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Introduction 
Dynamics of falling flat sheet in a resisting medium is the content of one of classical problems in 
hydrodynamics and aerodynamics, the analysis of which goes back to Maxwell, Kelvin, 
Kirchhoff, Joukovsky, relating to the XIX and early XX century [1-6]. 

Elementary experiments show that various kinds of dynamical behavior can occur 
depending on parameters and initial conditions:  

• simple steady fall, 
• shaking from side to side, which can be regular or irregular (flutter), 
• tumbling (autorotation), regular or irregular. 

Naturally, there is a problem to find conditions for implementation of these regimes, to 
understand their nature in the context of the theory of dynamical systems, to explore 
bifurcations, leading to occurrence of certain types of motion, etc. 

Full and correct approach to description of motion of a body in viscous incompressible 
fluid implies investigation of the time-varying velocity field in the surrounding area based on the 
Navier – Stokes equations [7-12], which requires a complicated resource-intensive computations. 
Data obtained in this way are obviously not easy for comprehension, and, given the expected 
diversity of types of dynamics depending on many parameters still have need of qualitative 
interpretation of the physical level for their understanding. 

A reasonable initial step to simplify the analysis is to restrict the consideration with the 
plane problem. It means that only two spatial coordinates X and Y are significant while the third 
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one Z is regarded as irrelevant: the system is assumed to be extended in Z-direction; there are no 
motions along this axis and no dependences of variables on Z.  

Next, one can turn to approximate description of the problem with models in a form of 
ordinary differential equations for a small number of variables, i.e., to dynamical systems with a 
relatively small dimension of the phase space. Although validity of such approach is not so 
obvious, it has a grate advantage that within this framework one can involve powerful conceptual 
tools of modern dynamical systems theory for the analysis of the problem. In particular, such 
well-established and proven methodology of computational studies and data processing like 
graphical presentation of portraits of attractors [13-15], charts of dynamical regimes in the 
parameter space [15-17], computation of Lyapunov exponents [18,14,15], bifurcation analysis 
[19] may be applied in the explorations. 

A foundation for legitimate finite-dimensional description is the fact that governing 
equations for generalized coordinates and velocities of the solid body moving in ideal non-
viscous incompressible fluid can be separated from the field equations of the fluid itself. The 
corresponding equations were derived and studied in due time by Kirchhoff [2, 7-10, 20, 21]. 
Effect of fluid motion on the body only modifies the inertial properties; instead of usual masses 
and moments of inertia, one has to deal in the equations with added masses and moments of 
inertia due to the contribution of the fluid motions in adjacent space regions. In the plane 
problem forces on the body from the fluid are determined by circulation of the velocity field 
around the body profile, and in the case of ideal fluid the circulation appears simply as a constant 
parameter; in particular, it may be zero. 

Actually the Kirchhoff equations relate to a situation of excluded losses of mechanical 
energy, and the corresponding dynamical system is conservative. Then, many properties of the 
falling body dynamic behavior significant from the practical point of view remain outside the 
scope of the consideration as they are associated with dissipation. It relates e.g. to steady fall 
regimes and to sustained regular or chaotic oscillations and rotations [20, 21]. To account and 
study such motions it seems natural to account dissipation in a phenomenological way by means 
of appropriately chosen additional terms to the Kirchhoff equations [22-28]. 

This review is devoted to models for the plane hydrodynamic problem based on ordinary 
differential equations and to mutual comparison of these models. One of the main goals is to 
fulfill the picture of dynamical phenomena relating to this problem with concrete content and 
illustrative material obtained in computations. Relationship of this material with results based on 
the Navier – Stokes equations [29-32], as well as with experimental data [33-38], will not be 
concerned. Also we do not discuss situations of motion of bodies in resisting media beyond the 
plane problem [36-38] and generalizations, including control of the body motion in fluid [39-43]. 

In Section 1 we discuss the plane problem of the fall of the body of elliptic profile in ideal 
fluid, and equations of motion are presented accounting the effect of added masses. Section 2 is 
devoted to a special case where the gravity is compensated by the buoyancy force, and the 
dynamics is reduced to a pendulum-type equation with sinus-function nonlinearity. In Section 3 
we consider a Kozlov model derived from a conservative system with taking into account only 
the viscous friction forces and the torque resistance force linear in the generalized velocities. A 
special case is discussed when the model is integrable and reduces to the pendulum equation 
with damping, and analysis of stability loss for a steady uniform fall is examined that may lead 
to arising autorotation. In Section 4 a modification of the model is considered, in which the 
gravity is excluded, constant circulation is assumed, and constant torque of external force is 
applied to the body. It is shown that in this situation the chaotic dynamics occurs associated with 
the strange attractor of Lorenz type. Section 5 is devoted to a model introduced by Tanabe and 
Kaneko, which takes into account the forces of resistance and lift due to presence of circulation, 
expressed via the dynamical variables using the postulate of Kutta – Joukovsky – Chaplygin. 
Accounting critical remarks in address of this model in the literature, we consider ways of its 
modification to account for them. Approximate analysis of a non-standard bifurcation 
accompanying transition from the steady fall to the oscillatory regime in the Tanabe – Kaneko 
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model is developed. Section 6 discusses the model advanced by Belmonte, Eisenberg and Moses, 
in which, unlike the Tanabe – Kaneko model, the resistance force and torque depend 
quadratically on the generalized velocities. In Section 7 we consider a model elaborated by 
Andersen, Pesavento, and Wang who introduce empirically chosen dissipative terms in the 
Kirchhoff equations on a base of fitting the data of numerical solution of the Navier – Stokes 
equations. In Section 8 generalized equations are formulated to allow using one and the same set 
of dimensionless variables and parameters for comparative analysis of the dynamic behavior of 
all the mentioned models. 

1. Plane problem of the body fall in ideal fluid 
We will use two coordinate systems: the laboratory frame (X, Y), where a position of the center 
of mass of the body is given by the Cartesian coordinates X and Y, and the moving frame (x, y), 
the axes of which are fixed relative to the body (Figure 1). 

Let us start with the problem of body fall in ideal incompressible non-viscous fluid. 
Taking into account inertial properties of the body and its environment, the kinetic energy 

may be written in the form 
 2
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where vx and vy are velocity components in the moving frame, θ&  is the angular velocity, the time 
derivative of the angular coordinate of the body, m is the mass and I is the moment of inertia of 
the body. The additives mx, my, and J account the added masses due to involvement of 
surrounding fluid volumes in the motion. We assume that the body is of density ρs, and the fluid 
is of density ρf. As we deal with the plane problem the densities are defined as mass per unit area 
in a cross section. 

According to classic hydrodynamics [7-12], for a body moving in ideal non-viscous fluid 
the resistance forces are absent (the d'Alembert – Euler paradox), but forces acting on the body 
appear due to non-zero circulation Γ of the velocity field around a contour enclosing the body 
(Joukovsky theorem). The value of Γ does not depend on particular choice of the contour. 
Moreover, Γ remains constant in time (the Kelvin – Helmholtz theorem) been determined by 
initial conditions for the velocity field in the fluid. The components of the force are yfx vf Γρ−=  
and xfy vf Γρ= . 

In presence of gravity characterized by the gravitational acceleration g reduced due to the 
buoyancy, the equation for the velocity components and the angular variable read 
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The coordinates of the center of mass in the laboratory frame evolve in time as determined by the 
differential equations 
 .cossin,sincos θ+θ=θ−θ= yxyx vvYvvX &&  (1.3) 

For the body of elliptic profile with semiaxes a and b the mass and the moment of inertia 
are 
 )(, 22

4
1 baabIabm ss +πρ=πρ= ; (1.4) 

the added masses and moment of inertia in ideal non-viscous fluid are expressed as [9] 
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Figure 1: Laboratory and moving coordinate frames in the plane problem of the body fall in a resisting 

medium 

Substitution of these relations in (1.2) yields  
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where shortened notation for the coefficients is used: 
 221

8
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4
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Here sf ρρ=ρ /  is the ratio of densities for the fluid and the body, and ab /=β  is the ratio of 
the semiaxes of the ellipse. 

In some cases it is convenient additionally to normalize the velocity components as 
avvavu yx /,/ ==  and rewrite the equations (1.6) in the form 
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2. Conservative dynamics without gravity 
Consider first the case of equal density of the fluid and the body, ρ=1. Then the gravity effect is 
excluded by the buoyancy, and equations (1.8) take the form 
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where aba πΓ=βπΓ=Γ′ // 2 . The substitution 
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 ϕ−=ϕ= −− sin,cos 11 RBvRAu  (2.2) 

transforms the equations to  
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Here φ is an instant angle between the principal axis of the elliptic profile and the translational 
velocity of the body, and θ is an instant angle of inclination of the principal axis of the elliptic 
profile measured in the laboratory frame. 

If we multiply the first equation by R and compose a sum with the third equation, the right-
hand part vanishes, and a combination under the derivative is then an integral of motion: 
 const222 =θΓ′+= &QRD . (2.4) 

Expressing R from this relation we obtain a single equation for the angular variable φ: 
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In the case of zero circulation 0=Γ′  the equations (2.1) for the variables u, v, θ= &w  take 
the form [7] 
 uvBAwQAuwvBBvwuA )(,, −=−== &&& . (2.6) 

According to (2.4), the integral of motion in this case is R and it corresponds to conservation of 
translational momentum of the body with account of the added masses. From the second 
equation (2.3) we see that θ=ϕ && , so without loss of generality, in this case one can identify φ and 
θ. (This is so because an origin for θ can be chosen arbitrarily due to spatial isotropy of the 
problem without gravity.) Then, for θ we get the relation  

 0sincos)( 2 =θθ
−

+θ R
ABQ

BA&& , (2.7) 

which coincides precisely with the pendulum equation written for the doubled angular variable 
θ=ϑ 2  (due to the identity θ=θθ 2sincossin 2

1 ) [7]. Figure 2 shows the phase portrait for this 
equation in the plane ),( θθ & . Due to the fact that θ is a cyclic variable, the configuration is 2π-
periodic. Therefore, the phase portrait can be thought as placed on a surface of a cylinder 
resulting from rolling a plane band of width 2π into a tube and gluing the vertical edges together.  

The fixed points 2/π=θ  and 2/3π=θ  are stable centers corresponding to the uniform 
motion of the body, wide side forward. The fixed points 0=θ  and π=θ  represent unstable 
saddle states corresponding to the uniform motion of the profile, edge forward. On the phase 
portrait one can see the separatrix containing the saddle points. Orbits inside the separatrix 
correspond to oscillatory motions around the centers, while the rotational motions are 
represented by curves outside the separatrix. Motion precisely on the separatrix can be obtained 

setting the initial conditions 
ABQ

ABRw −
±=

π
=θ 00 ,

2
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Figure 2. Phase portrait of the 
equation (2.7) with 1,25.0 ==β R  

 

Diagrams in Figure 3 illustrate motions of the body in real space as obtained from joint 
numerical integration of equations (2.6) and equations for coordinates of the center of mass: 

θ+θ=θ−θ= cossin,sincos vuYvuX && . The top picture relates to a stable steady motion of the 
body associated with the fixed point of center on the phase portrait. Further, from top to down, 
there are illustrations for the oscillatory side to side motion, the motion along the separatrix 
asymptotically approaching an unstable stationary state, and rotation, when the body tumbles in 
the course of time evolution. 

 

 
Figure 3. Motion of the body of 
elliptic profile in ideal fluid without 
circulation at β=0.25, R=1. Positions 
of the principal axis are shown at 
successive time instants. The initial 
angle is 2/0 π=θ ,and initial angular 
velocities are listed in the 
inscriptions 

In presence of non-zero circulation, the variables φ (the angle between the velocity vector 
and the principal axis of the ellipse) and θ (the angle of inclination of the profile in the laboratory 
frame) must be distinguished as they behave differently. Fig. 4 shows the phase portrait at the 
value of the integral of motion D=1 and circulation Γ=0.4 on the plane of variables φ and θ= &w . 
Although the form of trajectories differs from that of Figure 2, the topological structure remains 
the same. Observe again the fixed points, the stable centers, and the unstable saddles, located at 
the separatrix subdividing the plane onto regions of oscillatory motions represented by closed 
curves and regions of rotational motions associated with curves going from side to side of the 
rectangle. Analysis of motions in space in the case of non-zero circulation shows that the 
oscillatory or rotational motions of the body take place on a background of a gradual 
displacement of the center of mass around some midpoint (Figure 5). 



 7

 
Figure 4: Phase portrait of the dynamics in the case of non-zero circulation, Γ = 0.4, β = 0.25, D = 1. 

 
Figure 5: Diagrams illustrating the motion of the body of elliptical profile in ideal fluid for the case of 

non-zero circulation Γ=1 for β = 0.25 with different initial conditions. 

The above quite simple and descriptive results provide a good starting point for further 
analysis of motions in the presence of dissipation and gravity. It is analogous to a productive 
approach in theory of oscillations, when a conservative oscillator is considered as a paradigmatic 
model for subsequent modifications involving say, damping oscillations or self-oscillations 
corresponding to attracting closed orbits, the limit cycles [44,45]. 

For systems whose states are represented on the phase cylinder, the oscillation theory 
distinguishes the limit cycles of the first kind as closed loops on the cylinder surface, and of the 
second kind, as the curves bypassing around the cylinder. In the context of the problem of the 
body fall in fluid, the first case will correspond to oscillations from side to side (flutter), and the 
second to the fall with tumbling (autorotation). 

3. Kozlov model: Falling body with viscous friction 
The simplest model of the body fall in fluid with gravity and viscous friction is based on 
suggestion that the circulation is zero, and the added dissipative terms are proportional to the 
translation velocity components and to the angular velocity [22].  

When taking into account the viscous friction, it seems natural to depart from the well-
known Stokes formula [7, 9-11]. For steady motion of a sphere of radius R0 in viscous medium 
with velocity V it reads 
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where η is the viscosity coefficient. It is useful in many cases to represent it as a product of the 
fluid density and the kinematical viscosity: νρ=η f . For the body in the form of an ellipsoid 
with semi-axes a, b, c there is a generalization [7], the same formula, but with modified 
geometric parameter *R . In the case of motions along the a-axis it is 
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In the context of three-dimensional problem of the fall in the fluid this solution could be used for 
bodies in the form of "pancake" (disc of elliptical shape) in a limit case of high viscosity. 
However, in a rigorous two-dimensional formulation it is not applicable according to the so-
called Stokes paradox [7, 10, 11]. Nevertheless, from the physical point of view, since in reality 
the geometric dimensions of the body are limited in all three dimensions, it seems appropriate to 
assume that the components of the viscous force are represented by expressions similar in 
structure to the Stokes formula, namely, as 
 yyxx avcFavcF η−=η−= 21 , ,  (3.3) 

and the viscous resisting torque for rotational motion is 
 θη−=θ

&3
3 acM ,  (3.4) 

where c1,2,3 are some coefficients. Taking these forces into account corresponds to adding terms 
in (1.8) being the derivatives of the Rayleigh function [22] 
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over the respective generalized velocities. Then, instead the equations (1.8) we write 
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where 3,2,1
1
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If the ratio of the friction coefficients for motions along two principal axes of the elliptical 

profile is equal to the ratio of the effective masses, the equation (3.6) can be integrated 
analytically. Indeed, let μ=μμ=μ BA 21 , , and θ−μ−+= iteiBvAuz )( . Then, from the first two 
equations (3.6) we obtain tiPez μ−=&  and ∫ μ−= dteiPz t . Thus, we have 
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where c and α are constants determined by initial conditions. At asymptotically large t the 
velocities satisfy the relations 
 .sin,cos 1111 θμ−=θμ−= −−−− PBvPAu  (3.8) 

The angular variable in this asymptotic regime will be governed by the third equation of (3.6), 
where one has to substitute (3.8). Then, it takes a form of the damped pendulum equation 
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(Note an obvious correspondence of it to equation (2.3) for the conservative case.) If the initial 
conditions are selected in such way that the body motion was originally rotational, then over 
time it transforms, first, to oscillation without tumbling, and then the oscillations decay, and 
finally the steady fall occurs, which corresponds to a stable fixed point 
 0,0,/,0 2 =θ=θ=μ−== &wPvu . (3.10) 

(One more stationary solution θ=π is equivalent in properties to (3.13), as there are two 
orientations of the body in the fall, one or other wide side down.) 

Kozlov also studied stability of the stationary solutions of (3.10) for arbitrary friction 
coefficients μ1,2,3. Let us add small perturbations to the solution (3.10), then, in the first order we 
obtain from (3.5) the following equations for the perturbations marked with a tilde: 
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The exponential substitution stewvu ~~,~,~,~ θ  yields the characteristic equation 
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Among four roots of this equation, there is a trivial one, Bs /20 μ−= , and the remaining three 
roots may be obtained by solving the cubic equation with real coefficients. Stability loss occurs 
when a real part of a pair of complex conjugate roots vanishes. This condition can be derived if 
we look for a solution of (3.12) in the form ζ= is  that leads to relations 
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Assuming 0≠ς  we have 
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(Note that in the integrable case AB // 12 μ=μ  the equality is impossible: while 03,2,1 >μ  and 
AB > , the right part in (3.14) is obviously greater than the left part, so the fixed point (3.10) is 

always stable.) 
To pass from elliptic profile to a thin plate, it is natural to consider the limit 0/ →=β ab .1 

Meaningful the case is when simultaneously the density ratio approaches zero too, while the 
value βρ= /r  remains fixed. This ratio is regarded as a relevant parameter of the model. 
Producing normalization of time, velocities, and friction coefficients  

 1
3,2,13,2,1

111 ,,, −−−− ′=′=′=′= gakkgavvgauuagtt , (3.15) 

                                                 
1 Rigorously, this limit transition leads to a non-uniform mass distribution on the plate and decrease of the linear 

density from central maximum to the edges according the law 22 xa − . Unlike the moment of inertia 2
3
1 ma  of a 

homogeneous plate, in this limit we have 2
4
1 ma . However, in a frame of qualitative analysis, this difference seems 

not principal.  
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and omitting primes for brevity, we arrive at the equations 
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Equations (3.16) correspond to the form (3.6) with rQrBA 8
1

4
1,1,1 +=+== , 

3,2,13,2,1,1 rkP =μ= , and all the above results can be easily reformulated for them. In particular, 
it concerns the reduction to the pendulum equation with damping (3.9) in the integrable case 
with )1/(21 rkk += . Also, the condition of stability loss for the fixed point corresponding to the 
steady fall (3.14) can be rewritten as 
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Figure 6 illustrates dynamics of the model (3.16) in the phase plane ),( θθ &  that may be 
interpreted as well as the phase cylinder. In diagram (a) the motion being initially rotational, 
transforms to damping oscillations, and eventually approaches a fixed point corresponding to the 
stable steady fall. In diagram (b) the trajectory departs spiraling from the unstable fixed point, 
and converges to a limit cycle of the second kind around the cylinder, which corresponds to the 
autorotation. Fig. 7 illustrates the respective spatial motions of the plate in fluid. 

 
Figure 6: Phase trajectories in Kozlov model (3.16) with 04.0,1,2 32 === kkr , 3

1
1 =k  (a), and 5

1
1 =k  

(b). Attractors are shown in red; this is a fixed point in panel (a) and a limit cycle of the second kind 
responsible for autorotation in panel (b). 

 
Figure 7: The spatial motion of the falling plate in the Kozlov model with parameters corresponding to 
panels (a) and (b) in the previous figure.  

Despite simplicity of the Kozlov model, it manifests non-trivial phenomena of nonlinear 
dynamics, like transition to chaos through period doubling, strange attractors, and multistability 
in certain parameter regions (see Section 8.2). 

To conclude this Section, we mention briefly the work of Mahadevan [26], where the 
problem formulation is similar to that of Kozlov, but with taking into account a nonlinear 
dependence of the resistance force on the velocity. The author defines the nonlinear friction in 
such a way that the drag coefficient for each component of the force depends only on the 
velocity component in the same direction that is hardly justified.The model takes into account a 
possible displacement of the center of mass of the body relative to the geometric center of the 
elliptic profile and a possibility of non-zero circulation around the profile, which is considered as 
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a constant parameter Γ. Analytical results are consistent with those of Kozlov, with the addition 
that the asymmetric case also is considered. Numerical results are presented in very restricted 
volume, and they are irreproducible because of obvious errors specifying relevant parameters in 
the text of the article. 

4. Lorenz attractor in a model of body motion in fluid  
Lorenz attractor [46-48] is a popular object of nonlinear dynamics, well studied by 
mathematicians. It relates to a class of quasi-hyperbolic (or singular hyperbolic) strange 
attractors. Chaotic dynamics on the Lorenz attractor is rigorously stated and justified [49]. 

Here we demonstrate that motion of a body of elliptical profile in viscous fluid may be 
associated with the Lorenz-type attractor. 

Under assumptions of the Kozlov model (3.6), consider a case of equal densities ρ=1, when 
the effect of gravity is excluded (i.e. P=0), and assume presence of constant nonzero circulation 
Γ. Additionally, in the equation for the angular velocity we include a term of a constant external 
torque. So, we arrive at the equations  
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where θ= &w . By the change of variables and parameters  

 zMwABQAByvABBQAxu −μ=−=−= −−− 1
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11 ,)/(,)/( ,  (4.2) 
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the equations are reduced to the form similar to the Lorenz model: 
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xzyxhy
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+ν−=
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&
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 (4.4) 

In the case 21 hh =  they coincide exactly with equations for parametric excitation of waves 
considered by Pikovsky, Rabinovich and Trahtengerts [50] who demonstrated the Lorenz type 
attractor, e.g. at ==ν=ν=ν h,1,4,1 321 5.875.  

Having taken arbitrarily β=0.25 and, respectively, 25.11 =β+=A , 51 1 =β+= −B , 
705.0)1()1( 221

8
12

4
1 =β−β+β+= −Q , we obtain from (4.3) 

 .583.19,903.6,705.0,20,25.1 321 =Γ==μ=μ=μ M  (4.5)  
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Figure 8: Lorenz-type attractor in three-dimensional states space (a) and plot of the map for consecutive 
minima of the variable w in the course of time evolution (b). The diagrams are based on data of numerical 
solution of equations (4.1) with .583.19,903.6,705.0,20,25.1 321 =Γ==μ=μ=μ M   

Figure 8 shows a three-dimensional portrait of the attractor in the phase space of the system 
(4.1) obtained from numerical solution of the equations with these parameters and a plot for the 
map prepared according to the procedure proposed in the original paper of Lorenz, where 
successive minima of the variable w achieved during the temporal evolution of the system are 
plotted. Observe the characteristic form with a sharp maximum, resembling a classic "saw tooth" 
map [46, 47, 50, 14, 15] that supports the quasi-hyperbolic nature of the attractor similar to the 
classic Lorenz attractor. 

Figure 9 provides portraits of the attractor in the planes of variables u, v and 
θ=+=ϕ &wivu ),arg( , which can be compared with the diagrams for other models discussed in 

this review. From the diagram (b) it is clear that the dynamics must be interpreted as a chaotic 
rotation. 

 
Figure 9: Attractor of the system (4.1) in projection on the planes of variables ),( vu  and ),( wϕ . 
Parameters are the same as those in figure 8. The fact that the trajectories are crossing the borders of the 
rectangle in the diagram (b), i.e. go around the phase cylinder, indicates the presence of rotational 
(tumbling) motion of the body. 

Figure 10 illustrates the real space-time motion of the body associated with dynamics on 
the Lorenz attractor in the subspace of the generalized velocities. To draw this diagram, the 
numerical solution of the equations (4.1) is carried out together with the equations for the 
angular velocity and for the coordinates of the center of mass 
 θ+θ=θ−θ==θ cossin,sincos, vuYvuXw &&& . (4.6) 
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The figure shows that the motion is accompanied by chaotic oscillations and tumbling of the 
body according to the chaotic nature of the attractor. 

 
Figure 10: Spatial motion of the body in a situation where the Lorenz attractor holds in the space of 
generalized velocities (u, v, w). Parameters are the same as those in figure 8. 

To quantify characteristics of chaos it is appropriate to use the Lyapunov exponents. Full 
spectrum of Lyapunov exponents of the system (4.1), (4.6) has three zero members 
corresponding to perturbations of center of mass shift along two coordinate axes and of variation 
of the angle inclination. Beside them, there are three non-trivial exponents relating to the Lorenz 
attractor of the subsystem (4.1). Their computation from simultaneous numerical solution of 
equations (4.1) and the corresponding variation equations with the Benettin algorithm [18, 15] 
yields 
 003.0390.6,0007.00002.0,003.0390.0 321 ±−=λ±−=λ±=λ . (4.6) 

Presence of the positive exponent in this list (4.6) indicates occurrence of chaos, 
characterized by exponential sensitivity to initial conditions intrinsic to orbits on the attractor. 
The second exponent is zero (up to a calculation error) being associated with a perturbation of 
shift along the trajectory. The third exponent is negative and is responsible for the approach of 
the trajectories to the attractor. The fact that the sum of all the exponents is negative indicates the 
phase volume compression in the subspace (u, v, w). It is consistent with the analytical 
calculation of the divergence for the vector field determined by the right-hand sides of (4.1); 
namely, QBAfff wwvvuu ///div 321 μ−μ−μ−=∂+∂+∂=F  (at the assumed parameters it 
equals –6). 

5. Tanabe – Kaneko model 
For a correct description of the plane problem of body motion in viscous fluid it is essential to 
account the dependence of the velocity circulation around the profile on the dynamical variables 
and parameters. For the body in the form of a thin flat plate the circulation can be evaluated on a 
base of the Kutta – Joukovsky – Chaplygin postulate of absence of singularity of the velocity 
field at the trailing edge of the profile moving in fluid [7-12]. Then, it becomes possible to 
evaluate using Joukovsky theorem the lift force and the drag force. Tanabe and Kaneko argue in 
their paper [23] that these effects may lead to arising complex dynamics and chaos in motion of 
the body falling in fluid due to gravity. 
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Using velocity components in the projection on the axis of the coordinate system 
associated with the body, one can simplify the equations suggested originally by Tanabe and 
Kaneko [23] and represent them as 
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&&

 (5.1) 

where mlf /ρ=ρ , al 2=  is the width of the plate, g0 is the gravity acceleration constant, m is 
the mass of the plate. The coefficients ||k  and ⊥k  characterize the viscous friction for motion of 
the plate in fluid in the longitudinal and the transverse direction. To determine the coordinates of 
the center of mass in the laboratory frame, the system (5.1) is supplemented by equations 
 .cossin,sincos θ+θ=θ−θ= yxyx vvYvvX &&  (5.2) 

In the absence of friction, the equations (5.1) obviously correspond in structure to 
equations (1.6) if we set 

 xy vlv sgnπ−=Γ , 1== BA , 
lQa

BA ρπ
−=

− 3
2 , 0)1( gg =ρ− . (5.3) 

The fact that the second and the third equalities (5.3) contradict each other, is associated with 
some incorrectness of the Tanabe – Kaneko formulation of the problem that was criticized after 
publication of their work [24,25]. Namely, due to the fact that the authors excluded the added 
mass effect, the coefficients A and B appear to be equal, and it implies that the coefficient in the 
third equation (5.1) vanish, while in correct approach it should be relevant for the observed 
complex dynamics. Further, the formula for circulation Γ according to (5.3) takes into account 
only contribution of the translational motion of the plate, while there is also a contribution from 
the rotational motion proportional to the angular velocity [9, 28]. In addition, Tanabe and 
Kaneko excluded the Archimedean buoyancy.2  

Despite these seemingly essential deficiencies, the Tanabe – Kaneko model qualitatively 
gives a reasonable picture of possible regimes of complex dynamics for the falling plate in fluid. 
This is confirmed by comparative analysis of this model with its corrected version and explained 
to some extent in Section 8.3. 

We present here some numerical results for the model (5.1), taking the parameters chosen 
by the authors: 1.0=ρ , 1=l , 8.9=g ; the values ||k  and ⊥k  will be varied.  

To define the Poincaré map it is appropriate to determine cross-section of the flow of 
trajectories in four-dimensional phase space by a three-dimensional hyper-surface  
 0sin =θ=S . (5.4) 

Calculation of the Poincaré map was implemented as a special sub-program that performs 
numerical integration of the differential equations by the Runge – Kutta fourth order method. To 
construct the Poincaré section in accordance with the condition (5.4), the method of Hénon was 
used [51, 15]. Specifically, numerical integration of the differential equations is continued up to 
detecting situation that at the next step the S value changes sign. Then, the last step is canceled, 
and an additional step is performed using the same difference method, but taking S as the 
independent variable, and with the step size given by the obtained value of S with the opposite 
sign. This returns the representative point on the surface S=0 and we get the Poincaré map image 
for the initial state vector. Note that the procedure is consistent in accuracy with the difference 
scheme used. A similar routine is performed at intersection of the phase trajectory with three-
                                                 
2 The last flaw, however, may be corrected readily by introducing a parameter of effective acceleration of free fall, 

)1(0 ρ−= gg , and in some cases, like fall of the plate in the air, it is naturally insignificant. 
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dimensional hypersurface u=0 to avoid loss of accuracy of the difference scheme by accurate 
localization of the passage in time. 

To draw charts of dynamic regimes a procedure of scan of the parameter plane of ⊥k  and 

||/ kkf ⊥=  is carried out on a grid with some steps along two coordinate axes. At each point 
about 103 iterations of the Poincaré map are produced, and the data for the final iteration steps 
are analyzed to detect a repetition period (from 1 to 14) up to some level of permissible error. If 
a certain period is detected, the pixel in the diagram is attributed with the corresponding color, 
and the routine proceeds with analysis of the next point in the parameter plane. To start iterations 
at each new point it is reasonable to use a state obtained as result of iterations at the previous 
point ("scan with inheritance"). In most cases it helps to speed up essentially the convergence to 
sustained dynamics. 

 
Figure 11: Chart of dynamical regimes in the parameter plane ||/, kkfk ⊥⊥ =  for the Tanabe – Kaneko 
model. Values of other parameters are 1.0=ρ , 1=l , 8.9=g . The color is determined from analysis of 
the repetition period in the Poincaré section (blue designates period 1 with symmetry, and green – without 
symmetry, other colors correspond to larger periods). The white color means chaos or unrecognized 
regular regimes. Black color designates stationary fall (SPF). On the periphery portraits of attractors are 
shown for regimes corresponding to the Tanabe – Kaneko classification scheme: PR (periodic rotation), 
CR (chaotic rotation), RF (periodic flutter, oscillations without tumbling), CF (chaotic flutter). Blue and 
white horizontal shading corresponds to coexistence of attractors associated with chaotic rotation and 
periodic oscillations, as illustrated by the diagram (h). 

Figure 11 shows a chart of dynamical regimes. On the periphery portraits of attractors are 
collected corresponding to some representative points on the parameter plane. Visually, the 
phase portraits in the plane ),( θθ &  allow easy drawing conclusions about nature of the regimes of 
the fall. If the orbit or a set of orbits belonging to the attractor goes around the phase cylinder, 
the regime is classified as autorotation that may be periodic (PR, diagrams (a), (b), (c)) or chaotic 
(CR, diagrams (d), (g), (h)). If no orbits around the phase cylinder occur, this corresponds to a 
fall with oscillations without tumbling that is flutter, which may be periodic (PF, diagram (e)), or 
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chaotic (CF, diagram (f)). The black area at the bottom left of the chart corresponds to the steady 
perpendicular fall without oscillations (SPF).  

Full spectrum of Lyapunov exponents of the system (5.1), (5.2) includes two zero ones 
corresponding to shift perturbations for coordinates X and Y of the center of mass, and four 
exponents relating to the attractor of the subsystem (5.1). One of them is zero as associated with 
a shift along the reference phase trajectory on the attractor. 

Because of presence of a discontinuous sgn-function in (5.1), it is preferable to compute 
Lyapunov exponents without appealing to the linearized equations in variations [15]. Namely, at 
given parameters, using the subroutine computing the Poincaré map, we perform iterations 
jointly for a collection of four states, one of which corresponds to the reference trajectory, and 
three others to slightly perturbed orbits close to the reference one. After each step, the 
perturbation vectors are orthogonalized by the Gram – Schmidt procedure and normalized to a 
fixed small norm, and the computation continues with the redefined perturbation vectors. Three 
non-trivial Lyapunov exponents are evaluated as coefficients of the growth or decay of the 
accumulated sums of the logarithm of the perturbation magnitude ratios. 

In systems with symmetry, as known, a symmetric limit cycle can not undergo the period 
doubling; a bifurcation of symmetry breaking must preceded [52].  

Increasing the value of ⊥k , i.e. moving on the chart of Fig.11 along a horizontal path from 
left to right, one observes the symmetry breaking corresponding to transition from blue to green 
area and then it is followed by a cascade of period-doubling bifurcations and onset of chaos. 

Figure 12 shows a one-parameter bifurcation diagram ("bifurcation tree") and the 
parameter dependence of the senior non-trivial Lyapunov exponent illustrating the period 
doubling transition to chaos. Diagrams correspond to the horizontal path on the chart at f=50 
varying ⊥k  in certain limits. The diagrams demonstrate a well-recognizable typical visual image 
of transition to chaos through an infinite cascade of period-doubling bifurcations manifesting 
universality and scaling of Feigenbaum [54, 55, 14, 15]. This qualitative conclusion is confirmed 
by the numerical estimates for the constant of convergence of bifurcation points (δº4.67) and the 
constant characterizing the splitting of the branches of the "tree" )50.2( −≈α . 
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Figure 12. Bifurcation tree and the 
largest nontrivial Lyapunov exponent 
parameter dependence illustrating 
transition to chaos through period-
doubling bifurcations in the Tanabe – 
Kaneko model along the horizontal 
path f=50 on the chart of regimes of 
Figure 11. 

 
Figure 13 reproduces portraits of attractors for Tanabe – Kaneko model similar to those in 

their original paper. Along the coordinate axes the components of translational velocity in the 
laboratory frame determined according to (5.2) are plotted. The Lyapunov exponents of these 
attractors (except zero ones, related to the subsystem (5.2)) obtained in the computations are 
given in the figure caption. Attractor in the diagram (a) is regular and consists of a single closed 
orbit that is a limit cycle, so that the senior exponent is zero, and the others are negative. 
Attractors (b) and (c) are characterized by the presence of a positive exponent that indicates the 
chaotic nature of the regime. The sum of the exponents in each case is negative that means 
compression of the phase volume in the subspace ),,,( θθ &vu  in the course of time evolution. Its 
value is consistent with analytical calculation of the divergence of the vector field whose 
components are given by the right side of (5.1) : ⊥−−= kk 2div ||F . 
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Figure 13: Phase portraits of attractors for the Tanabe – Kaneko model at k¦=4.84 (a), 4.9 (b), 5 (c). Other 
parameters: 1.0=ρ , 1=l , 8.9=g , k||=100k¦. Along the coordinate axes components of translational 
velocity in the laboratory frame θ+θ=θ−θ= cossin,sincos yxyx vvYvvX &&  are plotted. Lyapunov 
exponents are: a) }62.7,026.2,085.0,0{ −−− , b) }1.078.7,01.023.2,0,005.0162.0{ ±−±−± , c) 

}05.086.7,01.036.2,0,007.0345.0{ ±−±−± . 

Let us discuss in some detail the transition from a steady fall to oscillations (flutter) in the 
Tanabe – Kaneko model. A non-standard nature of the bifurcation occurs due to the fact that the 
equations contain a discontinuous function sgn. 

Considering solutions close to the of steady fall regime: 0,0 ==θ xv , ⊥−= kgvy /0 , we 

put vkgvuv yx +−==ϑ=θ −
⊥

1
0,, , where 1||,1|| <<<<ϑ u , 1|| <<v . If we ignore perturbations 

of the transverse velocity vy (with relatively large factor ⊥k  it seems reasonable), the equations 
for the other variables read 
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uklg

ukgguku
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ρπ=ξ

ρπ=ξ++
&

&
 (5.5) 

where ϑ+ϑ=ξ −
⊥
&1k . Hence, for ξ we obtain an equation of the same form as that for an oscillator 

with dry friction [53] 
 ξ=ξω+ξ+ξ &&&& sgn2

|| Fk , (5.6) 

with 413
0

22212
0

2 3,3 −
⊥

−−
⊥

− ρπ=ρπ=ω klgFklg . However, the factor responsible for the "dry 
friction" has a sign opposite to that in the standard problem. 

First, let us assume for simplicity that 0|| =k . In the upper half-plane ),( ξξ &  the family of 

phase trajectories is represented by ellipses centered on the x-axis at 22 −
⊥

− ρπ=ω=ξ gkF  (point A 
in Fig. 14a), and in the lower half-plane by ellipses centered at 2−ω−=ξ F  (point B in Fig. 14a). 
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Since F> 0, the motion is accompanied by the growing oscillations (the amplitude increases 
linearly in time). 

 
Figure 14: Phase trajectories for equations (5.6) on the plane ),( ξξ &  in the case 0|| =k  (a) and 

*||0 kk <<  (b). The horizontal segment AB consists of unstable fixed points. Red in the diagram (b) 
designates the stable limit cycle.  

Suppose now that the coefficient ||k  is positive. While it is not large, in the upper half-plane 
instead of ellipses we have a family of trajectories spiraling to point A, and in the lower half-
plane to the point B. The corresponding oscillation frequency and damping coefficient are 
determined by the imaginary and real parts of the roots of the characteristic equation 

02
||

2 =ω+λ+λ k : 4/2/ 2
||

2
||2,1 kik −ω±=λ . In contrast to the previous case, the oscillating 

motion visiting the upper and lower half-planes turn by turn converges to a limit cycle 
encompassing the segment AB. The situation will change when the character of the decay 
becomes not oscillating but monotonous, that is the case 22

|| 4ω>k . Returning to parameters of 
the Tanabe – Kaneko model, we see that it corresponds to the condition 
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On the chart of regimes the corresponding area is shown in black. Numerical simulations show 
that in this area the steady fall occurs, while outside it the oscillations develop (flutter).3  

6. Belmonte – Eisenberg – Moses model 
Starting from some experiments with plates falling in fluid the authors [27] turn to formulation 
of the problem, in which the resistance forces for the translational and rotational motions depend 
on the velocities quadratically: 
 θθρα−=ρα−=ρα−= ωθ⊥

&& ||,, 4
4
1

4
1

||4
1 lFlVvFlVvF fyfyxfx , (6.1) 

where 22
yx vvV += , ⊥αα ,|| , and ωα  are constant coefficients. Equations analogous to those of 

Tanabe – Kaneko in this case take the form 

                                                 
3 The simplified equation (5.1) can be considered as a reasonable approximation until 1<ϑ . Since ||~|| ,BAξϑ  this 

implies 1|| , <ξ BA . With 1.0=ρ , 1=l , and 8.9=g  we have 36.4* =k  and 22
, 3 −

⊥
−
⊥ ≈ρπ=ξ± kgkBA , so the 

condition 13 2 <−
⊥k  must be valid. The black area in the chart of regimes is placed in that part of the parameter plane 

where this condition is well satisfied. 
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where the same notation is used as in (5.1), and the constant g* characterizes the acceleration of 
gravity reduced with account of the Archimedean buoyancy. 

The authors emphasize the fact that due to the quadratic dependence of the resistance 
forces the above equations rewritten in a dimensionless form contain a well-known in 
hydrodynamics characteristic parameter, the Froude number Fr. Namely, the change of variables 
and parameters 
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reduces the equations (6.2) to 
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where the primes are omitted for brevity. The authors take the values of the coefficients  
 0674.0,1.4,88.0|| =α=α=α ω⊥ . (6.5) 

 

 

 

Figure 15. Illustrations of motion of 
the plate in fluid: self-oscillation mode 
at Fr=0.45 (a) and autorotation at 
Fr=0.89 (b) according to results of 
numerical simulation with equations 
(6.4) 

Figure 15 shows the diagrams obtained by numerical integration of (6.4), which reproduce 
the results of [27]. The illustrations (a) and (b) correspond to the fall with oscillations (flutter) 
and tumbling (autorotation), respectively. Fig. 16 shows portraits of attractors corresponding to 
these motions in projections on the planes ),( yx vv  and ),( θθ & . From the diagrams in the right 
column one can see that in one case the observed motion corresponds to the limit cycle of the 
first kind, and in the other one to the limit cycle of the second kind (going around the phase 
cylinder). 
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Figure 16: Phase portraits of attractors corresponding to flutter at Fr=0.45 (a) and to autorotation at 
Fr=0.89 (b) according to the results of the numerical solution of equations (6.1). Black and red colors 
show the coexisting attractors. 

The model (6.2), like the original Tanabe – Kaneko model, does not take into account the 
added masses and moment of inertia, as well as a correction to the circulation due to the 
rotational motion. So it makes sense to consider a modification of the equations in the same style 
as in the corrected Tanabe – Kaneko model (see Section 8). 

7. Andersen – Pesavento – Wang model 
Among systems discussed in this review, the work of Andersen, Pesavento and Wang [28] is the 
most elaborated attempt to describe the fall of a flat plate or a body with elliptic profile in fluid 
by means of a finite-dimensional model. The authors start with equations (1.2) and add there the 
terms accounting resistance of the medium to the translational motion, Fx, Fy and the torque of 
the friction force Fθ: 
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 (7.1) 

Basing on numerical simulations with Navier – Stokes equations for the two-dimensional 
hydrodynamic flow around elliptic profiles [28, 30], the authors propose the following 
approximate expressions for the circulation and the resistance forces: 
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In calculations, the following numerical values of the coefficients are adopted: 
 1,,, 5

7
5
6 ==π== BART CCCC , (7.3) 

while µ1 and µ2 are supposed to be varied. 
Let us substitute the expressions (1.4), (1.5) for the mass, the moment of inertia, the added 

masses, and the added moment of inertia in equation (7.1) and introduce the notation 
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Normalizing velocity components and time to get the unit coefficients at the terms responsible 
for the gravity, 
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we obtain 
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In the limit 0→β  corresponding to the thin flat plate, the equations reduce to 
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In accordance with (7.2), in (7.6) and (7.7) we set 
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To compute the dimensionless coordinates for the center of mass of the falling body, together 
with (7.6) or (7.7) the equations have to be solved 
 .cossin,sincos θ+θ=θ−θ= vuYvuX &&  (7.9) 

In Ref. [28] Anderson, Pesavento and Wang, not emphasizing this point specially, limit 
themselves with a special case introducing coefficients, which satisfy, accidentally or not, the 
relation )(2

1
BAT CCC += . Due to this, some terms in the equations disappear, and derivation of 

stability loss condition for the uniform steady fall simplifies substantially. The equations reduce 
to the form 
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 23

and their linearization nearby the fixed point 12/5,0 π−=−== Vvu , 0,0 =θ=θ &  yields 

 θμ′−=θ+θ−θ−−= &&&&& ~)(,~~)1(~
18

1*
4
1** VuIVIuI . (7.11) 

The exponential substitution steu ~~,~ θ  leads to the characteristic equation 
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Condition of stability loss, which consists in vanishing the real part for a pair of complex 
conjugate roots, can be found, if we search for solution as ζ= is  where ζ is real. Then 
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and the critical value of the coefficient of friction is evaluated as [28] 
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Stability loss of the fixed point corresponds to a supercritical (normal) Andronov – Hopf 
bifurcation [44, 45, 19], which results in appearance of the limit cycle associated with periodic 
self-oscillations of the plate from side to side (the flutter) in the region *1 μ<μ′ . Note that such 
bifurcation occurs only with taking into account the viscous resistance to the body rotation. If the 
resistance torque is quadratic in the angular velocity, i.e. μ1=0, then near the state of steady 
uniform fall the linear dynamics is conservative, and a correct stability analysis should take 
nonlinear terms into account.  

Fig. 17 shows a chart of regimes of the model (7.10) in the plane of parameters I* and μ, 
drawn under a condition μ=μ=μ′ 21  that corresponds to a two-dimensional phase diagram in 
the original paper of Anderson, Pesavento, and Wang [28]. The chart is obtained by the method 
described above for the Tanabe – Kaneko model; scanning is performed in the upward direction 
with inheritance. Colored areas on the chart indicate periodicity in the numerical iterations of the 
Poincaré map counting passages of zeros of the function θsin . A method for computation of the 
Poincaré map is analogous to that for the Tanabe – Kaneko model, but simpler because now the 
equations do not contain discontinuous coefficients. 

The dotted line on the chart indicates threshold of stability loss for the fixed point (7.14). 
Crossing this border from black to dark blue domain is accompanied by appearance of self-
oscillations (flutter, the domain PF). Domain PR corresponds to the periodic autorotation. Blue 
indicates regimes where the system manifests a single-turn limit cycle with symmetry, and green 
without symmetry. Other colors relate to larger periods. White areas correspond to chaos or 
unrecognized regular motions. 

Fig. 18 shows phase portraits of attractors for the model (7.10) at several representative 
points of the parameter plane (see the figure caption). The portraits are drawn on the plane of 
dimensionless velocity components in the laboratory frame, to make possible visual comparison 
with analogous pictures for the Tanabe – Kaneko model in Fig. 13. Coexisting attractors can be 
seen in diagrams (c) – (e) shown in black and red. 

Lyapunov exponents of the attractors have been computed and are given in the figure 
caption. (Beside them, there are two zero exponents in each case, relating to the subsystem 
(7.9)). In the cases (e) and (f) chaotic attractors occur possessing a positive Lyapunov exponent. 
The second exponent is the zero, while the others are negative. In the cases (a) – (d) attractors 
are limit cycles, in which the senior exponent is zero, and the others are negative. The sum of all 
the exponents in each case is negative indicating compression of the phase volume in the course 
of approach of phase trajectories to the attractor. 
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Figure 17: Chart of regimes in the plane of parameters I* and μ for the model (7.10), where μ=μ=μ 21 . 
On the periphery portraits of attractors are shown illustrating periodic rotation PR, chaotic rotation CR, 
periodic flutter PF, chaotic flutter CF. Colors indicate periods observed in iteration of the Poincaré map as 
obtained by scanning the plane upward with inheritance. Blue indicates the period 1 regimes with 
symmetry, and green the period 1 regimes without symmetry, other colors correspond to larger periods. 
White areas correspond to chaos or unrecognized motions. Black designates a simple perpendicular fall 
(SPF). The dotted line indicates the stability loss threshold for the fixed point (7.14). 
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Figure 18: Phase portraits of attractors for Andersen – Pesavento – Wang model (7.10) at µ1,2=0.35 (a), 
0.25 (b), 0.23 (c), 0.13 (d), 0.12 (e), 0.1 (f). Other parameters: I*=1.3, CT=1.2, CR=π, CA=1.4, CB=1.0. 
Coexisting attractors are shown in black and red. Lyapunov exponents for these attractors: 

}075.1,91.0,135.0,0{ −−−  (a), }934.0,871.0,0159.0,0{ −−−  (b), }827.0,792.0,158.0,0{ −−−  (c), 
}766.0,362.0,0353.0,0{ −−−  (d), }735.0,435.0,0,051.0{ −−  (e), }690.0,474.0,0,073.0{ −−  (f). 

8. Generalized model 
For the discussed finite-dimension models of body falling in fluid it would be interesting to 
provide mutual comparison of their dynamics, but it is complicated by the fact that all the 
authors use different normalizations of the equations. Below we reformulate the equations in 
such way that they cover all these models using common dimensionless variables and 
parameters. We outline specially the limit case of the profile degenerating to the thin plate. We 
prefer the normalization which was used in Section 3 for the equations of Kozlov model in 
version (3.16). For the model of Tanabe – Kaneko, which was criticized for some hydrodynamic 
incorrectness [24, 25], and, analogously, for the Belmonte – Eisenberg – Moses model, we will 
consider improved versions taking into account those critical remarks. 

8.1. Equations and normalization 
As initial form of the equations let us take that of Anderson, Pesavento and Wang (7.1), which 
relates to the body of elliptical profile with semi-axes a and b falling in fluid in the presence of 
circulation Γ  and resistance forces, characterized by coefficients θ,, yxK . Assuming 

 Γπ=Γ 2a , (8.1) 
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 θπρ=πρ=πρ= θθ
&KaFvKaFuKaF fyfyxfx

433 ,, , (8.2) 

and substituting the masses and moments of inertia for the elliptical profile (1.4), (1.5) with 
notation 1−ρρ=ρ sf  ab /=β , avvavu yx /,/ ==  we obtain from (7.1) the set of equations 
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In the limit corresponding to a thin plate 1,0,0 −ρβ=→ρ→β r  that gives 
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As a final step, we use normalization of time and velocity components  

 agttgavvgauu 111 ,, −−− ′=′=′=  (8.5) 

and, omitting the primes for brevity, arrive at the equations 
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Dimensionless coordinates for the center of mass of the falling plate are determined by equations 
 .cossin,sincos θ+θ=θ−θ= vuYvuX &&  (8.7) 

With zero circulation 0=Γ  and constant coefficients of the resistance forces 
 3,2,1,, kK yx =θ , (8.8) 

from (8.6) we get the Kozlov model (3.16). 
Next, let us introduce the circulation determined by the motion of the plate in fluid on the 

basis of the Kutta – Joukovsky – Chaplygin postulate. It may be done using the formula from the 
book of Sedov [9], which takes into account both contributions from translational and rotational 
components of the motion: 2sgn2 avav xy θπ+π−=Γ & , or, in the normalization adopted here, 

 θ+−=Γ &uvsgn2 .  (8.9) 

Then, with the drag coefficients (8.8) we obtain from (8.6) a set of equations corresponding to 
the modified Tanabe – Kaneko model. 

Postulating the same relation for the circulation (8.9) and setting 
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we arrive at the modified Belmonte – Eisenberg – Moses model. 

Finally, the equations of the Anderson – Pesavento – Wang model in the new 
normalization are obtained from (8.6) by substitutions 
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All the mentioned models have the symmetries, which are useful to account when 
analyzing the dynamic behavior.  

(S1). Mirror symmetry: YYXXvvuu →−→θ−→θ→−→ ,,,, , Γ−→Γ .  
(S2). Upheaval plate symmetry: YYXXvvuu →→π+θ→θ−→−→ ,,,, , Γ→Γ . 
In the phase space of the system with symmetry for any object, like a regular or chaotic 

attractor, there are two possibilities [17]. The first is that the object itself is symmetric, i.e. with 
the corresponding change of variables it transforms to itself. The second option is that the object 
is asymmetric, then, the result of its transformation is a distinct object of the same nature, which 
is referred to as the symmetric partner of the original one. 

8.2. Multistability and chaos in Kozlov model 
Although the complex dynamics in a finite-dimensional description of the falling plate was 
reported first by Tanabe and Kaneko, it appears in a much simpler model, without account of the 
circulation and respective forces. 

As noted in Section 3, in the integrable case )1/(21 rkk +=  the Kozlov model (3.16) 
reduces to the pendulum equation with damping and shows only the regular dynamics. As we 
depart from the condition of integrability, the loss of stability of the fixed point of the steady fall 
is accompanied by the Andronov – Hopf bifurcation with appearance of the limit cycle of the 
first kind. It is responsible for periodic self-oscillations, flutter. The limit cycle initially is located 
roughly inside the separatrix (in terms of the reduced model), but under variation of parameters it 
can approach the separatrix, passing close to saddles; this creates preconditions for emergence of 
complex dynamics and chaos. 

Fig. 19 shows a chart of regimes for the model (3.16) in the parameter plane (r, k3) for 
fixed k1=0.06 and k2=0.3. The chart is obtained by scanning upward with inheritance. On the 
periphery of the chart phase portraits of the attractors are shown in projection on the plane of 
variables ),( θθ & . The dotted line on the chart corresponds to the threshold of stability loss of the 
fixed point (3.17). 

When moving in the parameter plane from the bottom upward one observes, first, the 
bifurcation of symmetry break of the autorotation regime (passage from blue to green area), and 
then a sequence of period-doubling bifurcations with the transition to chaos. Initially, there is a 
non-symmetric chaotic attractor. Therefore, four attractors coexist here as symmetric partners 
with respect to the symmetry operations S1 and S2. Next, they merge into a single symmetric 
chaotic attractor. When varying parameters inside the area occupied mostly by chaos one 
observes narrow windows of periodicity. After exit from the complex dynamics region we arrive 
to the domain of periodic self-oscillations marked as dark blue on the chart, and after that to the 
black area of the stationary regime of steady fall. It should be noted that the border of these 
regions in the right part of the chart does not coincide with the line of stability loss; it is so due to 
the change of the Andronov – Hopf bifurcation nature (from supercritical, accompanied by soft 
creation or disappearance of a limit cycle in the left part of the chart, to subcritical, 
corresponding to hard transition and hysteresis in the right part of the chart). 
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Figure 19: Chart of regimes for the model (3.16) for fixed k1=0.06 and k2=0.3 obtained by scanning the 
parameter plane ),( 3kr  upward with inheritance, and phase portraits of attractors in projection onto the 
plane ),( θθ &  at representative points. Attractors, which are symmetric partners with respect to S1 and S2 
are drawn in different colors. The domain PR corresponds to periodic autorotation, PF – to periodic 
oscillations (flutter), SPF – to the plate fall without oscillations. Symbols CR and CF on the phase 
portraits designate the chaotic regimes of rotation and flutter. The dotted line corresponds to threshold of 
the stability loss for the fixed point (3.17). 

Figure 20 shows phase portraits of attractors to compare them with attractors for Tanabe – 
Kaneko models in Fig. 13; observe the visually similar forms. Attractor in the diagram (a) is the 
limit cycle arisen after the symmetry break bifurcation and two period-doubling bifurcations. 
The diagram (b) shows a chaotic attractor formed as a result of a cascade of period doubling 
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bifurcations. As it is asymmetric, we can be sure that symmetric partners coexist, which are 
generated by the symmetry operations S1 and S2. The diagram (c) shows a symmetric chaotic 
attractor, which may be interpreted as a result of unification of those symmetric partners into a 
single object. Lyapunov exponents of the attractors calculated by solving the system (3.16) and 
the corresponding variation equations with the Benettin algorithm [18.14,15] are given in the 
figure caption. 

 
Figure 20: Phase portraits of attractors for Kozlov model with k3=0.423 (a), 0.424 (b), 0.437 (c). Other 
parameters are r=0.9, k1=0.06, k2=3. Dimensionless components of the translational velocity in the 
laboratory frame are plotted along the coordinate axes: θ+θ=θ−θ= cossin,sincos vuYvuX && . The 
Lyapunov exponents are }106.2,326.0,089.0,0{ −−−  (a), }272.2,326.0,0,091.0{ −−  (b), 

}398.2,341.0,0,186.0{ −−  (c). 

 
Figure 21: One-parameter bifurcation diagrams obtained in computations for the Kozlov model (3.16) 
with k1=0.06, k2=3, r=0.4 (a) и r=0.9 (b). The directions of variation of the parameter are indicated by the 
arrows at the branches of the diagrams. The vertical arrow below the x-axis marks the point of stability 
loss for the steady fall according to (3.17). 

To visualize multistability let us turn to a one-parameter bifurcation diagram. In Fig. 21, 
the absolute value of the angular velocity is plotted versus the parameter of viscous friction for 
the rotational motion. In computations this parameter k3 is increased (decreased) step by step, the 
initial conditions are used corresponding to the final state at the previous step. The branches 
obtained with scanning from left to right and from right to left are indicated with respectively 
directed arrows. The difference between regimes observed in the one and the other case indicates 
the presence of coexisting distinct attractors at the same parameters, each of which has its own 
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basin in the state space that is a set of initial points, starting from which the phase trajectories 
arrive finally to this attractor. This is the hysteresis effect. We emphasize that the attractors 
coexisting here are not symmetric partners with respect to the symmetry operations S1 and S2. 

The diagram (a) demonstrates a single region of bistability, wherein one of the coexisting 
attractors is a limit cycle corresponding to periodic flutter, and the second corresponds to 
periodic (in the left part of the interval) or chaotic (the right part of the interval) autorotation. At 
the point marked with arrow below the horizontal axis an Andronov – Hopf bifurcation occurs of 
the limit cycles birth, which is normal (supercritical). 

The diagram (b) shows two parameter intervals of bistability. In one of them, on the left 
side of the figure, attractors coexist associated with periodic flutter (lower branch) and with 
chaotic autorotation (upper branch). In the second interval placed to the right, a limit cycle 
corresponding to periodic self-oscillations coexists with a stable fixed point corresponding to a 
steady fall. Here the Andronov – Hopf bifurcation of stability loss of the fixed point is subcritical 
[44, 45, 19]. 

8.3. Modified Tanabe – Kaneko model 
The modification of the Tanabe – Kaneko model discussed in Subsection 8.1 leads to equations 
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Selecting appropriate value of r it is possible to achieve rather a good agreement of the 
dynamics in the modified and the original equations ((8.12) and (5.1), respectively). 4  

Figure 22 shows a chart of regimes of the model (8.12) in the parameter plane 
)/,( 122 kkfk = at 4/23 kk = and r=0.1. It can be compared with the chart of the original system 

Tanabe – Kaneko in Figure 11. As seen, the charts look very similar. (The scales of the figures 
are chosen to make clear the visual comparison, although normalizations of the equations (8.12) 
and (5.1) are different.) In both versions of the model, there are similar regimes, and obvious 
correspondence in mutual placement of domains of different regimes in the parameter plane is 
observed. Figure 23 shows phase portraits of attractors for model (8.12) at 

4/,100/ 2312 kkkkf ===  for a number of values 2k  that look similar to attractors of the 
original model in Figure 13.  

Bearing in mind subsequent comparison with the Anderson – Pesavento – Wang model, 
consider the chart of regimes in the parameter plane (r, k3) for fixed values of k1 and k2.The chart 
shown in Fig.24 was obtained by scanning upward with inheritance. On the periphery of the 
figure phase portraits of attractors are shown, and those coexisting at identical parameters are 
drawn in different colors. 

Moving upward in the parameter plane (i.e., with increase of the dissipation parameter) in 
the left side of the chart the first observed is bifurcation of symmetry break of the autorotation 
(transition from blue to green region), then the sequence of period doubling bifurcations follows 
with the transition to chaos. Initially, the arisen chaotic attractor is asymmetric, and together with 
it there are symmetric partners with respect to the S1 and S2 symmetries. With further parameter 
increase they merge into a single symmetric chaotic attractor. Inside the complex dynamics 
                                                 
4 Equation (5.1) by a change of the variables and parameters gltglvvgluv yx 3/2,3/2,3/2 τ=== , 

glkkrglkrkglkrk 3/24,3/2,3/2 32||1 ⊥⊥ === , reduce to the form ulvvuku sgnsin 3
2

1 ρπ+θ−θ=+ && , 

luvkuluvuvkv ρπ−=θ+θρπ−θ−θ−=+ 3
4

33
2

2 ,sgncos &&&&& . If we assume that lr ρπ= 3
1  and take parameters as those 

in [23] it gives 1.0≈r , and the above expressions are very similar to (8.12), with only difference in the nearly unity 
coefficients 2/1,1,1 rrr +−+ . Therefore, the dynamics of models (5.1) and (8.12) are similar, and it is observed in 
the computations. 
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domain occupied mostly by chaos, narrow windows of periodicity occur that can correspond 
either flutter or autorotation. 

Figure 22: Chart of regimes of the 
modified Tanabe – Kaneko model 
(8.12) for r=0.1 at fkk /21 =  

4/23 kk =  on the parameter plane 
( fk ,2 ). The colors are determined by 
a repetition period for the squared 
angular velocity in the Poincaré 
section. Period 1 regimes with and 
without symmetry are shown in blue 
and green, respectively; other colors 
correspond to larger periods. White 
areas represent chaos or unrecognized 
high-period regimes. Inscriptions mean 
periodic rotation (PR), chaotic rotation 
(CR), and periodic flutter (PF). Black 
color designates simple perpendicular 
fall (SPF). 

 

 
Figure 23: Phase portraits of attractors of the model (8.12) with 86.102 =k  (a), 11 (b). 11.6 (c), 

100/21 kk = , for 1.0=r . Along the coordinate axes dimensionless velocity components in the laboratory 
frame are plotted. Lyapunov exponents: }906.1,359.0,029.0,0{ −−−  (a), }862.1,435.0,0,043.0{ −−  (b), 

}757.1,488.0,0,098.0{ −−  (c). 
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In the right part of the chart, the exit from the area of periodic dynamics upward is 
accompanied by a rigid transition and hysteresis. In particular at the point (0.95, 0.1) periodic 
regimes of autorotation and flutter coexist. When moving in the parameter plane in the opposite 
direction (from top to down), we observe initially the periodic oscillations (flutter), which 
correspond to a limit cycle of the first kind (dark blue area in the upper right corner of the chart). 
Gradually, the limit cycle increases in size and at some place, obviously connected with the 
approach to the saddle, its topological nature is changing, and it turns into a limit cycle of the 
second kind corresponding to autorotation (the area indicated a lighter blue). Then this cycle 
loses symmetry (transition from blue to green region), and after that the cascade of period-
doubling bifurcations for autorotation regimes occurs with transition to chaotic tumbling regime. 

 
Figure 24: Chart of regimes for the modified Tanabe – Kaneko model (8.12) on the parameter plane 3, kr  
with 3,06.0 21 == kk . On the periphery of the figure portraits of attractors are shown at representative 
points corresponding to periodic rotation PR, chaotic rotation CR, periodic flutter PF, chaotic flutter CF. 
The colors are determined by a repetition period for the squared angular velocity in the Poincaré section. 
Period 1 regimes with and without symmetry are shown in blue and green, respectively. Other colors 
correspond to larger periods. White areas represent chaos or unrecognized high-period regimes. 

8.4. Modified Belmonte – Eisenberg – Moses model 
Equations for the modified Belmonte – Eisenberg – Moses read 
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Fig. 25 shows chart of regimes for the model (8.13) in the parameter plane (r, αω) obtained 
by scanning from left to right with inheritance. On the periphery portraits of attractors are shown at 
some representative points in the projection on the plane ),( θθ & . Attractors coexisting at identical 
parameters are drawn in different colors. Inscriptions on the map are explained in the caption and 
correspond to nomenclature of Tanabe and Kaneko. 

 
Figure 25: Chart of regimes for the model (8.13) with 65.0,14.0|| =α=α ⊥  and phase portraits of 

attractors in the projection onto the plane ),( θθ &  at representative points corresponding to periodic 
rotation PR, chaotic rotation CR, periodic flutter PF, chaotic flutter CF. The colors are determined by a 
repetition period for the squared angular velocity in the Poincaré section. Period 1 regimes with and 
without symmetry are shown in blue and green, respectively. Other colors correspond to larger periods. 
White areas represent chaos or unrecognized high-period regimes. 
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Attractors for regimes of periodic flutter PF and periodic autorotation PR demonstrate a 
visual similarity with the portraits in Fig. 16. However, a quantitative comparison of the 
modified model (8.13) with the original Belmonte – Eisenberg – Moses model (6.4) appears to 
be not legitimate. As can be shown, the Froude number determined according to [26] and 
expressed in terms of parameters of the model (8.13) is r/Fr π= , so at parameters used in 
Figs. 15 and 16 the Froude numbers 0.89 and 0.45 correspond to large values of r (about 4 and 
15). This corresponds to very significant contribution of added masses, which are not accounted 
in the equations (6.4). 

 
Figure 26: Phase portraits of attractors for model (8.13) with r=0.6 и aw=0.157 (a), 0.16 (b), 0.2. Along 
the coordinate axes dimensionless components of the translational velocity in the laboratory frame 

θ+θ=θ−θ= cossin,sincos vuYvuX &&  are plotted. The Lyapunov exponents are 
}493.1,337.0,042.0,0{ −−−  (a), }516.1,414.0,0,037.0{ −−  (b), }726.1,526.0,0,133.0{ −−  (c). 

8.5. Anderson – Pesavento – Wang model compared with others 
As noted, the Anderson – Pesavento – Wang model [28] is the most elaborated finite-dimension 
model for description of fall of the plate in a resisting medium. When using normalization 
adopted in the present Section, the equations (7.3) can be rewritten as 
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where */1 Ir = . Having in mind comparison with other models, it is natural to study the 
dynamics in dependence on parameters which are present both in (8.14) and in the models 
subjected to the comparison. In this connection, we use r as one variable parameter, and the 
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coefficient of linear or quadratic rotation resistance force in the third equation as another one. 
With regard to the first two equations, their form and coefficients will be assumed unchanged. 

In the normalization we use now, the loss of stability for steady fall occurs at the critical 
coefficient of friction  
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Figure 27: Chart of regimes for the model (8.14) with μ2=0, obtained by upward scanning with 
inheritance, and phase portraits of attractors at representative points. Attractors coexisting at identical 
parameters are shown in different colors. PR means periodic autorotation, PF – periodic flutter, SPF – 
steady perpendicular fall. Inscriptions CR and CF relate to chaotic regimes of rotation and flutter. Inclined 
stripes on the right side of the SPF area designated coexistence of autorotation or flutter regimes with the 
steady fall. 

Figure 27 shows a chart of regimes on a plane of viscous friction coefficient μ1 and 
parameter r in the absence of the quadratic resistance force for rotation (μ2=0). Figure 28 
provides a chart on a plane of the quadratic friction coefficient μ2 and the parameter r without 
viscous friction (μ1=0). Both charts are obtained by scanning upward with inheritance. 
Inscriptions on the charts and portraits of attractors follow the nomenclature of Tanabe and 
Kaneko: PR and CR designate, respectively, periodic and chaotic autorotation, PF means 
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periodic flutter oscillations, SPF is simple perpendicular fall of the plate without oscillations. On 
the periphery of the figure phase portraits of attractors are shown.  

The chart on Fig. 27 is appropriate for comparison of the results with the Kozlov and 
Tanabe – Kaneko models, and the chart on Fig. 28 is suitable for comparison with the model of 
Belmonte, Eisenberg and Moses. 

 
Figure 28: Chart of regimes for the model (8.14) with μ1=0, obtained by scanning the parameter plane 

),( 2μr  upward with inheritance, and phase portraits of attractors at representative points. Designation and 
inscriptions are similar to the previous figure. 

In addition to the Anderson – Pesavento – Wang model, it is interesting to consider its 
approximate version, using circulation and resistance forces in the assumption that the 
longitudinal translational motion of the plate is characterized by a much greater velocity than the 
orthogonal component. In the limit case |||| vu >>  the circulation is given by the expression 

 θ+−=θ+
π

−=Γ && 2sgn76.02sgn
5
12 uu . (8.16) 

In structure it is similar to the formula (8.9) from Sedov book [9] based on the Kutta – 
Joukovsky – Chaplygin postulate used in the modified Tanabe – Kaneko and Belmonte – 
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Eisenberg – Moses models (8.12) and (8.13). Note, however, a difference in the numerical 
coefficients: instead of 2 and 1 in (8.9) the expression (8.16) contains the constants 0.76 and 2. 

The resistance force coefficients for the translational motion are expressed in this 
approximation as 

 2222
, 13.0

5
2 vuvuK yx +=+
π

=  (8.17) 

that differs from the Belmonte – Eisenberg – Moses in the numeric constants. (Instead of 0.14 
and 0.65 for the longitudinal and transversal motion we have one and the same coefficient 0.13).  

The dynamical equations for this limit case of Andersen – Pesavento – Wang model may 
be written as 
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Fig. 29 shows the chart of regimes in the plane of parameter r and the coefficient of viscous 
resistance for rotational motion of the body μ1. Panel (a) corresponds to the Anderson – 
Pesavento – Wang model (8.14), and (b) to the approximate version of this model (8.18). Panel 
(c) relates to the modified Tanabe – Kaneko model (8.12). 

Fig. 30 shows the chart of regimes in the plane of parameter r and the factor of quadratic 
resistance force for rotational motion; the viscous friction is absent )0( 1 =μ . As in the previous 
figure, panels (a) and (b) refer to the Anderson – Pesavento – Wang model (8.14) and to the limit 
case of this model (8.18). Panel (c) corresponds to the modified Belmonte – Eisenberg – Moses 
model (8.13). 

 
Figure 29: Comparison of charts of regimes for Andersen – Pesavento – Wang model (a), the limit case of 
this model (b), and for the modified Tanabe – Kaneko model (c). 

 
Figure 30: Comparison of charts of regimes for Andersen – Pesavento – Wang model (a), the limit case of 
this model (b), and for the modified Belmonte – Eisenberg – Moses model (c) i. 
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Comparing panels (a) and (b) in Fig. 29 and 30 one observes that the general structure of 
the regions in the parameter space is analogous, although relative size and placement of the 
formations vary. This observation supports legitimacy of use of circulation formula within the 
Kutta – Joukovsky – Chaplygin postulate at least in a level of qualitative analysis.  

Less expressed but noticeable similarities are seen between diagrams (b) and (c) in both 
figures. Note the presence of regions PF in the upper right corner of the charts and PR in the 
lower left corner while chaotic dynamics occupies in the central part of the charts. One more 
common feature is the transition to chaos through the period doubling cascade preceded by the 
symmetry break bifurcation in the bottom left part of the carts. Thus, despite some quantitative 
difference, the whole picture of the dynamics on the base of the considered models looks quite 
recognizable and consistent. Obviously, this is so because of common underlying conservative 
dynamics (Kirchhoff equations), due to common properties of symmetry, and due to universal 
nature of the involved phenomena of nonlinear dynamics (fixed points, limit cycles, attractors, 
bifurcations). 

Conclusion 
The article reproduces results of studies of the plane problem of the fall of the plate in a resisting 
medium based on models in the form of ordinary differential equations for a relatively small 
number of variables, and provides comparative analysis of these models. Methodological basis 
for the finite-dimensional description is the fact that in the case of an ideal incompressible non-
viscous fluid the generalized coordinates and velocities of the rigid body are governed by 
Kirchhoff equations separated from the equations relating to fluid. 

As a part of the review we tried to draw a line of reasoning, starting from a situation where 
the Kirchhoff equations are reduced to the pendulum equation with sinus nonlinearity to models 
showing self-oscillatory and autorotation periodic or chaotic regimes by taking into account 
certain assumptions concerning forces acting on the body from the viscous medium. Similar 
approach is proved to be fruitful in theory of oscillations, when a conservative oscillator is used 
as a starting model for subsequent modifications involving damping of the oscillations, 
excitation of self-oscillations, and occurrence of chaotic dynamics.  

In the problem of falling body in a resisting medium, the periodic oscillations – flutter and 
periodic motion with tumbling – autorotation are interpreted as those associated with the limit 
cycles of the first and the second kind in the phase space (more precisely, in the subspace of the 
generalized velocities). 

To study the problem of the body fall in fluid we apply concepts and toolbox of nonlinear 
dynamics, including visualization of the dynamical phenomena by portraits of attractors, 
consideration of Poincaré recurrence maps, mapping dynamic regimes in the parameter plane 
(charts of dynamical regimes), analysis of bifurcation diagrams ("trees"), computation of spectra 
of Lyapunov exponents. This made it possible to fulfill the picture of the dynamics uncovered on 
the basis of finite-dimensional models with broad illustrative material. 

It is found and deserves attention an unexpected richness of dynamic behavior exhibited by 
the simplest model [22], where only linear viscous resistance of translational and rotational 
motion of the body are taken into account while the circulation and related effects like the lifting 
force are ignored. Previously, attention was focused only on simple regimes of dynamics of this 
model, but in a certain ranges of parameters rather complex phenomena such as chaos, cascade 
of period-doubling bifurcations, multistability are possible. 

An original result is discovery of the Lorenz-type strange attractor in three-dimensional 
space of generalized velocities for the problem of motion of elliptic profile in the conditions of 
compensated gravity, in the presence of viscous friction, with constant velocity circulation 
around the profile, and with external applied to the body constant torque. 

With respect to the Tanabe – Kaneko model, which takes into account the effect of lift on 
the moving profile according to the Kutta – Joukovsky – Chaplygin postulate, the undertaken 
analyzes includes reproduction of results of the original work, modification of the model taking 
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into account the criticism it was subjected to, and comparison of the original and the modified 
model. It reveals that, despite seemingly significant deficiencies, the model qualitatively gives a 
reasonable general picture of possible phenomena of complex dynamics for the fall of the plate 
in fluid, at least in a certain range of parameters. A similar study was carried out in relation to the 
Belmonte – Eisenberg – Moses model assuming that the friction is quadratic in the generalized 
velocities.  

For the Anderson – Pesavento – Wang model, based on proposed empirical formulas for 
the drag and lift forces, an extensive numerical material is presented, including charts of regimes 
in the parameter space. 

We introduce a generalized model using common dimensionless variables and parameters 
and provide comparative analysis of the dynamic behavior of the Kozlov, Tanabe – Kaneko, 
Belmonte – Eisenberg – Moses and Andersen – Pesavento – Wang models. 

It is worth noting important role of symmetry of the problem of the plate fall in fluid for 
understanding the inherent phenomenology of complex dynamics. In particular, a relevant 
feature is a possibility of coexistence of attractors, which are mutually symmetrical objects, and 
a possibility of combining them into a single attractor under variation of control parameters. 

We conclude that the overall structure of the parameter space for different models shows 
certain similarities. Thus, despite the quantitative difference, picture drawn on the basis of the 
considered models for the falling plate in a resisting medium appears to be quite consistent. This 
fact is obviously determined by common underlying conservative dynamics (Kirchhoff 
equation). Its modification with account of the effects of viscosity has general features due to the 
inherent symmetry and to the universal nature of the involved phenomena of nonlinear dynamics 
(fixed points, limit cycles, attractors, bifurcations). 

I would like to express thanks to A.V. Borisov who called my attention to the issues 
discussed in this paper. 
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