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Abstract

The term ’hidden attractor’ relates to a stable periodic, quasiperi-
odic or chaotic state whose basin of attraction doesn’t overlap with the
neighborhood of an unstable equilibrium point. Considering a three-
dimensional oscillator system that does not allow for the existence of
an equilibrium point, this paper describes the formation of several dif-
ferent coexisting sets of hidden attractors, including the simultaneous
presence of a pair of coinciding quasiperiodic attractors and of two
mutually symmetric chaotic attractors. We follow the dynamics of
the system as a function of the basic oscillator frequency, describe the
bifurcations through which hidden attractors of different type arise
and disappear, and illustrate the form of the basins of attraction.
Keywords: Hidden attractors; Radio-physical oscillator; Coexisting
chaotic states; Absence of an equilibrium state.
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1 Introduction

Most autonomous, nonlinear dynamic systems that have been studied so far
display a structure in which stable periodic, quasiperiodic or chaotic attrac-
tors coexist with one (or more) unstable equilibrium points. This is true
for the celebrated Lorenz [1] and Rössler [2] oscillators and it is also true
for a broad range of other systems that have served as paradigms for the
development of nonlinear dynamics. A structure of this form is intuitively
acceptable as it conforms with the general understanding that nonlinear dy-
namic behaviors in autonomous systems develop through destabilization of
an original equilibrium state as, with increasing excitation, a cascade of bifur-
cations leads the system through states of growing complexity. The essential
point is here that, although destabilized, the original equilibrium point con-
tinues to exist. In this connection it is interesting to recall, for instance,
how the presence of an unstable equilibrium point plays an essential role in
Shil’nikov’s famous criterion for the onset of chaos [3, 4].

To the extent that they have been known to exist, complex dynamic
systems without an equilibrium point have mostly been considered as un-
physical or mathematically incomplete. However, as experience shows, a
system that exhibits complex nonlinear dynamic behavior doesn’t need to
also display an unstable equilibrium state [5, 6, 7]. During the last few years,
a rapidly growing number of studies have been published in which quasiperi-
odic or chaotic attractors are shown to exist in the absence of any form of
equilibrium point [8] or in the presence of only stable equilibrium points [9].
Wang et al. [10] and Wei et al. [11] have recently demonstrated the exis-
tence of a hyperchaotic attractor in a 4-D system without equilibria, and
Kuznetsov et al. [12, 13] have described the development of quasiperiodicity
in a model of a radio-physical oscillator that doesn’t display an equilibrium
point. Through a clever search of system space, Jafari et al. [14] have estab-
lished a list of 17 structurally different 3-D systems that display quadratic
chaotic flows without equilibria. Wang and Chen [15] have demonstrated how
one can construct chaotic systems with any number of equilibria, and Chaud-
huri and Prasad [16] have demonstrated the phenomenon of amplitude death
for hidden attractors in coupled oscillator systems. More recently, consider-
ing a model of a power electronic relay system with hysteresis, Zhusubaliyev
et al. [17] have described a variety of different bifurcations through which
hidden attractors can arise in a realistic technical control system.

These findings obviously lead to questions about the origin of the quasiperi-
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odic and chaotic states observed in systems that do not display an unstable
equilibrium point. However, besides such important conceptual issues, the
absence of an unstable equilibrium state also leads to a number of inter-
esting problems relating to the localization of the complex states in phase
space [18, 19]. It is well-known that nonlinear dynamic systems with two or
more coexisting stable states can display basins of attraction with compli-
cated (i.e., fractal) boundaries [20, 21]. These situations are characterized
by a position of the corresponding unstable states on the boundary between
the basins of attraction for the involved stable states. In numerical studies,
this form of complexity may lead to difficulties in the location of the attract-
ing states, and specialized numerical techniques may be required to avoid
missing out on some of these states [20, 21]. Similar difficulties may arise in
practice when trying to direct a multistable technical control system into a
particular mode of operation [22, 23]. Even for simple mechanical systems
with a few coexisting stable equilibrium points, the basins of attraction can
become mixed to such a degree that it is impossible in practise to initiate
the trajectory of the system with the aim of reaching a specific outcome [24].

In cases where the basin of attraction for the stable state overlaps with
the neighborhood of an unstable equilibrium point the situation is quite
simple [18, 19]. In such cases, one can choose an initial condition close to the
equilibrium point (but away from its stable manifold) and follow the transient
behavior of the system until it asymptotically approaches the searched state.
This option is not available if there is no unstable equilibrium point and, by
analogy with the term ’hidden oscillations’ introduced in connection with the
classic discussion of Hilbert-Kolmogorov type problems [19], the numerical
difficulties associated with the location of complex nonlinear states whose
basin of attraction doesn’t overlap with the neighborhood of an unstable
equilibrium point has led to introduction of the term ’hidden attractor’ for
stable (quasiperiodic or chaotic) states whose basin of attraction doesn’t
overlap with an unstable equilibrium point [18, 19].

The purpose of the present paper is to examine the formation and re-
structuring of hidden periodic, quasiperiodic, and chaotic attractors in an
autonomous, smooth, 3-D model of a radio-physical oscillator system. We
first discuss the mechanisms responsible for maintaining the oscillatory dy-
namics in the radio-physical system and provide an overview of the mode
distribution in 2-D parameter space. By scanning this distribution for param-
eter values where the system displays quasiperiodic dynamics intervened by
resonance intervals with period-doubling cascades and transitions to chaos,
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we follow a couple of characteristic bifurcation sequences and demonstrate
the coexistence of several pairs of hidden attractors.

2 Description of the radio-physical oscillator

system

Let us consider the three-dimensional autonomous oscillator system

d2x

dt2
= (λ+ z + x2 − βx4)

dx

dt
− ω2

0x, (1a)

dz

dt
= μ− x2 (1b)

recently proposed by Kuznetsov et al. [12, 13] as an example of a minimum
system that can display quasiperiodic behavior. These equations may be
thought of as describing a generator of hard oscillations (1a) coupled to
a rechargeable power source (1b). At the same time, these equations are
related to formulations that have been used to demonstrate the existence of
structurally stable chaos in continuous-time systems [25, 26]. In connection
with the present discussion, we first note that for values of μ different from
zero, the system defined by Eqs. (1a) and (1b) doesn’t allow for the existence
of any equilibrium point, neither stable nor unstable. Only if the maximum
charging rate μ = 0 will the system display an equilibrium point. It is
interesting to note, however, that this equilibrium point exhibits a pair of
purely imaginary eigenvalues. Hence, the system will be non-hyperbolic for
μ = 0, or, in other words, the equilibrium point undergoes a Hopf bifurcation
in its only point of existence. This situation appears to be generic of many
of the systems that are known to display hidden chaotic attractors [14].

The subcritical nature of the Hopf bifurcation produced by the generator
element defines the thresholds for different types of behavior in the system
and also introduces a form of hysteresis. The generator frequency and the
degree of sub-criticality are controlled by the parameters ω0 and β, respec-
tively. The term proportional to z in Eq. (1a) introduces a modulation of
the rate of growth of the generator oscillations that depends on the charging
state z of the storage element. Equation (1b) describes the storage element
as a power source that is continuously charged at a rate μ and discharged
at a rate proportional to the intensity x2 of the oscillations generated by the

4



ω0
0 π

0

2

μ

P

D Q

C -2

0

2 -6

0

6
-1

0

0 6. z

x

y

a) b)

Figure 1: (a) Chart of dynamical modes in the (ω0, μ) parameter plane. λ = 0
and β = 0.5. D denotes divergent dynamics, P denotes periodic dynamics,
and Q and C denote quasiperiodic and chaotic dynamics, respectively. (b)
3-D phase portrait of the quasiperiodic attractor that exists in the coupled
oscillator system (1) for μ = 0.9 and ω0 = π. In this figure, the variable y
represents the first derivative of x.

threshold element. In the present work, the parameters λ and β will be kept
constant at λ = 0 and β = 0.5.

With appropriate parameter values, the temporal behavior of the coupled
system may be described in terms of the following sequence of three phases
that continues to repeat itself:

(a) Starting in a situation where the storage variable z is negative and
close to its minimum, the generator (1a) operates in a regime of stable equi-
librium dynamics, and existing oscillations in x gradually decrease. This
allows the storage element (1b) to recharge at increasing speed.

(b) As z becomes positive, the generator element undergoes a subcritical
Hopf bifurcation and, seeded by remaining small amplitude oscillations of x,
the amplitude of these oscillations begins to increase rapidly. This leads to
a faster discharging of the storage element, and z again begins to decrease.

(c) Due to the subcritical nature of the Hopf bifurcation, the amplitude of
the generator oscillations remains large, until z becomes sufficiently negative.
The generator oscillations then again start to decrease in amplitude, leading
to decreasing discharging rates for the storage element, etc.

Figure 1 (a) shows the distribution of dynamical modes for the coupled
oscillator system in the (ω0, μ)-plane. As previously noted, ω0 represents the
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basic oscillator frequency for the generator, and μ determines the maximum
charging rate for the storage element. The remaining parameters λ = 0 and
β = 0.5. The red region denoted P represents parameter sets that produce
periodic solutions. The yellow region Q represents quasiperiodic dynamics,
and the regions C (black) and D (blue) represent, respectively, chaotic and
divergent behavior. Note, however, that several regions display coexisting
attracting states of different types.

At the transition between periodic and divergent dynamics, the oscilla-
tory mode disappears as its amplitude explodes. The chaotic (black) regions
in the upper left side of the diagram represent cascades of period-doubling
bifurcations associated with the period-1 and period-2 cycles, respectively.
The horizontal line between the periodic and quasiperiodic regimes at μ = 1
represents a secondary Hopf (or torus-birth) bifurcation that involves a new
oscillatory mode into the dynamics. Finally, the (red) swallow-tail structures
[27] in the quasiperiodic regime are regions of periodic resonance dynamics.
This explains how the complex nonlinear dynamic phenomena, i.e. the hid-
den chaotic and quasiperiodic attractors, develop from the divergent dynam-
ics that exists to the left in the figure. As an example, Fig. 1 (b) shows
a phase portrait of the quasiperiodic attractor that exists for μ = 0.9 and
ω0 = π.

3 Bifurcation structure and coexisting attrac-

tors

Considering the dense set of resonance tongues that exists in the quasiperi-
odic regime, a scan through this regime is likely to demonstrate a significant
number of transitions between different hidden attractors. Closer examina-
tion of the equations of motion reveals that both Eq. (1a) and Eq. (1b)
remain invariant under the replacement of x by −x. This implies that the
solutions to our system come either in the form of individual trajectories that
are invariant to the direction of rotation for the x-oscillator, or they come as
pairs of mutually symmetric solutions that rotate clock- and anti-clockwise,
respectively. Phase space projections can be used to distinguish between
mutually symmetric resonance cycles, and the same approach can be used to
distinguish coexisting chaotic attractors as long as they have not started to
intersect. When such intersection occurs, the chaotic solutions melt together
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Figure 2: Bifurcation diagrams obtained by scanning the interval around
the 2:1 resonance region with initial conditions that produce clockwise (red),
respectively anti-clockwise (blue) rotations in the generator (x, ẋ) dynam-
ics. At both ends, the bifurcation diagram displays coinciding (clockwise
and anti-clockwise) quasiperiodic dynamics. A pair of mutually symmetric
period-2 cycles are born in a saddle-node bifurcation at ω0 � 2.178. As
the basic frequency of the oscillator is reduced, the period-2 cycles undergo
simultaneous period-doubling bifurcations accumulating in the transition to
chaos for ω0 � 2.095. μ = 0.9.

to form a single symmetric solution. This occurs in a so-called attractor
mergence crisis [21, 28]. A similar approach cannot be used to distinguish
the mutually symmetric quasiperiodic attractors since the clock- and anti-
clockwise quasiperiodic solutions live on the same geometrical structure. Let
us finally note that whereas resonance cycles belonging to even resonances
tend to appear in symmetric pairs, resonance cycles belonging to odd reso-
nances tend to be born as single, symmetric solutions. Such solutions must
undergo a symmetry breaking pitchfork bifurcation before period doubling
can occur [20].

Figure 2 illustrates some of these points. Here we have superimposed
a pair of one-dimensional bifurcation diagrams obtained by scanning the
interval 2.0 < ω0 < 2.2 for μ = 0.9, i.e., across the region of resonant period-
2 dynamics. Using ẋ = 0 as a Poincaré plane, the two scans were initiated
with conditions (xi, ẋi = 0, zi) or (−xi, ẋi = 0, zi) to produce either clockwise
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or anti-clockwise rotation for the generator dynamics (x, ẋ). The scans were
performed from right to left with so-called adiabatic initial conditions (i.e.,
for each new value of ω0 the initial conditions were chosen as the final state
(xf , ẋf = 0, zf ) attained for the previous value of ω0. Red and blue diagrams
represent different directions of rotation. In the parameter region where the
two chaotic attractors mix, the direction of rotation is clearly not conserved.
In the region of quasiperiodic dynamics, the clockwise and anti-clockwise
motions take place on the same geometrical structure.

To the right in the bifurcation diagram we observe the coinciding quasiperi-
odic attractors that exist outside the resonance zones. As we move towards
lower values of ω0, the resonance domain starts at ω0 � 2.178 with the ap-
pearance of two symmetric 2:1 resonance solutions (drawn in blue and red,
respectively). At ω0 � 2.118, simultaneous period-doubling cascades are ini-
tiated for the two period-2 solutions, and these cascades accumulate with the
transition to chaos for ω0 � 2.095. With further reduction of ω0, the chaotic
attractors continue to grow until they finally intersect and mix in an attrac-
tor mergence crisis at ω0 � 2.063. Hereafter the system only displays a single
chaotic state and, after another (presumably interior) crises at ω0 � 2.044,
the chaotic attractor finally collapses in a boundary crisis at which both the
attractor and its basin of attraction disappear. This happens at ω0 � 2.010,
and the system hereafter returns to the quasiperiodic solutions that exist
outside the resonance domain.

The term crises [28] denotes sudden changes in the size or form of a
chaotic attractor associated, for instance, with the collision with another
chaotic attractor or with an unstable periodic cycle. In an attractor mergence
crisis two chaotic attractors intersect and merge into a single, larger chaotic
attractor. In an interior crisis the chaotic attractor collides with an unstable
cycle, typically stemming from an ’earlier’ step of the bifurcation cascade.
This may lead to either an abrupt increase or an abrupt decrease of the size
of the attractor. Finally, in a boundary crisis, the chaotic attractor collides
with its basin boundary and both the attractor and its basin of attraction
disappear. Note, however, that the above distinction between different types
of crises is based on the observed characteristic variations of the stable chaotic
attractors combined with experience from other systems. Precise distinction
requires methods (such as continuation) that would allow us to also follow
the unstable orbits.

Figures 3 (a, b and c) show 2-D phase projections of the coexisting hidden
chaotic attractors that exist in the coupled oscillator system for μ = 0.9
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Figure 3: Three different projections of the mutually symmetric chaotic at-
tractors that exist for μ = 0.9 and ω0 = 2.075. Because of the symmetry of
the equations of motion, the hidden chaotic attractors are born in pairs of
mutually symmetric solutions.
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Figure 4: (a) 3-D phase portrait of the coexisting hidden chaotic attractors
that exist for μ = 0.9 and ω0 = 2.075. (b) Poincaré sections for ẋ = 0 of the
two mutually symmetric two-band attractors in (a). The two attractors can
be reached with different initial conditions.
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Figure 5: 2-D projections of the phase portraits of system (1) for μ = 0.9. (a)
ω0 = 2.05 and b) ω0 = 2.019. The figure illustrates the form of the chaotic
attractors after the original, mutually symmetric attractors have merged.
Note how the merged chaotic attractor in (b) has expanded relative to the
attractor in (a). To a large extent, this expansion is related to the crises that
occurs at ω0 = 2.044.

and ω0 = 2.075. It is easy to appreciate the mutual symmetry of the two
attractors that can be reached from different initial states. Figure 4 (a)
provides a 3-D phase portrait of the same attractors, and Fig. 4 (b) shows
a Poincaré section for the chaotic attractors with the Poincaré plane ẋ = 0.
This figure illustrates in particular the two-band structure of the individual
chaotic attractors. Finally, Figs. 5 (a and b) show 2-D projections of the
phase portraits for the merged chaotic attractors that exist for ω0 = 2.05
and 2.019, respectively. It is interesting to note how the merged chaotic
attractor in Fig. 5 (b) has grown in size relative to the attractor in Fig. 5 (a)
and now comes very close to the point (x, ẋ) = (0, 0) in the projection plane.

Figure 6 shows the one-dimensional bifurcation diagram for slightly higher
generator frequencies where 5:2 resonance dynamics is observed to coexist
with (non-resonant) quasiperiodic dynamics. Construction of this figure has
again involved a number of adiabatic scans with different initial conditions
and different scanning directions. Note, however, that the color code differs
from that of Fig. 2. In Fig. 6, red denotes the clockwise or anti-clockwise
oscillatory behaviors associated with the quasiperiodic attractors. Blue and
purple represent different forms of resonance dynamics [20].

The 5:2 resonance cycle is born in a saddle-node bifurcation a little to
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To the right in the figure the diagram shows the symmetric period-5 res-
onance cycle. At ω0 � 2.415, this cycle undergoes a pitchfork bifurcation
followed, for decreasing values of ω0, by a period-doubling cascades and the
transition to chaos. Red elements of the diagram represent the clockwise and
anti-clockwise dynamics associated with the coinciding quasiperiodic states.
Blue and purple parts represent periodic, chaotic and merged chaotic states
associated with the resonance dynamics.
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Figure 7: (a) 3-D projection of phase portrait showing a quasiperiodic at-
tractor coexisting with one of the 5-band chaotic attractors that exist for
μ = 0.9 and ω0 = 2.375. (b) Poincaré section at ẋ = 0 for the two coexisting
attractors in (a).
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Figure 8: 2-D projection of phase portraits of three co-existing hidden at-
tractors, one quasiperiodic attractor (red) and two 5-band chaotic attractors
(blue and violet). μ = 0.9 and ω0 = 2.383.

the right of the frequency interval considered in Fig. 6. Depending on the
initial conditions this cycle may be traversed in the clockwise or in the anti-
clockwise direction. Moreover, because of the symmetry, period-doubling
bifurcations cannot take place until the cycle has undergone a symmetry
breaking pitchfork bifurcation [20]. This occurs at ω0 � 2.415, and the
two mutually symmetric oscillatory modes hereafter individually proceed to
chaos. At ω0 = 2.381, the mutually symmetric chaotic attractors intersect
and mix in an attractor mergence crisis [21, 28], and at ω0 � 2.358 the merged
attractor undergoes a boundary crisis at which both the attractor itself and
its basin of attraction disappear. To the left of this point, the considered
ω0-range only displays quasiperiodic dynamics with higher order resonance
regions. In the right hand side of the bifurcation diagram, at ω0 � 2.478, the
quasiperiodic oscillations terminate in a homoclinic bifurcation involving the
saddle cycle associated with the saddle-node bifurcation in which the original
5:2 resonance cycle was born.

Together with the quasiperiodic attractor, Figure 7 (a) presents a phase
portrait of one of the coexisting five-band chaotic attractors born in the above
described transitions. Note how the x-oscillator performs 5 rotations for each
2 rotations of the z-oscillator. Figure 7 (b) shows a Poincaré-section of the
same two attracting states constructed from the points of intersection with
the plane ẋ = 0 for ω0 = 2.375. Figure 8 (a, b and c) show a set of 2-D phase
space projections of the quasiperiodic attractor and the co-existing mutually
symmetric five-band chaotic attractors for ω0 = 2.383, i.e., immediately to
the right of the above mentioned attractor mergence crises.
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Figure 9: (a) 3-D phase portraits of the attracting torus state and of one of
the period-5 resonance cycles that can be observed for μ = 0.9 and ω0 = 2.4.
(b) Basin of attraction for the symmetric period-5 cycles (blue) and for the
quasiperiodic attractor (red). (c) Magnification of part of (b). The basins
of attraction were calculated for trajectories starting in the Poincaré plane
ẋ = 0.
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Figure 10: 2-D projection of phase portraits of three co-existing hidden at-
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Figure 9 (a) shows a 3-D phase portrait of one of the period-5 resonance
cycles that exists together with the quasiperiodic attractor for ω0 = 2.37.
Figure 9 (b) shows the basins of attraction for the resonant (period-5) and
non-resonant (quasiperiodic) solutions as obtained for trajectories starting
from the Poincaré plane ẋ = 0 with initial conditions in the intervals −10 <
x0 < 10, −300 < z0 < 300, and Fig. 9 (c) shows a magnification of part
of Fig. 9 (b). Initial states marked in blue approach one of the mutually
symmetric period-5 cycles, and initial states marked in red approach the
attracting quasiperiodic set.

Finally, Fig. 10 shows a set of 2-D phase space projections for ω0 = 2.370,
i.e. in the regime where the quasiperiodic attractors coexist with a single
chaotic attractor that has developed from the merging of the two symmetric
chaotic attractors in Fig. 8.

4 Conclusion

The concept of a ’hidden attractor’ was introduced in the mid 20th Century in
connection with discussions among leading scientists of the field about prob-
lems associated with ’polynomial systems’, ’embedded oscillations’, ’stability
in the large’, etc. [19]. If the basin of attraction for an oscillatory state
overlapped with an unstable equilibrium point, the problem of locating the
oscillation was relatively simple. However, with the analytic and computa-
tional techniques available at that time, the location of a limit cycle whose
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basin of attraction didn’t overlap with an unstable equilibrium point required
application of very specific and cumbersome methods.

The present interest in hidden attractors derives from the observation
of chaotic dynamics in autonomous systems that do not display any equi-
librium point or only display stable equilibria [6, 24] . By analogy with
its historical use, the term ’hidden attractor’ thus refers to the existence of
chaotic states whose basin of attraction does not overlap with an unstable
equilibrium point. This situation no longer represents a major challenge to
our numerical techniques. However, the birth of a chaotic attractor in an
autonomous system with no equilibrium points still represents a challenge
to our general understanding of the development of chaos. This so much
more as, until a couple of years ago, chaotic systems without equilibria were
commonly rejected as ’incomplete’ or ’mis-formulated’. Today, more than
50 such systems are known [14, 29], and the questions of interest include (i)
what are the possible mechanisms of birth for hidden chaotic attractors, (ii)
do the associated bifurcation scenarios display particular features, and (iii)
do systems of this type arise in connection with concrete practical problems.

In the present paper we have demonstrated how dynamics in a model of
an autonomous radio-physical oscillator system can arise in the absence of
any equilibrium point. We have shown how the development to chaos takes
place either via a period-doubling cascade or via a torus birth bifurcation and
the subsequent formation of resonance regions in the form of a swallow tail
structure. These structures also produce coexisting regions of non-resonant
(quasiperiodic) and resonant (periodic and chaotic) regimes, thus providing
for situations with a significant number of simultaneous complex dynamic
states. We have followed the sequence of dynamic states through a couple
of one-dimensional bifurcation diagrams, and we have illustrated the form of
the basins of attraction.

This research was supported by the Grant of RFBR ( 14-02-00085) and
Grant of RF President program for leading Russian research school NSh-
1726.2014.2.
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