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Some Mechanical Systems Manifesting
Robust Chaos

S. P.Kuznetsov

Three dissipative mechanical systems are considered which manifest chaotic
dynamics generated by attractors of Smale – Williams type: (i) motion of a particle on
a plane under periodic pulsed kicks, (ii) two interacting particles placed on alternately
rotating disks, and (iii) parametric excitation of a string by modulated pump in
a finite-dimensional approximation. These examples are interesting as they endow
the theory of hyperbolic dynamical systems with clear physically meaningful content.
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Introduction
For the past half-century of rapid development of the mathematical theory of

dynamical systems many interesting phenomena of complex dynamics have been
discovered, but not all of them were considered with respect to real nonlinear systems
in applications (mechanics, electronics, nonlinear optics, chemical kinetics).

One type of behavior not discussed for real-world systems for a long time was the
structurally stable chaotic dynamics associated with uniformly hyperbolic
attractors [1–8], such as the Smale – Williams solenoid.

The mathematical construction for the simplest case of the Smale – Williams
attractor is based on a three-dimensional map. Consider a region in the form of
a torus in three-dimensional state space; think of it as made of a plastic material. One
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4 S.P.Kuznetsov

Fig. 1. Geometric construction of the Smale – Williams attractor. From left to right: the
region in the form of a torus in three-dimensional state space, the result of transforming
after one and two iterations, and the solenoid obtained in the limit of a large number of
repetitions of the transformation.

step of the transformation is that we stretch it twice with simultaneous transversal
compression, fold it to form a double loop, and put the loop inside the original torus
(Fig. 1). This procedure is repeated many times. At each step the volume of the object
decreases (this means that the mapping is dissipative), and the number of turns is
doubled, and in the limit tends to infinity. The result is formation of the so-called
solenoid, which has Cantor-like structure in the transversal direction. The essential
point is that the angular coordinate undergoes doubling at each next discrete time
step, namely, θn+1 = 2θn(mod2π) (Fig. 1).

An obvious generalization is to carry out the same procedure, but making the
loops of another number of coils M . It corresponds to mappings for the angular
coordinate ϕn+1 = Mϕn(mod2π). With M � 2 it is an expanding circle map, or
a Bernoulli map.

While mathematicians develop their examples using geometrical, topological,
algebraic constructions for building models with structurally stable chaos, a physicist
may apply his own specific tool-box and deal with particles, fields, oscillators, feedback
loops. Recently, significant progress has been achieved in this respect; numerous
examples of physically realizable systems were offered with chaotic attractors of
Smale – Williams type and with some other kinds of hyperbolic attractors [9–15].

Regarding clarity and transparency of examples, preference surely should be
given to mechanical systems [16–19]. Indeed, the mechanical movements are easily
perceived and interpreted from our everyday experience. (In this respect it is worth
mentioning an example called the triple linkage, the hinge mechanism manifesting
Anosov dynamics that is a type of hyperbolic chaos in conservative systems [20, 21].)

The present article is devoted to consideration and numerical study of several
simple mechanical systems with chaotic dynamics associated with attractors of
Smale – Williams type. These examples are interesting as they endow the hyperbolic
theory of dynamical systems with clear physically meaningful content.

What may be the value of these models from a practical point of view?
The practical application of chaos has attracted attention for many years;

numerous international conferences on these issues were organized. In particular,
such directions were discussed as secure communication [22, 23], generation of random
numbers [24], and application in cryptographic schemes [25]. For mechanical systems,
the most interesting feature of chaos is apparently the ability to effectively control the
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Some Mechanical Systems Manifesting Robust Chaos 5

dynamics by means of arbitrarily small carefully chosen forcing [26]. The possibility of
such manipulation with chaotic motions exists due to their fundamentally inherent
sensitivity to small perturbations of initial conditions; the corresponding field of
studies is referred to as chaos control [27].

Whatever manner of application of chaos we discuss, we should prefer to deal
with systems that are robust (rough) or structurally stable, which implies insensitivity
of the dynamics to variations of parameters and system characteristics, to technical
imperfections, interferences, fluctuations etc. In the theory of oscillations, starting
from classical works of Andronov and his research school [5, 6, 28], the rough systems
are regarded as those of top-priority for theoretical studies, and as the most important
for practice. Traditionally, it relates to systems with regular dynamics, but it seems
evident that the same should be true for chaotic systems with uniformly hyperbolic
attractors, for which the structural stability is proved mathematically. In this respect
examples of systems with uniformly hyperbolic attractors deserve attention and
discussion in the context of possible applications of chaos.

1. Particle motion in the plane under periodic kicks

Consider a particle of unit mass on the plane (x, y) in a stationary potential
field U(x, y) = −1

2
μ(x2 + y2) + 1

4
μ(x2 + y2)2 possessing rotational symmetry about

the origin, with minimum on the unit circle (Fig. 1).1 We assume that an additional
force field with potential V (x, y) = 1

2
(x2 + y2) − 1

3
x3 + xy2 is switched on and

off periodically with time interval T , producing short-time kicks of magnitude and
direction depending on the instantaneous position of the particle. The Lagrange
function for this problem is

L =
1
2
(
ẋ2 + ẏ2

)− U(x, y) − V (x, y)
∞∑

n=−∞
δ(t− nT ) =

=
1
2
(
ẋ2 + ẏ2

)
+

1
2
μ

[
x2 + y2 − 1

2
(
x2 + y2

)2
]

+

+
(
−1

2
x2 − 1

2
y2 +

1
3
x3 − xy2

) ∞∑
n=−∞

δ(t− nT ).

(1.1)

In practice, the potential V (x, y) can be achieved using six electromagnets A-F
forming the hexapole and an additional magnet G that creates a centrally symmetric
part of the potential (see Figure 2). All these magnets are switched on periodically
by current pulses at the same moments of time. The particle should be represented
by a permanent magnet, one pole of which is involved in the interaction, and the
other one is placed outside the interaction region.

1The model outlined here is a modification of the model previously discussed in [9, 10, 26],
but the present version seems to be better adapted for possible implementation.
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6 S.P.Kuznetsov

Fig. 2. Schematic setup for the particle motion under periodic kicks modeled by
equations (1.2). Gray cylinders are electromagnets switched on periodically by current
pulses; the colors of their plane faces indicate the polarity.

The Lagrange equations with an added viscous friction force proportional to the
instantaneous velocity read

ẍ = μx
(
1 − x2 − y2

)
+

(−x+ x2 − y2
) ∞∑

n=−∞
δ(t− nT ) − αẋ,

ÿ = μy
(
1 − x2 − y2

)
+ (−y − 2xy)

∞∑
n=−∞

δ(t− nT )− αẏ,

(1.2)

where the coefficient of kinetic friction is assumed to be equal to unity for simplicity:
α = 1.

Let us explain the functioning of the system. Suppose that initially we have
a ring of particles resting on the unit circle with coordinates x = cosϕ and y = sinϕ,
where 0 � ϕ < 2π. After a kick from the force field V , each particle with initial
angle ϕ will get the momentum components Px = −x+ x2 − y2 and Py = −y− 2xy.
If we still do not take the field U into account, the particles will stop due to friction
at the locations with coordinates

x′ = x+ Px = x2 − y2, y′ = y + Py = −2xy. (1.3)

Substituting x = cosϕ and y = sinϕ, we obtain x′ = cosϕ′ and y′ = sinϕ′, where
ϕ′ = −2ϕ. This means that the particles settle down again on the unit circle, but
a single bypass of the original ring corresponds to a twofold bypass of the newly
formed ring in the opposite direction. Thus, for the angular coordinate we have the
expanding circle map, or the Bernoulli map.

NONLINEAR DYNAMICS & MOBILE ROBOTICS. 2013. Vol. 1. №1. P. 3–22



Some Mechanical Systems Manifesting Robust Chaos 7

In equations (1.2) the parameter μ may be selected to be relatively small; then,
during the characteristic time of motion caused by a single kick, a displacement of
the particle due to the potential field U(x, y) is rather negligible. On the other hand,
the period of kicks T is assumed to be large enough to have time for the particle
to approach the potential minimum of U(x, y). These conditions are not strong and
may be valid at least in a rough approximation. (This is due to structural stability of
the hyperbolic attractor we intend to construct.) Given the initial state just before
the n-th kick xn = {x, ẋ, y, ẏ}t=nT−0, one can determine the state before the next,
n+ 1-th kick from the solution of equations (1.2) on the period T :

ẍ+ ẋ = μx
(
1 − x2 − y2

)
, ÿ + ẏ = μy

(
1 − x2 − y2

)
(1.4)

with initial conditions determined by the state immediately after the kick:

x
∣∣
t=nT+0

= xn, ẋ
∣∣
t=nT+0

= ẋn − xn + x2
n − y2

n,

y
∣∣
t=nT+0

= yn, ẏ
∣∣
t=nT+0

= ẏn − yn − 2xnyn.
(1.5)

Relations (1.4) and (1.5) lead to the four-dimensional Poincaré map xn+1 =
= f(xn). This map is invertible because all the state transformations produced by
the kicks and by the continuous time evolution according to the differential equations
are invertible. Although the exact form for the map is not derived analytically, the
action of this map can be easily reproduced by numerically solving the differential
equations (1.4) using a computer program.

The attractor of this map is the Smale – Williams solenoid because of the outlined
topological property of the ensemble of particles after the conversion, namely, the
emergence of the loop bypassing the origin twice. Transversal compression in the
phase space occurs due to the friction of the particle during the motion between
the kicks in the potential field U towards the potential minimum on the unit circle.
In contrast to the classical construction mentioned in the introduction, the Smale –
Williams attractor in this model is embedded into the four-dimensional (rather than
three-dimensional) phase space.

Figures 3–5 illustrate results of the numerical solutions of equations (1.2). Figure 3
depicts a typical trajectory of a particle during the course of its motion and a portrait
of the attractor in the stroboscopic section in projection onto the plane (x, y). The
attractor obviously looks like a kind of Smale – Williams solenoid, with distinguishable
Cantor-like transversal structure. Figure 4 shows the iterative diagram for the angular
variable ϕn = arg(x(nT − 0) + iy(nT − 0)) determined immediately before each
successive kick. One can see that the angular coordinate behaves in accordance with
the expanding circle map, or the Bernoulli map. One bypass of the circle for the
pre-image implies two detours for the image in the opposite direction.

In dynamical systems theory, to describe the behavior near a reference phase
trajectory Lyapunov exponents are introduced, which characterize departure (the
positive exponents) or approach (the negative exponents) to the reference trajectory.
The total number of the exponents corresponds to the dimension of the phase space,
so there are four of them for the Poincaré map of the system (1.2). The standard
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Fig. 3. A trajectory of the particle in the plane (x, y) in the model (1.2) with μ = 0.3, T = 4
for 50 periods of the pulse driving, where the arrows indicate directions of the motion (a),
and a portrait of the attractor in the stroboscopic cross-section (b).

Fig. 4. Iteration diagram for the angular variable obtained from the numerical solutions of
equations (1.2) at μ = 0.3, T = 4.

approach to computation of the exponents is the method of Benettin [30–32]. In our
particular case it is based on numerical solution of equation (1.4) for the reference
orbit taking into account (1.5) at the kicks and simultaneous solution of a collection
of four replicas of variation equations with Gram – Schmidt orthogonalization and
normalization of the perturbation vectors after each kick. At μ = 0.3 and T = 4 the
Lyapunov exponents for the Poincaré map are

Λ1 = 0.687, Λ2 = −1.386, Λ3 = −3.000, Λ4 = −3.733. (1.6)
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Fig. 5. The Lyapunov exponents of the Poincaré map for the model (1.2) versus μ at T = 4.

Figure 5 plots the Lyapunov exponents depending on the parameter μ for
a fixed T . Note that the largest Lyapunov exponent for the stroboscopic map remains
approximately constant and very close to ln 2. This value corresponds to the Bernoulli
map, approximately describing the dynamics of the angular variable. The remaining
Lyapunov exponents are negative.

As noted in the introduction, the essential attribute of the Smale – Williams
attractor is the inherent Cantor-like transversal structure. To characterize this
structure, one can estimate the fractal dimension. Kaplan and Yorke proposed
a formula that expresses the dimension via the Lyapunov exponents
approximately [31–33]. It reads

DKY = m+ Sm/ |Λm+1| , Sm =
m∑

i=1

Λi. (1.7)

Here the Lyapunov exponents Λ1, . . . ,Λm, . . . ,ΛN are numbered in descending order,
and m is an integer such that the sum Sm is positive, but Sm+1 is negative.
Empirically, this formula gives results close to the properly defined fractal dimensions
of attractors, although it has no rigorous mathematical basis and proof. Therefore, it
is commonly used to regard the estimate (1.7) as a special kind of dimension, called
the Kaplan – Yorke dimension or the Lyapunov dimension. Note that the heuristic
derivation of (1.7) suggests uniform compressions and expansions of the phase volume
in some directions in the course of the dynamical evolution on the attractor, and this
assumption is justified in the best degree just for the uniformly hyperbolic attractors.

The estimate of the attractor dimension for the Poincaré section of the
system (1.2) at μ = 0.3, T = 4 according to the Kaplan – Yorke formula yields
D = 1.50.
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2. A system of two interacting particles placed
on alternately rotating disks

Consider two disks disposed horizontally, one above the other, which rotate about
the common axis alternately (while one rotates, the other is at rest and vice versa)
with angular velocity ω (Figure 1, a). On each disk a particle is placed which is
capable of sliding on it with the friction force proportional to its velocity relative
to the disk. Suppose that there is a potential field U(r) symmetric about the axis,
with potential minimum at the center and strongly growing to the edges of the disks.
In addition, assume that the two particles interact via a potential field V (r1 − r2),
where r1 and r2 are the position vectors. As will be seen, under appropriate choice of
the potential functions and other parameters, in the map which describes the state
transformation on successive periods of the rotation switching, the chaotic dynamics
corresponding to the attractor of Smale – Williams type will take place.

Let us set2

U(x, y) =
1
2
k
(
x2 + y2

)
+

1
4
(
x2 + y2

)2
(2.1)

and

V (x, y) = −1
3
x3 + xy2. (2.2)

Fig. 6. Scheme of possible design implementing the motion of two interacting particles on
alternately rotating disks, modeled by equations (2.5).

2Practically the potential field (2.1) may be implemented by replacing the plane disks by
cup-shaped surfaces, and the potential (2.2) using a single magnet for the first particle, and
the hexapole construction of magnets instead the second one (its spatial orientation should
remain unchanged in the course of time evolution, regardless of the rotation of the disk). In
the formal description, we do not focus on this particular implementation, because it masks
the inherent symmetry between two components of the model system.
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In the absence of friction, the system is characterized by the Lagrange function

L =
2∑

i=1

[
1
2
(
ẋ2

i + ẏ2
i

)− 1
2
k
(
x2

i + y2
i

)− 1
4

(
x2

i + y2
i

)2
]

+

+
1
3

(x1 − x2)3 − (x1 − x2)(y1 − y2)2,

(2.3)

where x1,2, y1,2 are Cartesian coordinates of the particles on their disks, u1,2 and v1,2

are two corresponding generalized momenta, k is a parameter. To take into account
the viscous friction in the corresponding Lagrange equations, we must add terms
proportional to velocities of the particles relative to the disks. On the disk rotating
with angular velocity ω the instant velocity at the particle position (xi, yi) is v =
= (−ωyi, ωxi); so, we obtain

d

dt

∂L

∂ẋ1
=

∂L

∂x1
− α

(
dx1

dt
+ ω1y1

)
,

d

dt

∂L

∂ẏ1
=
∂L

∂y1
− α

(
dy1
dt

− ω1x1

)
,

d

dt

∂L

∂ẋ2
=

∂L

∂x2
− α

(
dx2

dt
+ ω2y2

)
,

d

dt

∂L

∂ẏ1
=
∂L

∂y1
− α

(
dy2
dt

− ω2x2

)
,

(2.4)

or

ẍ1 = −x1

(
k + x2

1 + y2
1

)
+ α (−ω1y1 − ẋ1) − ε

[
(x1 − x2)2 − (y1 − y2)2

]
,

ÿ1 = −y1
(
k + x2

1 + y2
1

)
+ α (ω1x1 − ẏ1) + 2ε(x1 − x2)(y1 − y2),

ẍ2 = −x2

(
k + x2

2 + y2
2

)
+ α (−ω2y2 − ẋ2) + ε

[
(x1 − x2)2 − (y1 − y2)2

]
,

ÿ2 = −y2
(
k + x2

2 + y2
2

)
+ α (ω2x2 − ẏ2) − 2ε(x1 − x2)(y1 − y2),

(2.5)

where

ω1(t) =

{
ω0, nT � t < nT + T/2,

0, nT + T/2 � t < nT,
ω2(t) =

{
0, nT � t < nT + T/2,

ω0, nT + T/2 � t < nT.
(2.6)

Figure 7 illustrates a typical dynamical regime of the model obtained from the
numerical solution of equations (2.5) at

k = 3, α = 3, ε = 0.03, T = 16, ω0 = 2π. (2.7)

The diagrams show the time evolution of the spatial position of the particles in the
course of operation of the system. Observe that motions of the individual particles
take place alternately, and the motion is not periodic: the forms of the orbits are not
repeated in successive stages of activity.

Figure 8 shows an iteration diagram for the angular coordinate ϕn = arg(x(nT −
−0)+iy(nT−0)) of one of the particles, determined immediately after the end of each
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Fig. 7. Time evolution of the spatial position of the particles on the disks during the
operation of the model (2.5) with parameters (2.7).

Fig. 8. The iteration diagram for the angular coordinates of one of the particles obtained
from the numerical solution of equations (2.5) with parameters (2.7).

rotation stage of the corresponding disk. Observe that the angular coordinate behaves
in accordance with the expanding circle map or the Bernoulli map. One bypass around
the circle for the pre-image implies four bypasses for the image. Figure 9 shows the
attractor in the stroboscopic section in projection onto the plane of coordinates of
one particle (x1, y1). In the original scale, it looks like a circle, but a zoom reveals
a distinguishable Cantor-like structure intrinsic to the Smale – Williams solenoid as
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Fig. 9. Attractor in the stroboscopic section for the model given by equations (2.5) with
parameters (2.7); observe transversal Cantor structure visible in the inset.

illustrated in the insert. In the present case, the attractor corresponds to a four-time
folding of the toroidal domain in the eight-dimensional phase space of the stroboscopic
Poincaré map.

Figure 10 shows plots of the Lyapunov exponents versus the parameter of angular
velocity of the disks ω. The Lyapunov exponents are calculated by numerically solving
equations (2.5) for the reference orbit, together with eight replicas of the variation
equations. At each step of integration of the differential equations the Gram – Schmidt
orthogonalization of the vectors is carried out. The positive Lyapunov exponent for

Fig. 10. Lyapunov exponents of the Poincaré map for the model (2.5) versus the angular
velocity of the disks’ rotations. Other parameters: k = 3, α = 3, ε = 0.03, T = 16.
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the stroboscopic map remains approximately constant in a wide parameter range
being very close to ln 4 which corresponds to the Bernoulli map, approximately
describing the dynamics of the angular variable. In particular, at ω = 2π the Lyapunov
exponents are

Λ1 = 1.354, Λ2 = −6.90, Λ3 = −7.65, Λ4 = −11.61,

Λ5 = −32.81, Λ6 = −32.92, Λ7 = −45.34, Λ8 = −47.26.
(2.8)

The fractal dimension by the Kaplan – Yorke formula for this attractor is D ≈ 1.20.

3. Hyperbolic chaos in parametric oscillations
of a string

It is known that string vibration is governed by the partial differential equation [34]

ρ
∂2y

∂t2
= G

∂2y

∂x2
, (3.1)

where y(x, t) is the transversal displacement of the string at the point x at time t, ρ
is the linear density of the string (mass per unit length), G is the tension force. For
a uniform string with a constant tension, the value c =

√
G/ρ determines the speed

of the wave propagation.
The string of length L with fixed ends has a set of modes with natural frequencies

ωs = πsc/L. In the classic Melde experiment [34, 35] periodic variation of the string
tension with frequency 2ω0 acts as a pump for the parametric oscillations of the
appropriate standing-wave mode of frequency ω0 (Figure 11). The initial stage of
the oscillation growth is described by (3.1), where the coefficient G is represented
by a function of time; for example, it may be specified as G = G0(1 + a0

2 sin 2ω0t),
a0
2 < 1.

Fig. 11. The Melde experiment (1859): periodic variation of the string tension due to the
tuning fork vibration of frequency 2ω0 causes the parametric excitation of the standing-wave
mode of frequency ω0.
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Recently a way was suggested to modify the setup of the string parametric
excitation to produce chaotic oscillations associated with the structurally stable
attractor of Smale – Williams type [36, 37]. The idea is that the pumping alternately
on a low and a high frequency will provide the parametric excitation of short and
long standing-wave patterns turn by turn. Then, using proper nonlinearity and spatial
inhomogeneity we can arrange the transfer of the spatial phase from one pattern to
another and back in such a way that a tripling of the phase occurs over the full period
of the pump modulation. In the presence of dissipation, compression of the phase
volume in the state space ensures the presence of the attractor of Smale – Williams
type. The easiest way to implement this idea on the level of a mathematical model
relates to a system closed in a ring (although in the experiment it is not the simplest
setup to deal with). Here we consider the reduction of the problem with periodic
boundary conditions to a finite-dimensional model, the study of which is easier than
that for the original distributed system [36, 37].

Suppose that the force of the string tension in (3.1) is expressed as

G(t) = G0 · [1 + a2(t) sin 2ω0t+ a6(t) sin 6ω0t], (3.2)

and assume that the coefficients a2, a6 vary in time with period T , being alternately
large or close to zero. Specifically, we set

a2(t) = a0
2 sin2 π(t/T − 1/4), a6(t) = a0

6 cos2 π(t/T − 1/4), (3.3)

where non-negative constants a0
2, a0

6 satisfy a0
2 + a0

6 < 1. Thus, the pump has the
components at frequencies 2ω0 and 6ω0 with amplitudes, modulated in time. The
distribution of mass on the string will be weakly nonuniform, depending on the
spatial coordinate as

ρ(x) = ρ0(1 + ε sin 4k0x), (3.4)

where k0 = ω0/c0, c0 =
√
G0/ρ0. In addition, we introduce dissipation by the term

−(α + βu2)∂y/∂t added to the right-hand side of the equation. The parameter α
is responsible for linear dissipation and the parameter β accounts for nonlinear
dissipation. The presence of nonlinear dissipation is needed to stabilize the parametric
instability; moreover, for the system in question it is also important that the cubic
nonlinearity provides generation of the third harmonic in the wave-oscillatory motion.
Finally, we add a linear term −γy to ensure damping for the disturbances with wave
number about zero. Physically, this term may be interpreted as presence of a potential
field, depending on the transversal coordinate, U(y) = γy2/2.

Using appropriate normalization of variables and parameters such that c0 = 1,
k0 = ω0, β = 1, we arrive at the partial differential equation of the following
form [36, 37]:

(1 + ε sin 4k0x)
∂2y

∂t2
= −(α+ y2)

∂y

∂t
− γy +

[
1 + a0

2 sin2 π(t/T − 1/4) sin 2ω0t+

+ a0
6 cos2 π(t/T − 1/4) sin 6ω0t

]∂2y

∂x2
. (3.5)
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Let us impose the periodic boundary conditions

y(L, t) = y(0, t), yx(L, t) = yx(0, t) (3.6)

and select the length L containing an integer number of the wavelengths of the wave
number k0: L = 2πN/k0.

The mechanism of functioning of the system is as follows.
At the stage of pumping at the frequency 2ω0 a standing wave with frequency ω0

and wave number k0 is parametrically generated, whose disposition of nodes and
antinodes is characterized by a spatial phase θ, roughly y ∼ cosω0t sin(k0x + θ).
The wave amplitude saturates at some finite level due to the nonlinear dissipation;
moreover, the oscillatory-wave motion will contain the third harmonic component:
y3 ∼ sin 3ω0t sin(3k0x+ 3θ).

When the pumping at 2ω0 ceases, the oscillations at frequency ω0 decay, but
now the pumping at 6ω0 starts, which provides the parametric instability for the
standing wave pattern of the frequency 3ω0 and the wave number 3k0. This process
is initiated by the perturbation given by the above expression for y3, so it inherits
the spatial phase 3θ.

At the next stage of the pumping resumption at 2ω0 the excitation of the
standing wave with the frequency ω0 and the wave number k0 restarts; it develops in
the presence of the seed perturbation determined by combination of the component
y ∼ sin 3ω0t sin(3k0x+3θ) remaining from the previous stage, and of the component
εa2 sin 2ω0t sin 4k0x present due to the spatially nonuniform mass distribution; it
can be expressed as sin 2ω0t sin 3ω0t sin 4k0x sin(3k0x + 3θ) = −1

4
sinω0t cos(k0x −

− 3θ)+ . . ..
It follows that the new phase value θ′ is related to the previous one by the

expanding circle map θ′ = −3θ + const that is the Bernoulli map with chaotic
dynamics characterized by a positive Lyapunov exponent Λ = ln 3 ≈ 1.0986. In
other directions compression of the phase volume will occur resulting in formation
of the Smale – Williams solenoid in the phase space of the map, which describes the
state transformation over the period of pump modulation.

Taking into account that the parametric excitation takes place at the wave
numbers k0 and 3k0, to compose the low-dimensional model it is appropriate to
use the ansatz

y(x, t) = u1(t) cos k0x+ v1(t) sin k0x+ u3(t) cos 3k0x+ v3(t) sin 3k0x. (3.7)

Substituting this in (3.5), we multiply both sides of the equation by cos k0x, sin k0x,
cos 3k0x and sin 3k0x, each time performing integration over the spatial period. As
a result, we obtain a set of equations for the coefficients

ü1 +
1
2
εv̈3 = f1, ü3 +

1
2
εv̈1 = f3, v̈1 +

1
2
εü3 = g1, v̈3 +

1
2
εü1 = g3, (3.8)
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where

f1 = −ω2
0 (1 + a2(t) sin 2ω0t+ a6(t) sin 6ω0t)u1 − γu1 − αu̇1 −

− 1
2

[(
3
2
u2

1 + u1u3 + u2
3 +

1
2
v2
1 + v1v3 + v2

3

)
u̇1 +

+
1
2
(
u2

1 + 4u1u3 − v2
1

)
u̇3 + (u1v1 − u3v1 + u1v3)v̇1 + (u1v1 + 2u1v3)v̇3

]
,

(3.9)

g1 = −ω2
0 (1 + a2(t) sin 2ω0t+ a6(t) sin 6ω0t) v1 − γv1 −

− αv̇1 − 1
2

[(
3
2
v2
1 − v1v3 + v2

3 +
1
2
u2

1 − u1u3 + u2
3

)
v̇1 +

+
1
2
(
u2

1 + 4v1v3 − v2
1

)
v̇3+(u1v1 − u3v1 + u1v3)u̇1+(−u1v1 + 2u3v1)u̇3

]
,

(3.10)

f3 = −9ω2
0 (1 + a2(t) sin 2ω0t+ a6(t) sin 6ω0t)u3 − γu3 − αu̇3 −

− 1
4
[
(
u2

1 + 4u1u3 − v2
1

)
u̇1 + 2(−u1v1 + 2u3v1)v̇1 +

+
(
2u2

1 + 2v2
1 + 3u2

3 + v2
3

)
u̇3 + 2u3v3v̇3],

(3.11)

g3 = −9ω2
0 (1 + a2(t) sin 2ω0t+ a6(t) sin 6ω0t) v3 − γv3 − αv̇3 −

− 1
4
[2(u1v1 + 2u1v3)u̇1 +

(
u2

1 + 4v1v3 − v2
1

)
v̇1 + 2u3v3u̇3 +

+
(
2u2

1 + 2v2
1 + u2

3 + 3v2
3

)
v̇3].

(3.12)

The equations may be rewritten in a form more convenient for numerical solution
expressing the second derivatives explicitly:

ü1 =
f1 − 1

2
εg3

1 − 1
4
ε2

, ü3 =
f3 − 1

2
εg1

1 − 1
4
ε2

,

v̈1 =
g1 − 1

2
εf3

1 − 1
4
ε2

, v̈3 =
g3 − 1

2
εf1

1 − 1
4
ε2

.

(3.13)

Figure 12 shows plots of amplitude coefficients versus time, obtained by numerical
solution of equations (3.13) at

ω0 = 2π, k0 = 2π, T = 40, L = 1,

a0
2 = 0.4, a0

6 = 0.2, ε = 0.2, α = 0.4, γ = 0.03.
(3.14)

As can be seen, the relations between the amplitudes of the sine and cosine components
(which are associated with the spatial phases of the standing wave patterns) vary
chaotically from one period of modulation to another. We introduce the angular
variable θn = arg [u1(nT ) + iv1(nT )] to characterize the spatial phase at t = nT .
Figure 13, a shows the triple expanding circle map for the phase variable in coordinates
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18 S.P.Kuznetsov

Fig. 12. Plots of the amplitude coefficients versus time, obtained from numerical solution of
equations (3.13) with parameters assigned according to (3.14).

Fig. 13. The diagram for the angular variable responsible for the amplitude ratio for cosine
and sine components (a) and the stroboscopic portrait of the attractor in projection onto
the plane of variables u1 +u3 and v1 − v3 (b); observe a transversal Cantor structure visible
in the inset.

(θn, θn+1). Figure 13, b is a stroboscopic portrait of the attractor in the plane of
variables (u1 + u3, v1 + v3). (To explain the sense of these variables, observe that
according to (3.7) y(0, t) = u1(t) + u3(t), y(L/4, t) = v1(t) + v3(t).)

As the model is represented by a non-autonomous system of equations of the
eighth order, the full spectrum of Lyapunov exponents of the Poincaré map contains
eight terms. Calculation of the exponents is carried out using the Benettin algorithm.
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Setting the parameters according to (3.14), we obtain

Λ1 = 1.109, Λ2 = −9.544, Λ3 = −14.663, Λ4 = −23.24,

Λ5 = −27.16, Λ6 = −27.97, Λ7 = −34.26, Λ8 = −41.84.
(3.15)

The value of the fractal dimension of the attractor by the Kaplan – Yorke formula in
this model is D ≈ 1.12.

Figure 14 plots the Lyapunov exponents versus parameter of linear dissipation α
for other parameters fixed according to (3.14). The leading Lyapunov exponent
remains approximately constant for the stroboscopic map, being very close to ln 3.
It corresponds to the Bernoulli map, approximately describing the dynamics of the
angular variable.

Fig. 14. Plot of the Lyapunov exponents for the finite-dimensional model of the
parametrically excited string (3.13) depending on the dissipation parameter α. Other
parameters: ω0 = 2π, k0 = 2π, T = 40, L = 1, a0

2 = 0.4, a0
6 = 0.2, ε = 0.2, γ = 0.03.

The results of calculations based on the finite-dimensional model are in very good
agreement with those reported for the direct numerical solution of partial differential
equations [36, 37]. However, there is a difference in that some extra negative Lyapunov
exponents appear in the spectrum of the distributed system. They are apparently
associated with perturbations in the partial differential equation model excluded
when using the substitution (3.7). Accordingly, the estimates of attractor dimension
by the Kaplan – Yorke formula are also different for the distributed and the low-
dimensional model.

Conclusion
The paper presents three examples of mechanical dissipative systems realizing

chaotic dynamics caused, as believed, by the presence of attractors of Smale – Williams
type. The relative simplicity of the devices and of their principle of operation allows
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us to hope that they can be implemented in experiments. Due to the structural
stability of chaos associated with the uniformly hyperbolic attractors, the feasibility
of the models should not critically depend on details of the constructions, details
of distributions of the fields in the first two models, or of exact shape of the pump
function and of the spatial inhomogeneity in the third model.

In the framework of the present work, the main evidence for the presence of
attractors of Smale – Williams type is the topological nature of the iterative diagrams
for angular variables of all three models corresponding to expanding circle maps. At
present, arguments in favor of the hyperbolic nature of the attractors are based on
qualitative analysis and numerical results. A more accurate mathematical justification
for the hyperbolicity, such as verification of the cone criterion and of absence of
manifold tangencies [39–41] would be desirable. This may be one of the directions
for future studies.

This work was supported by RFBR grant №12-02-00342.
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