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Abstract—Computer verification of hyperbolicity is provided based on statistical analysis
of the angles of intersection of stable and unstable manifolds for mechanical systems with
hyperbolic attractors of Smale –Williams type: (i) a particle sliding on a plane under periodic
kicks, (ii) interacting particles moving on two alternately rotating disks, and (iii) a string with
parametric excitation of standing-wave patterns by a modulated pump. The examples are of
interest as contributing to filling the hyperbolic theory of dynamical systems with physical
content.
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1. INTRODUCTION

Hyperbolic theory is a part of the modern theory of dynamical systems delivering a rigorous
mathematical justification of chaotic behavior in deterministic systems, both in the discrete time
case (iterative maps — diffeomorphisms) and in continuous time (flows) [1–6].

The objects of study are uniformly hyperbolic invariant sets composed exclusively of saddle
trajectories in the phase space of dynamical systems. For all points on such a trajectory, in the space
of infinitesimal perturbations (tangent space), one can define a subspace of vectors exponentially
decreasing in norm in the course of the evolution forward in time, and a subspace of vectors
exponentially decreasing during evolution in reverse time. In flow systems, additionally, a neutral
subspace is introduced to take into account perturbations directed along the trajectory, which do
not grow or decrease on average. An arbitrary vector of an infinitesimal perturbation is required to
allow representation as a linear combination of vectors related to these subspaces. The set in the
phase space composed of orbits which approach the reference trajectory in forward time is called
the stable manifold. Similarly, the unstable manifold is defined as a set approaching the reference
trajectory in reverse time. Tangencies of the stable and unstable manifolds for the hyperbolic
invariant sets are excluded; only intersections at nonzero angles are allowed.

For dissipative systems the hyperbolic theory introduces a special type of attracting invariant
sets, the uniformly hyperbolic chaotic attractors. An example is the Smale – Williams attractor.
Consider a region in the form of a torus in the three-dimensional state space and assume one step
of the transformation is that we stretch it twice with simultaneous transversal compression, fold it to
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produce a double loop, and put it inside the original torus. This procedure is repeated many times.
At each step the volume of the object decreases (this means that the mapping is dissipative), and
the number of turns is doubled, and in the limit tends to infinity. The result is the formation of the
so-called solenoid, which possesses a Cantor-like structure in the transversal direction. An obvious
generalization is folding a loop with another number of coils (three or more) in one step of the
construction. Chaotic dynamics on such attractors are determined by the evolution of the angular
coordinate according to expanding the circle map, or the Bernoulli map θn+1 = Mθn (mod2π) with
integer factor M � 2.

A fundamental mathematical fact is that the uniformly hyperbolic attractors are rough, or
structurally stable [1–6]. After Andronov and Pontryagin had introduced the notion of roughness
(suitable for systems with regular dynamics) [7, 8], it was commonly accepted to postulate that just
the rough systems are of real interest and importance as they manifest low sensitivity to setting
parameters and functional characteristics of elements, to manufacturing imperfections, noise, errors,
etc. [9–13].

The trouble is that, considering numerous realistic examples of chaotic systems of different
nature (mechanics, fluid dynamics, electronics, chemical kinetics [14–21]), we do not meet uniformly
hyperbolic attractors there. In textbooks and reviews on dynamical systems such attractors are
presented exclusively by artificially constructed mathematical examples, such as DA-attractor of
Smale, Plykin attractor, and the aforementioned Smale – Williams solenoid [1–6].

The situation that the question of occurrence of the hyperbolic chaos in nature and its practical
applications in technology has been overlooked seems strange and unacceptable in view of the
declared priority of rough systems. Indeed, for any application of chaos, the class of systems with
uniformly hyperbolic attractors looks preferable in this sense. One more potentially interesting and
important property is the possibility of complete symbolic description of trajectories belonging to
the uniformly hyperbolic attractors with a finite alphabet based on the Markov partitions [3, 4].
It establishes a fundamental relationship of the hyperbolic dynamics with information and coding
theory [22], and may be of importance for possible information and communication applications.

In the absence of ready-to-use examples in nature and technology, it seems productive to turn
to purposeful constructing systems with hyperbolic dynamics by means of the toolbox of physics
and theory of oscillations and waves (oscillators, particles, fields, interactions, feedback circuits,
etc.). In this regard, certain progress has been achieved recently, and many realizable physically
motivated systems with hyperbolic attractors have been offered [23–36]. Among them, mechanical
examples may be of particular interest as they are easily perceived and interpreted due to our
everyday experience.

Naturally, physical and technical devices are not specially suited to admit direct mathematical
proofs. Nevertheless, confident confirmation of hyperbolicity may be of practical significance to
exploit properly the relevant results of the mathematical theory, like description in terms of Markov
partitions or structural stability of the chaotic attractors. So, it is vital to employ numerical
instruments for computational tests of the hyperbolicity.

The present paper is devoted to the development and application of such a tool based on the
verification of transversality of stable and unstable manifolds for trajectories on attractors, which
is a key basic property of the hyperbolicity. In Section 2 we consider simple examples (torus
map and Hénon map) to clarify the sense of transversal disposition of the stable and unstable
manifolds required for the hyperbolicity by their visualization accessible in the two-dimensional
case. In Section 3 we explain a more formal alternative approach based on statistical analysis of
distributions of angles of intersections of the unstable and stable subspaces of perturbation vectors
for the phase trajectories. Its advantage is the possibility of generalization for higher dimensions
of the state space. In Section 4, which is the main part of the article, this approach is applied to
some mechanical systems suggested earlier as possible candidates for the occurrence of hyperbolic
attractors [35, 51].
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2. VISUAL VERIFICATION OF TRANSVERSALITY OF STABLE AND UNSTABLE
MANIFOLDS FOR 2D MAPS

The consideration we start is based on simple and general reasoning concerning dynamics near
invariant sets in the phase space of dynamical systems.

Let the system we analyze have a chaotic attractor A. Selecting a point x̃ ∈ A relating to some
distant time in the past t0 − T (relative to the instant of observation t0), consider an ensemble of
initial conditions in its small ε neighborhood. Then the images of the initial points at t0 will arrive
practically at the attractor; it is so because of definition of A as a set attracting all neighbor orbits.
(The accuracy of the approach to A is determined by ε, time T , and negative Lyapunov exponents
of the attractor.) On the other hand, these image points (with a certain accuracy) relate to the
unstable manifold. Indeed, considering the dynamics on the orbits in backward time, we see them
approaching the attractor and gathering in the ε neighborhood of x̃.

Alternatively, we can select a point x̄ ∈ A at distant future t0 + T and consider the evolution
of the ensemble of states in its neighborhood backward in time, which gradually depart from A.
(Instead of attraction in forward time we have repelling in backward time provided by the negative
Lyapunov exponents.) Then, at t0 the states will be placed along the stable manifold, which is by
definition a set of trajectories approaching A in direct time.

A simple graphical presentation of the stable and unstable manifolds is accessible if we deal
with a two-dimensional map xn+1 = f(xn), which is supposed to allow backward iterations as well.
The unstable manifolds are one-dimensional and coincide with the filaments forming the structure
of the attractor; so, to judge about transversality, it is sufficient together with the attractor to
draw only the stable manifolds, which are one-dimensional too. The pictures obtained in this way
are illuminating and convincing to conclude qualitatively about the absence or presence of the
tangencies, and respectively, about the occurrence or violation of the hyperbolicity.

To depict the stable manifolds with computer, we proceed as follows. First, for an arbitrary
chosen point on the attractor x we generate the image by K-fold application of the map, x̄ = fK(x).
Then, with random initial conditions defined by vectors ȳ in a small ε neighborhood of x̄, by
backward iterations of the map we get a set of points y = f−K(ȳ), which represent graphically,
with a certain accuracy, the stable manifold containing the initial state x. Formally speaking,
the precision with which the manifolds are depicted grows fast with increase of K and respective
decrease of ε, but an actual selection of these quantities implicates a compromise between the
graphical accuracy and the numerical errors accumulating as ε is too small and K is too large. For
concrete maps, it is not difficult to select the parameters of the algorithm to reach the graphical
presentation accuracy comparable with a pixel size of the computer plot, which is certainly sufficient
for the qualitative analysis.1)

Our first example will be the map [28, 36]:

pn+1 = pn + qn + k
(
sin pn +

1
2

sin 2pn

)
(mod 2π),

qn+1 = pn + 2qn + k
(
sin pn +

1
2

sin 2pn + sin qn +
1
2

sin 2qn

)
(mod 2π).

(2.1)

At k = 0 it is the hyperbolic automorphism of torus, known as the Arnold cat map. At appropriately
chosen nonzero k it manifests a hyperbolic attractor called DA-attractor of Smale (DA stands for
“Derived-from-Anosov”). In Fig. 1a the attractor at k = 0.7 is shown in red, and the family of
curves representing the stable manifolds is shown in black. One can see clearly that the black
curves intersect the filaments of the attractor transversally (nonzero angles). Note that the family
of the stable manifolds visually looks representative: one can easily imagine intermediate missed
curves, and the transversality obviously takes place everywhere.

For comparison, in Fig. 1b a picture is drawn in the same manner for the chaotic attractor of
the Hénon map [37]

xn+1 = 1 − ax2
n + byn, yn+1 = xn (2.2)

1)Say, for the examples (2.1) and (2.2) discussed here, it was taken ε ∼10−5 and K ∼10.
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(a) (b)

Fig. 1. Uniformly hyperbolic attractor of the map (2.1) at k = 0.7 (a) and nonhyperbolic attractor of Hénon
map (2.2) at a = 1.4, b = 0.3 (b) shown in red. Families of stable manifolds computed as explained in the text
at representative points of the attractors are shown in black.

at a=1.4, b=0.3. Again, the families of the stable manifolds are obviously representative; one can
easily supplement them mentally with intermediate curves. However, the picture looks essentially
different. Namely, the stable manifolds are disposed in such a way that the tangencies with filaments
of the attractors occur inevitably.

3. ANALYSIS OF DISTRIBUTION OF INTERSECTION ANGLES OF STABLE AND
UNSTABLE SUBSPACES OF PERTURBATIONS. MAIN IDEA AND SIMPLE EXAMPLES

For maps of higher dimensions it is problematic to give a graphically convincing evidence for
mutual placement of the manifolds. An alternative approach adaptable for these cases may be based
on consideration of statistical distribution of angles of intersection of stable and unstable subspaces
in tangent vector space (perturbation vector space) tracing these angles along a representative phase
trajectory on the analyzed invariant set. Such a method was originally suggested and developed
for saddle chaotic orbits in [38]. Afterwards, it was applied for chaotic attractors as well [39–42],
including attractors of Smale – Williams and Plykin type of physically realizable systems [23, 24, 29].

The criterion is convenient to use in an elegant formulation of [41]; here we restrict ourselves
to the case when the unstable manifolds are one-dimensional (one positive Lyapunov exponent),
which is sufficient for our purposes.2)

First, consider the discrete time case.
The first stage is to obtain a sufficiently long time series xn of vectors belonging to the phase

space of dimension N of the analyzed map xn+1 = f(xn) by iterations of this map. It will be
regarded as a reference orbit on the attractor.

Next, we take a linearized equation for the perturbation vector x̃n+1 = f ′(xn)x̃n, where f ′(xn) is
the Jacobi matrix of size N × N composed of partial derivatives, and perform iterations along the
reference trajectory xn with normalization of the vector x̃n at each step n to exclude divergences.
The result is a set of unit vectors {x̃0

n}. Then we have to pass the same reference trajectory in
reverse time and determine a stable vector subspace at each n as a subspace of vectors expanding
in the reverse time. In earlier versions of the algorithm it was provided by tracing a collection of
an appropriate number of perturbation vectors in reverse time with taking measures to exclude
domination of one or more directions of fast growth (Gram-Schmidt orthogonalization). Instead of

2)The method of statistical analysis for the angles may be generalized for invariant sets with stable and
unstable manifolds of any dimension considering the so-called principal angles of intersection for the respective
multidimensional stable and unstable subspaces of infinitesimal perturbation vectors [41], but this generalization
goes beyond the scope of the present article.
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this, and it was the novation introduced in [41], one can deal with a single vector ũ corresponding
to the orthogonal complement to the stable subspace. To do so, we have to perform iterations along
the reference trajectory in reverse time for a linear equation ũn = [f ′(xn)]T ũn+1, which contains the
transposed Jacobi matrix. With normalization at each step, we obtain a set of unit vectors {ũ0

n}.
In the case of continuous time (flow) we start by calculating the reference orbit x(t) on the

attractor, tracing a solution of the differential equation ẋ = F(x, t) over a sufficiently long time
interval. Then take the linearized equation for the perturbation vector ˙̃x = F′(x(t), t)x̃ and solve
it numerically along the reference trajectory forward in time with normalization of the vector x̃ at
each step of the integration scheme and obtain a set of unit vectors {x̃0

n}. Next, the integration
is performed in reverse time along the same reference orbit using the conjugate linear equation
˙̃u = −[F′(x(t), t)]T ũ. With normalization, it provides a set of vectors {ũ0

n}, each defines the
orthogonal complement to the stable subspace of the perturbation vectors at a reference point.
These vectors also are normalized to unity in the course of the computations.

The last stage, common in the discrete and continuous time cases, is evaluation of the angles φ
between the one-dimensional unstable subspace and the stable subspace at each recorded step of
the trajectory. Namely, we calculate the angle βn ∈[0,π/2] between the vectors {x̃0

n} and {ũ0
n}:

cos βn =
∣∣ũ0

n(t) · x̃0
n(t)

∣∣, and set φn = π/2 − βn. The final result is a histogram for the statistical
distribution of the angles.

Fig. 2. Two-dimensional state space diagrams, where directions of vectors of stable and unstable subspaces
at representative points of attractors are indicated in black and red, respectively, for the map of torus (2.1)
at ε = 0.7 (a) and the Hénon map (2.2).

For illustration, Fig. 1 shows diagrams on the planes of dynamical variables for the torus map and
Hénon map. On these plots the directions of vectors belonging to stable and unstable subspaces
are indicated at representative points of the attractors. Red color corresponds to directions of
the vectors x̃ and black shows directions orthogonal to the vectors ũ as computed by the above
algorithm. A comparison of these diagrams with Fig. 1 clarifies a relationship of the visual estimate
of the presence of transversality or tangencies for the manifolds in the previous section with the
approach we consider now. As is seen, mutual locations of the red and black segments precisely
correspond to the tangent directions to the stable and unstable manifolds, respectively, and therefore
the same is true for the angles of the intersections. Statistical analysis of these angles is just the
content of the approach to verification of the hyperbolicity we will use in the rest of the article.

Figure 3 shows histograms of the statistical distributions of the intersection angles for the
attractors of the torus map and the Hénon map.

For the hyperbolic attractor of the torus map (2.1) a clearly visible gap exists separating the
distribution from zero angles (panel (a)). It is illuminating to compare this picture with that
relating to an attractor which is not uniformly hyperbolic. The histogram for the Hénon attractor
(panel (b)) indicates statistically significant nonvanishing probability density around zero angles.
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It implies the occurrence of tangencies of the stable and unstable manifolds in agreement with the
visual estimate from Fig. 1b.3)

Fig. 3. Histograms for distributions of intersection angles for stable and unstable subspaces for the uniformly
hyperbolic DA-attractor of the map (2.1) at ε = 0.7 (a) and for the nonhyperbolic attractor of the Hénon map
(2.2) at a = 1.4, b = 0.3 (b).

4. VERIFICATION OF HYPERBOLICITY OF SOME MECHANICAL SYSTEMS

4.1. Particle Motion on a Plane under Periodic Kicks

Situations of particle motion on a plane under periodic kicks associated with attractors of Smale –
Williams type in the stroboscopic map were proposed and studied numerically in [43]. Here we
consider a slightly different version introduced in the later work [35], which is apparently better
suited for possible experimental realizations.

Consider a particle of unit mass on the plane (x, y) in a stationary potential field U(x, y) =
−1

2μ(x2 + y2) + 1
4μ(x2 + y2)2 possessing rotational symmetry about the origin, with minimum on

the unit circle. We assume that an additional force field with potential V (x, y) = 1
2(x2 + y2) −

1
3x3 + xy2 is switched on and off periodically with time interval T , producing short-time kicks of
magnitude and direction depending on the instantaneous position of the particle. Also, we add
the friction force proportional to the velocity; the friction coefficient is assumed to be unity for
simplicity.

Given the initial state just before the n-th kick xn = {x, ẋ, y, ẏ}t=nT−0, one can determine the
state before the next, n+1-th kick from the solution of the equations

ẍ + ẋ = μx(1 − x2 − y2), ÿ + ẏ = μy(1 − x2 − y2) (4.1)

on a period T with the initial conditions determined by the state immediately after the kick:

x|t=nT+0 = xn, ẋ|t=nT+0 = ẋn − xn + x2
n − y2

n,

y|t=nT+0 = yn, ẏ|t=nT+0 = ẏn − yn − 2xnyn.
. (4.2)

3)One can ask — may it happen that the criterion is valid on one trajectory but fails on another one on the same
attractor? How long must a reference trajectory be considered to be sure that the histogram actually indicates
the occurrence or absence of hyperbolicity? It must be clearly understood that the procedure does not offer a
mathematical proof (even in the sense of a computer assisted one), but provides only a practical tool to judge
about hyperbolicity or nonhyperbolicity. We suppose that the reference trajectory may be regarded as a typical
orbit on the attractor in the same sense as it is assumed in other practical numerical procedures, like evaluation
of Lyapunov exponents, or dimensions, or spectra. Concerning the duration of the processed trajectory, it may be
chosen empirically to contain about 104 or 105 of characteristic time intervals (say, steps of the Poincaré map),
with a visual estimate of the quality of the histograms obtained. Although errors in distinguishing hyperbolicity
and nonhyperbolicity cannot be excluded completely, the practice of the calculations certainly confirms the
usefulness of this computational tool. Say, the comparison of the concrete results for the considered examples of
the torus map and the Hénon map certainly looks convincing (Fig. 3).
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To explain the system functioning, consider a ring of particles resting initially on the unit
circle with coordinates x = cos ϕ and y = sin ϕ, 0 � ϕ < 2π. After a kick each particle will get the
momentum components Px = −x + x2 − y2 and Py = −y − 2xy depending on the initial angle ϕ.
Without taking into account the field U , the particles would stop due to the friction at the
coordinates easily evaluated as

x′ = x + Px = x2 − y2, y′ = y + Py = −2xy. (4.3)

If we substitute x = cos ϕ and y = sinϕ, we get x′ = cos ϕ′ and y′ = sin ϕ′, where ϕ′ = −2ϕ. This
means that the particles settle down again on the unit circle, but a single bypass of the original
ring corresponds to a twofold bypass of the newly formed ring in the opposite direction. Thus, for
the angular coordinate we have the expanding circle map, or the Bernoulli map.

In Eqs. (4.1) parameter μ may be selected small enough; then, during the characteristic time
of motion caused by a single kick, a displacement of the particle due to the potential field U(x, y)
is rather negligible. On the other hand, the period of kicks T may be assumed large enough to
have time for the particle to approach the potential minimum of U(x, y). These conditions are not
strong and may be valid at least in a rough approximation. (It is so because of structural stability
of the hyperbolic attractor we intend to construct.)

Relations (4.1) and (4.2) give rise to the four-dimensional Poincaré map xn+1 = f(xn); the
action of this map can be easily reproduced by means of numerical integration of the differential
equations (4.1) by a computer program.

Figure 4 illustrates some results of numerical simulations at μ = 0.3 and T = 4. Panel (a) depicts
a typical trajectory of the particle. Panel (b) shows the attractor in the stroboscopic section as
projected on the plane (x, y). It is the Smale –Williams solenoid because of the outlined topological
property of the ensemble of particles after the evolution between the kicks, namely, the emergence
of the loop bypassing the origin twice. Panel (c) shows the iterative diagram for the angular
variable ϕn determined immediately before each successive kick. One can see that the angular
coordinate behaves in accordance with the expanding circle map: one bypass of the circle for the
preimage implies two detours for the image in the opposite direction.

The chaotic nature of the dynamics is confirmed by numerical evaluation of the Lyapunov
exponents [44–46] for the Poincaré map:

Λ1 = 0.687, Λ2 = −1.386, Λ3 = −3.000, Λ4 = −3.733 . (4.4)

Note that the largest exponent is close to ln 2 in accordance with twice expanding transformation
of the angular variable on each period of kicks.

Fig. 4. A trajectory of the particle in the plane (x, y) produced by the model (4.1), (4.2) for 50 periods of
the pulse driving (a), stroboscopic portrait of the attractor (b), and iteration diagram for the angular variable
obtained from the numerical simulations at μ = 0.3, T = 4.

Figure 5 shows results of testing the criterion of angles formulated in the previous section for
the four-dimensional Poincaré map xn+1 = f(xn) of the model (4.1), (4.2), via computation of the
angles between unstable and stable subspaces on a long reference orbit on the attractor at μ = 0.3,
T = 4. Here the numerically obtained histogram is plotted, which clearly demonstrates the absence
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of angles close to zero; this means that no tangencies of stable and unstable manifolds occur, and
agrees with the conjecture that the attractor of the Poincaré map is hyperbolic.

Fig. 5. Histogram for verification of the criterion of angles for the attractor of the Poincaré map of the
system (4.1), (4.2) at μ = 0.3, T = 4.

4.2. A System of Two Interacting Particles Placed on Alternately Rotating Disks

Another system introduced in [35] is composed of two disks placed horizontally, one above the
other, which rotate about the common axis alternately (while one rotates, the other is at rest and
vice versa) with angular velocity ω. On each disk a particle is placed, capable of sliding on it with
the friction force proportional to its velocity relative to the disk with coefficient α. Suppose that
there is a potential field U(r) symmetric about the axis, with potential minimum at the center
and strongly growing to the edges of the disks. In addition, assume that the particles interact
via a potential field V (r1 − r2), where r1 = (x1, y1) and r2 = (x2, y2) are their position vectors.
Concretely, the fields are defined as

U(x, y) =
1
2
k(x2 + y2) +

1
4
(x2 + y2)2 (4.5)

and

V (x, y) = ε
(
−1

3
x3 + xy2

)
. (4.6)

Then the model set of equations reads

ẍ1 = x1(k + x2
1 + y2

1) + α(−ω1y1 − ẋ1) − ε[(x1 − x2)2 − (y1 − y2)2],

ÿ1 = y1(k + x2
1 + y2

1) + α(ω1x1 − ẏ1) + 2ε(x1 − x2)(y1 − y2),

ẍ2 = x2(k + x2
2 + y2

2) + α(−ω2y2 − ẋ2) + ε[(x1 − x2)2 − (y1 − y2)2],

ÿ2 = y2(k + x2
2 + y2

2) + α(ω2x2 − ẏ2) − 2ε(x1 − x2)(y1 − y2),

(4.7)

where

ω1(t) =

⎧⎨
⎩

ω0, nT � t < nT + T/2

0, nT + T/2 � t < nT,
ω2(t) =

⎧⎨
⎩

0, nT � t < nT + T/2

ω0, nT + T/2 � t < nT.

Figure 6 illustrates the dynamics of the model (4.7) at k = 3, α = 3, ε = 0.03, T = 16, ω0 = 2π.
Panel (a) shows the time evolution of the spatial position of two particles. Observe that rotations
of one and the other particle (red and blue curves) take place alternately, and the motion is not
periodic: the forms of the coils are not repeated in successive stages of activity in one and the
other subsystem. Panel (b) is a portrait of the attractor in the stroboscopic section as projected
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(a) (b) (c)

Fig. 6. Time evolution of spatial positions of the particles on the disks (a), attractor projection in the
stroboscopic section with magnified fragment illustrating Cantor-like transversal structure (b), and iteration
diagram for the angular coordinates of one of the particles (c) computed for the model (4.7) with parameters
k = 3, α = 3, ε = 0.03, T = 16, ω0 = 2π.

on the plane of coordinates of one particle (x1, y1). In the original scale, it looks like a circle, but
a zoom reveals distinguishable transversal Cantor-like structure as it is a kind of Smale –Williams
solenoid. Indeed, the iteration diagram for the angular coordinate of one of the particles determined
immediately after the end of each rotation stage of the corresponding disk behaves in accordance
with the expanding circle map. One bypass around the circle for a preimage implies four bypasses
for the image. The chaotic nature of the attractor is supported by computation of the spectrum of
Lyapunov exponents for the Poincaré map:

Λ1 = 1.354, Λ2 = −6.90, Λ3 = −7.65, Λ4 = −11.61,

Λ5 = −32.81, Λ6 = −32.92, Λ7 = −45.34, Λ8 = −47.26.
(4.8)

Note that the largest exponent is close to ln 4 in accordance with the quadrupling expanding
transformation of the angular variable on a period of the rotation switches.

Figure 7 presents results of verification of hyperbolicity of the attractor for the eight-dimensional
Poincaré map xn+1 = f(xn) of the model (4.7), via computation of the angles between unstable and
stable subspaces for a long reference orbit on the attractor. The numerically obtained histogram
demonstrates the absence of angles close to zero confirming that the attractor of the Poincaré map
is hyperbolic.

4.3. Parametric Excitation of Standing-wave Patterns by Periodically Modulated Pumping

Parametric excitation of standing-wave patterns on a string [47, 48] may produce chaotic
oscillations associated with a hyperbolic attractor as suggested in [49, 50]. The idea is to supply
pumping alternately on a low and a high frequency with some modulation period and provide
parametric excitation of short-wave and long-wave patterns turn by turn. With appropriately chosen
parameters, the transfer of the spatial phase from one pattern to another and back takes place in
such a way that over the full period of the pump modulation the phase undergoes a transformation
according to the expanding circle map. Due to dissipation, compression of the phase volume in the
state space ensures the presence of the attractor of Smale – Williams type.4) The easiest way to

4)Originally, in the suggested model the triple-expanding map was arranged (see [43] and [44]), but later the
possibility of obtaining other odd factors from 5 to 11 [50] was indicated.
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Fig. 7. Verification of the criterion of angles for the attractor of the Poincaré map of system (4.7) with a
histogram obtained at k = 3, α = 3, ε = 0.03, T = 16, ω0 = 2π . The stroboscopic Poincaré section in the
computations corresponds to time instants T/4 + nT , where n is an integer.

implement this idea in a mathematical model is to use a system closed into a ring (although in the
experiment it is not the simplest setup to deal with).

Following [49, 50], we postulate the partial differential equation for the model system

(1 + ε sin 4k0x)
∂2y

∂t2
= −(α + y2)

∂y

∂t
− γy

+
[
1 + a0

2 sin2 π(t/T − 1/4) sin 2ω0t + a0
6 cos2 π(t/T − 1/4) sin 6ω0t

] ∂2y

∂x2
,

(4.9)

where the normalization used is such that the propagation velocity c0 = 1. The equation is
complemented with the boundary condition of periodicity

y(x + L, t) ≡ y(x, t). (4.10)

Here ω0 = 2πc0/L and k0 = 2π/L roughly correspond to the frequency and wave number of the
fundamental mode. Parameter ε characterizes spatial inhomogeneity of the mass distribution on
the string, a0

2 and a0
6 are the amplitudes of low-frequency and high-frequency pumping, which is

modulated in time with period T .
Figure 8a illustrates the space-time evolution of patterns obtained from numerical integration

of the partial differential equation at parameters assigned as

ω0 = 2π, k0 = 2π, L = 1, T = 40, a0
2 = 0.4, a0

6 = 0.2, ε = 0.2, α = 0.4, γ = 0.03. (4.11)

The spatial distributions are shown at each next period of fast oscillations, so the high-frequency
component is not visible. In the system alternately long-wave and short-wave patterns arise. Their
spatial phases from one to another period of pump modulation evolve in accordance with the triple-
expanding circle map due to the mechanism described in [49] and [50]. Because of dissipation, the
attractor in the stroboscopic map is a Smale – Williams solenoid; in this case it is embedded in an
infinite-dimensional phase space of the distributed system.

Verification of the criterion of angles (like some other data-processing techniques developed for
finite-dimensional systems) would require a special reformulation for distributed systems described
by partial differential equations. As an alternative, in our case it is possible to turn to a reduced
finite-dimensional model [35, 51], which gives a fairly good description of the system dynamics.

In view of the fact that the parametric excitation takes place at the wave numbers k0 and
3k0, it is natural to consider a model where the dynamical variables are represented by time-
dependent coefficients of expansion of the string instant profile over these spatial modes. So, we
use a substitution

y(x, t) = u1(t) cos k0x + v1(t) sin k0x + u3(t) cos 3k0x + v3(t) sin 3k0x, (4.12)
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(a)

(b) (c)

Fig. 8. Space-time diagram illustrating the dynamics of the distributed system (4.9) with boundary conditions
of periodicity (4.10) on four modulation periods (a), stroboscopic portrait of the attractor in two-dimensional
projection for the reduced model (4.13) (b), and iteration diagram for the angular variable obtained for the
reduced model (4.13). Parameters of the system are assigned according to (4.11).

and then multiply both sides of equation (2.1) by cos k0x, sin k0x, cos 3k0x and sin 3k0x, each time
performing integration over the spatial period. As a result, we obtain a set of equations for the
coefficients:

ü1 =
f1 − 1

2εg3

1 − 1
4ε2

, ü3 =
f3 − 1

2εg1

1 − 1
4ε2

, v̈1 =
g1 − 1

2εf3

1 − 1
4ε2

, v̈3 =
g3 − 1

2εf1

1 − 1
4ε2

, (4.13)

where

f1 = −ω2
0 (1 + a2(t) sin 2ω0t + a6(t) sin 6ω0t) u1 − γu1 − αu̇1

− 1
2

[(3
2
u2

1 + u1u3 + u2
3 +

1
2
v2
1 + v1v3 + v2

3

)
u̇1 +

1
2
(u2

1 + 4u1u3 − v2
1)u̇3

+ (u1v1 − u3v1 + u1v3)v̇1 + (u1v1 + 2u1v3)v̇3

]
,

g1 = −ω2
0 (1 + a2(t) sin 2ω0t + a6(t) sin 6ω0t) v1 − γv1

− αv̇1 −
1
2

[(3
2
v2
1 − v1v3 + v2

3 +
1
2
u2

1 − u1u3 + u2
3

)
v̇1 +

1
2
(u2

1 + 4v1v3 − v2
1)v̇3

+ (u1v1 − u3v1 + u1v3)u̇1 + (−u1v1 + 2u3v1)u̇3

]
,
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f3 = −9ω2
0 (1 + a2(t) sin 2ω0t + a6(t) sin 6ω0t)u3 − γu3 − αu̇3

− 1
4

[
(u2

1 + 4u1u3 − v2
1)u̇1 + 2(−u1v1 + 2u3v1)v̇1 + (2u2

1 + 2v2
1 + 3u2

3 + v2
3)u̇3 + 2u3v3v̇3

]
,

g3 = −9ω2
0 (1 + a2(t) sin 2ω0t + a6(t) sin 6ω0t) v3 − γv3 − αv̇3

− 1
4

[
2(u1v1 + 2u1v3)u̇1 + (u2

1 + 4v1v3 − v2
1)v̇1 + 2u3v3u̇3 + (2u2

1 + 2v2
1 + u2

3 + 3v2
3)v̇3

]
.

Results of numerical simulations for the reduced system (4.13) appear to be in good agreement
with the computations based on the partial differential equation (4.9). In particular, at para-
meters (4.11) the amplitudes of the sine and cosine components (which are associated with the
spatial phase of the standing waves in the original system) evolve in time chaotically. Panel (b)
of Fig. 8 shows the attractor of the reduced model in stroboscopic section as projected on
the plane of variables (u1 + u3, v1 − v3), which correspond to variables (y(0, 1), y(L/4, t)) of
the original system. Observe the transversal Cantor-like structure visible under magnification.
Panel (c) shows the iteration diagram for the spatial phases defined for the reduced model as
θn = arg [u1(nT ) + iv1(nT )] at t = nT . It corresponds to the triple expanding circle map responsible
for the occurrence of the Smale-Williams attractor.

Fig. 9. Lyapunov exponents for the reduced model of the parametrically excited string (4.13) depending
on the parameter of mass inhomogeneity distribution. Other parameters: ω0 = 2π, k0 = 2π, T = 40, L = 1,
a0
2 = 0.4, a0

6 = 0.2, α = 0.4, γ = 0.03 .

Figure 9 shows a plot of Lyapunov exponents for the reduced model depending on the parameter
of inhomogeneity of the mass distribution. Intervals in which the largest Lyapunov exponent is
approximately constant and close to the value Λ1 ≈ ln 3 correspond to the hyperbolic chaos, when
the Poincaré map possesses an attractor of the Smale – Williams type, with the triple expanding
circle map for the angular coordinate. In ranges where significant deviations from this value occur,
hyperbolicity is apparently violated; characteristic for these domains is the presence of drops in the
Lyapunov exponent plot corresponding to windows of periodicity.

Now we may verify the criterion of angles for the reduced model (4.13) referring to the
eight-dimensional stroboscopic Poincaré map according to the scheme described in Section 2.
Figure 10 shows histograms for distributions of the angles between stable and unstable subspaces
for trajectories on the attractors in the case of hyperbolic dynamics (a), and in the case when the
attractor is nonhyperbolic (b) and angles close to zero are observed with notable probability.

For parameters assigned in accordance with (4.11) the distribution of angles is separated from
zero, i. e., the test confirms the hyperbolic nature of the attractor of the Poincaré map of the reduced
model. Having in mind good agreement of the dynamics of the original system (4.9) and of the
finite-dimensional reduced model (4.13) and taking into account the roughness of the hyperbolic
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Fig. 10. Histograms for verification of the criterion of angles for the reduced model (4.13) obtained at

ω0 = 2π, k0 = 2π, T = 40, L = 1, α=0.4, a0
2 = 0.4, a0

6 = 0.2, γ = 0.03, ε = 0.2 (a) and ε = 0.49 (b). In the
first case the attractor is hyperbolic, in the second case the test indicates the presence of zero angles, which
imply tangencies of stable and unstable manifolds, and the attractor is nonhyperbolic.

attractor of the Poincaré map, this result may be regarded as an argument in favor of the hyperbolic
nature of the attractor of the original distributed system as well.

5. CONCLUSION

To verify the hyperbolic nature of attractors for model mechanical systems, we implement and
test a method based on statistics of angles between the stable and unstable manifolds. For this
purpose, on some reference trajectory belonging to the attractor the angles between the stable
and unstable subspaces of infinitesimal perturbation vectors are evaluated, and their statistical
distribution is analyzed. We demonstrate that for several mechanical systems with an appropriate
selection of the parameters the analysis demonstrates the absence of angles close to zero, indicating
that the corresponding attractors are hyperbolic. In the models under study these are different
versions of the Smale – Williams solenoids in the Poincaré maps as seen from the topology of iterative
diagrams for the angular variables, corresponding to the expanding circle maps. To be accurate, we
admit that at present the arguments in favor of the hyperbolic nature of the attractors are based
on qualitative analysis and numerical results. A more rigorous mathematical justification of the
hyperbolicity, for example, with the verification criterion of cones [52–54], is desirable, and may be
one of the directions for further studies.
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