 = U(Xn, Yn), Yn+1 = V (Xn, Yn), (40)

where f(z) = U(X,Y ) + iV (X,Y ). This is a map of a special kind because the functions must

satisfy to the Cauchy -Riemann equations

∂U(X,Y )

∂X
=

∂V (X,Y )

∂Y
,

∂V (X,Y )

∂X
= −∂U(X,Y )

∂Y
, (41)

which imply vanishing of a derivative of the function f over the complex conjugate variable:

∂f

∂z∗
=

(
∂U

∂X
− ∂V

∂Y

)
+ i

(
∂U

∂Y
+

∂V

∂X

)
= 0. (42)

1We avoid the term ’Mandelbrot set’ because factual small-scale structure of these objects may be (and is,

naturally, see below) distinct from that of fractal nature in the convenient Mandelbrot set.
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As known, even a small smooth variation of the functions U and V violating the condition of

complex analyticity implies generically radical changes in the dynamics, e.g. destruction of the

small-scale fractal structure of the Mandelbrot set and of intrinsic universal scaling regularities [17,

18, 19, 20].

Let us look at the complex amplitude equations (6), which are equivalent to the original

equations formulated in real variables. Observe that they contain some terms proportional to

complex conjugate amplitudes A∗ and B∗. These terms are oscillating, and they disappear under

averaging procedure leading to the shortened amplitude equations (7). Nevertheless, the Poincaré

map constructed from the precise equation (6) inevitably will contain the dependences of the

conjugate variables violating the Cauchy - Riemann conditions. This violation may be as small

as desired in the asymptotic of large N . At relatively small N , the effect of destruction of the

small-scale structure of the Mandelbrot set becomes observable in computations.

One tool for analysis of degree of violation of the complex analyticity is computation of a

spectrum of Lyapunov exponents. In particular, for a two-dimensional map Xn+1 = U(Xn, Yn),

Yn+1 = V (Xn, Yn) they may be determined via eigenvalues of the matrix

b = a(X0, Y0)a
+(X0, Y0)a(X1, Y1)a

+(X1, Y1)...a(XM−1, YM−1)a
+(XM−1, YM−1), (43)

where

a =

(
∂U(X,Y )/∂X ∂U(X,Y )/∂Y

∂V (X,Y )/∂X ∂V (X,Y )/∂Y

)
, (44)

In the case of a two-dimensional real map equivalent to an analytic map of one complex variable,

two Lyapunov exponents must be equal. It may be shown from the Cauchy - Riemann conditions

that two eigenvalues coincide at any values of parameters and variables. The same is true for the

Lyapunov exponents expressed as Λ1,2 ∼= log λ1,2/2M .

The non-autonomous system (2) possesses four Lyapunov exponents (we exclude the pertur-

bations associated with a shift along the trajectory, or with a phase of the external driving, as

it is commonly used in concern of the periodically non-autonomous systems). To compute the

Lyapunov exponents we used the Benettin algorithm [21]. The procedure consists in simultane-

ous numerical solution of the equations (2) and a collection of four exemplars of the linearized

equations for small perturbations:

¨̃x+ ω20x̃+ F · (γ + sinΩt) ˙̃x = εỹ sinω0t,
¨̃y + (2ω0)

2ỹ + F · (γ − sinΩt) ˙̃y = 2εxx̃.
(45)

At each period T = 2π/Ω we perform Gram-Schmidt orthogonalization and normalization

for a set of four vectors x̃j = {x̃j, ˙̃xj/ω0, ỹ
j, ˙̃yj/2ω0}, j = 1, ..., 4. The Lyapunov exponents are

estimated as mean rates of growth or decrease of logarithms of the norms of these four vectors:

Λj =
1

MT

M∑

i=1

ln ‖x̃ji‖, j = 1, ..., 4, (46)

where the norms are evaluated after the orthogonalization but before the normalization.

In accordance to the computations, two larger exponents in dependence on the regime may

be negative (periodic attractive orbits), positive (chaotic motions) and zero (a border of chaos

and quasiperiodic regimes). The rest two exponents are always negative in the whole domain
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of existence of bounded dynamical states (i.e. on the Mandelbrot set). In the left column of

Fig. 6 we present charts of the largest Lyapunov exponent on the plane (λ sinϕ, λ cosϕ) for three

values of N . Gray tones from light to dark correspond to variation of the Lyapunov exponent

from 0 to −∞. The diagram on panel (a) corresponds to N = 10. Observe that at central

parts of the leaves the largest Lyapunov exponent becomes large negative, which corresponds to

periodic motions of high stability. At edges of the leaves, a thin strip of appearance of positive

Lyapunov exponent takes place (chaos). The picture visually is similar to that for the map (1);

see e.g. Ref. [17]. With decrease of N (Fig. 6, c), distortion of the configuration develops. The

leaves lose a round form; wider strip of chaos and quasiperiodicity appears. In the right column of

Fig. 6, we depict respective charts for a difference of two larger Lyapunov exponents. In the top

diagram this difference does not exceed 10−2 that is comparable with numerical errors. However,

at smaller N (panels e, f) regions of large difference of the exponent appear (black color). It

reveals essential deflection from the complex analytic dynamics.

The equality for a pair of larger Lyapunov exponent should be regarded rather as an indirect

symptom of the complex analytic dynamics. Let us turn to computations intended to straightfor-

ward verification of the Cauchy - Riemann equations (41). In application to the four-dimensional

Poincaré map

xn+1 = F(xn), (47)

where x is a vector {x, u, y, v} = {x, ẋ/ω0, y, ẏ/2ω0}, we produce the following procedure. In the

course of dynamics of the system on several periods of modulation, we perform numerical solution

of the equations (2) and of the set of equations for four perturbation vectors (45) with redefinition

of them at the beginning of each period in accordance with

x̃1(nT + 0) = {x̃, 0, 0, 0},
x̃2(nT + 0) = {0, ũ, 0, 0},
x̃3(nT + 0) = {0, 0, ỹ, 0},
x̃4(nT + 0) = {0, 0, 0, ṽ}.

(48)

At the end of each period, we compose a matrix

A =




x̃11(nT − 0)/x̃ x̃21(nT − 0)/ũ x̃31(nT − 0)/ỹ x̃41(nT − 0)/ṽ

x̃12(nT − 0)/x̃ x̃22(nT − 0)/ũ x̃32(nT − 0)/ỹ x̃42(nT − 0)/ṽ

x̃13(nT − 0)/x̃ x̃23(nT − 0)/ũ x̃33(nT − 0)/ỹ x̃43(nT − 0)/ṽ

x̃14(nT − 0)/x̃ x̃24(nT − 0)/ũ x̃34(nT − 0)/ỹ x̃44(nT − 0)/ṽ


 . (49)

In the case of exact fulfillment of the conditions of analyticity of the map (47) the elements must

satisfy
A11 = A22, A12 = −A21, A31 = A42, A32 = −A41,

A13 = A24, A14 = −A23, A33 = A44, A43 = −A34.
(50)

Alternatively, it is convenient to consider derivatives of the complex functions F1 and F2, defined

as components of the vector function (47) over the conjugate variables p∗ = x− iu and q∗ = y− iv,

from which one can diagnose presence or absence of the non-analyticity:

∂F1
∂p∗

= (A11 −A22) + i(A12 + A21), ∂F1
∂q∗

= (A31 −A42) + i(A32 + A41),
∂F2
∂p∗

= (A13 −A24) + i(A14 + A23), ∂F2
∂q∗

= (A33 −A44) + i(A43 + A34).
(51)
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In Fig. 7 we present a plot for logarithm of absolute value of the derivative |∂F1/∂p∗| at the

origin (x(0) = (0, 0, 0, 0)) with λ = 0 versus the parameter N , that is the dimensionless period

of modulation. This is a quantifier or a degree of non-analyticity of the function under con-

sideration. The data are approximated by a straight line with slope −1.86. It means that the

degree of non-analyticity determined at the origin manifests exponential decay with growth of N

as F1(p, p
∗, q, q∗) ∼ e−1.86p∗.

Figure 8 presents diagrams illustrating distribution of the maximal values of ratios

d1 =
∣∣∣∂F1∂p∗

∣∣∣
/∣∣∣∂F1∂p

∣∣∣ , d2 =
∣∣∣∂F1∂q∗

∣∣∣
/∣∣∣∂F1∂q

∣∣∣ ,
d3 =

∣∣∣∂F2∂p∗

∣∣∣
/∣∣∣∂F2∂p

∣∣∣ , d4 =
∣∣∣∂F2∂q∗

∣∣∣
/∣∣∣∂F2∂q

∣∣∣
(52)

on the parameter plane λeiϕ. The values are determined along the orbits starting from the origin

of length equal to 100 modulation periods. Gray scales from light to dark correspond to growth

of d, i.e. to increase of degree of deflection of the dynamics from the pure complex analytical.

Observe that at small N (panel c), wide regions of essential violation of the Cauchy - Riemann

conditions take place, where the ratios of derivatives in respect to complex variable and the

conjugate variable exceed 1. For larger N , when the cactuses look yet similar to the Mandelbrot

set (panels a and b), analogous violations occur only on the small-scale details of the Mandelbrot-

like structure (see Fig. 9).

It is interesting to evaluate degree of violation of the analyticity globally in the phase space

of the system or, at least, in domains including the basins of attraction. In Fig. 10 we present

data of computations aimed to estimate maximal absolute value for the derivative ratios (52) on

the plane (x, u). Observe that with decrease of the parameter N the picture becomes darker (the

color coding is assumed the same as in Fig. 8, a-c). In Fig. 11 we present plots for maximal

values of di (i = 1, ..., 4) determined in a domain of a four-dimensional cube in the phase space

containing the attraction basins. (Computations were produced at nodes of four-dimensional grid

of size 50 × 50 × 50 × 50.) Observe that at small N the derivatives over the conjugate variables

become rather large in comparison with derivatives in respect to the main complex variable; for

N <4 they may be larger even by many times.

As follows from our computations, the system of coupled non-autonomous oscillators indeed

demonstrates dynamics roughly corresponding to that in the complex analytic map. Degree of the

correspondence is determined by parameter N , that is a ratio of modulation period to period of

basic oscillations. With decrease of N , the type of dynamics is changed gradually; the destruction

of the picture associated with the complex analytic dynamics starts from small-scale details of the

visible structure of the Mandelbrot set.

5 Conclusion

In this paper, a system was proposed that consists of two coupled alternately excited oscillators

with a turn-by-turn transfer of the excitation from one to another, accompanied with appropriate

nonlinear transformation of the complex amplitude of the oscillations in the course of the process.

This system obviously allows realization as a physical object, e.g. as an electronic devise analogous

to that described in Ref. [10]. Analytic consideration showed that the Poincaré map for the system

corresponds in a definite approximation to a complex quadratic map. Numerical studies confirm
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presence of the expected phenomena intrinsic to iterative complex analytic maps (like Mandelbrot

set, Julia sets etc.) at least up to a definite level of resolution of the fractal-like structures. Analysis

of violation of the applicability of the approximation corresponding to the complex quadratic map

revealed several effects. One is rotation of the Mandelbrot-like set in the complex parameter

plane, and other is destruction of the small-scale fractal structure under decrease of the parameter

representing a ratio of the modulation period to the period of basic oscillations.
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map, Preprint http://xxx.lanl.gov/abs/nlin.CD/0509015.
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Figure 1: Mandelbrot set (a) and Julia sets for the complex quadratic map (1) at several values of

the parameter c = 0.0 (b), c = 0.2−0.3i (c), c = −0.4 (d), c = −0.8 (e), c = −0.1+0.75i (f). Gray

areas correspond to periodic dynamics in a bonded domain of the complex variable z (the periods

are marked by figures). Black designates bounded chaotic dynamics, and white corresponds to

escape of the iterations to infinity.
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Figure 2: Mandelbrot set for the map (37) (a) and domains of observable bounded periodic dynam-

ics (gray) in a system of shortened amplitude equations (7) (b) at parameter values F = 7, γ = 0.5,

ω0 = 2π, N = 10, ε = 1. Amplitudes of two oscillators versus time are shown in panel (c) at

λ = 1.5i. Gray profiles correspond to numerical solution of the equations (7), and dotted lines (1-3)

designate the approximate analytic solution in accordance with (15) (1), (23) (2), (36) (3).

Figure 3: Mandelbrot cactuses for the system of coupled non-autonomous oscillators (2) (or for

equivalent amplitude equations (6)). Parameter values: (a) N = 80, F = 0.875, ε = 0.125,

(b) N = 40, F = 1.75, ε = 0.25, and (c) N = 20, F = 3.5, ε = 0.5. For all cases, ω0 = 2π

and γ = 0.5. Compare with the portrait in Fig. 2 b corresponding to the large-N asymptotic and

observe visible counter-clock-wise rotation of the cactuses under decrease of N .
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Figure 4: The Mandelbrot cactus (a) and its magnified fragment (b) for the system of coupled

non-autonomous oscillators (2) at ω0 = 2π, F = 7, γ = 0.5, N = 10, ε = 1 on the plane

of a complex parameter λeiϕ. Gray color corresponds to presence of attractive periodic orbits.

The figures 1, 2, 3... designate the period in units of the basic modulation period T = 2π/Ω.

White color corresponds to absence of attractive periodic motions and escape to infinity. For

the parameter values marked with dots (panel a), portraits of the attractive periodic orbits are

shown in projection on the plane (x, ẋ/2π) (panels c and f) together with cross-sections of the

basins of attraction for these orbits with this coordinate plane (g and j). Dots inside the basins

correspond to the stroboscopic cross-sections for those periodic orbits. The panels correspond to

the parameter sets: λ cosϕ = 0.5, λ sinϕ = −0.2 (c and g), λ cosϕ = −0.7, λ sinϕ = 0.4 (d and h),

λ cosϕ = −1.7, λ sinϕ = 0.1 (e and I), λ cosϕ = −0.2, λ sinϕ = 1.5 (f and j).

Figure 5: Dynamical variables versus time for the system of coupled non-autonomous oscillators (2)

at ω0 = 2π, F = 7, γ = 0.5, ε = 1, N = 10, λeiϕ = −0.2 + 1.5i that corresponds to presence of an

attractive cycle of period 3 in the Poincaré map. (The shown pattern is repeated again and again

with period 3T .)
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Figure 6: Charts of the largest Lyapunov exponent (a-c) and diagrams for a difference of two

larger exponents (d-f) for the system of coupled non-autonomous oscillators (2) at three values of

the ratio of periods of modulation and of basic oscillators: N = 10 (a, d), 6 (b, e), 3 (c, f). Other

parameters: ω0 = 2π, F = 7, γ = 0.5, ε = 1. Uniform gray color means area of unstable dynamics

(typically divergence to infinity). Legend for gray scales is shown at the bottom for both two

columns. Black color on the diagrams in the left column also corresponds to chaotic dynamics in

a bounded domain.
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Figure 7: Logarithm of absolute value of derivative for one of the functions determining the

two-dimensional complex Poincaré map pn+1 = F1(pn, qn), qn+1 = F2(pn, qn) over the complex

conjugate variable. The complex variables are expressed via real physical variables of the sys-

tem (2) as p = x+ iẋ/ω0, q = y+ iẏ/2ω0. The derivative was evaluated at the origin x = 0, ẋ = 0,

y = 0, ẏ = 0 for λ = 0. Other parameters are ω0 = 2π, F = 7, γ = 0.5, ε = 1.

Figure 8: Distributions of the maximal ratios for derivatives (49) over the plane of complex

parameter λeiϕ. The values are determined along the orbits starting from the origin, of length

equal to 100 modulation periods. Gray scales from light to dark correspond to increase of degree

of deflection of the dynamics from the pure complex analytical. The diagrams are drown for N =

10 (a), 6 (b), 3 (c). Other parameters are the same as in Fig. 4.
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Figure 9: Magnified fragments of Fig. 8, b.

Figure 10: Distributions of the maximal ratios for derivatives (49) over the plane of complex

parameter λeiϕ determined for one modulation period. The diagrams are drown for N = 3 (a), 6

(b), 10 (c) , 15 (d). Other parameters are λ = 0, ω0 = 2π, F = 7, γ = 0.5, ε = 1.

Figure 11: Logarithm of the maximal value of the ratios of derivatives d computed on one iteration

of the Poincaré map over nodes of array of size 50×50×50×50 on a domain of a four-dimensional

cube in the phase space containing the basins of attraction. The diagram is drawn for λ = 0,

ω0 = 2π, F = 7, γ = 0.5, ε = 1.
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